

The Free SQL Book:

A Tutorial Introduction to SQL

 Tim Martyn

Copyright 2022

Edition 0.0 (12/8/2022)

Free SQL Book, Tim Martyn 1 Copyright Pending, 2022

Dedications

My previous books were dedicated to my parents (Irene and

Nathaniel Martyn), my wife (Janet Martyn), and my children (Julie

Martyn and Jessica Brown). I dedicate this book to my

grandparents, brother, and grandchildren.

Grandparents: Sydney Martyn (1870 - 1963)

Mary Martyn (1876 - 1912)

Philip Cahill (1877 – 1938)

Nellie Cahill (1882 – 1936)

Brother: Stephen Martyn (1947)

Grandchildren: Hanna Brown (2014)

Johnny Geryk (2015)

Evan Brown (2017)

Josephine Geryk (2017)

Jacqueline Geryk (2019)

Sadly, three of my grandparents died before I was born. I only

remember my Grandpa Sydney Martyn. He was a wonderful and

especially kind man. I hope that my grandchildren will remember me

with the same respect and affection that I hold for him.

Free SQL Book, Tim Martyn 2 Copyright Pending, 2022

This Book is Almost Free

This book is free for almost all readers. Three restrictions on

the “freeness” of this book are noted below.

1. This book is protected by a copyright. All copyright laws
should be respected.

2. Any for-profit organization that uses this book within a

professional training class should send a modest donation to

one of the non-profit environmental organizations identified

below. This donation should be $5.00 per student per class

day. For example, a 2-day class with 10 students implies a

$100.00 (2x10x5) donation. A brief statement acknowledging

this donation should be emailed to: freesqlbook@gmail.com

3. Currently, this book and related files must be downloaded
from the www.freesqlbook.com website. The author has not

given permission to any “free-textbook” website to store this

book for download purposes.

If, after reading this book, you conclude that it was worth at

least $5.00, you are encouraged to donate that amount (or more) to

any of the following non-profit environmental organizations.

Please include a note with your donation stating: “This donation

was encouraged by the author of The Free SQL Book.”

Environmental Organizations

• Nature Conservancy (www.nature.org)

• World Wildlife Organization (www.worldwildlife.org)

• National Audubon Society (www.audubon.org)

Massachusetts residents may prefer to donate to the:

• Kestrel Land Trust (www.kestreltrust.org)

• Trustees of Reservations (www.thetrustees.org)

• Massachusetts Audubon Society (www.massaudubon.org)

Finally, take a moment to explore some of the above websites.

Because our planet needs more than a little help, please consider

donating a few extra dollars to join one of these organizations.

http://www.freesqlbook.com/
http://www.nature.orgx/

Free SQL Book, Tim Martyn 3 Copyright Pending, 2022

Preface

Objective: This book is a tutorial introduction to SQL. The

teaching method is learn-by-example using many sample queries

and exercises (with an answer book).

Like other SQL books, this book presents the basic syntax and

logic of SQL statements. Unlike many other SQL books, this book

highlights important “know-your-data” and “know-your-logic”

considerations. This book also includes optional appendices that

address other database topics related to SQL.

The SQL statements in this book have been tested on SQL Server,

DB2, and ORACLE. Where relevant, commentary identifies

differences in the syntax and behavior across these systems.

Target Audience: This book is written for the following

categories of readers. (The term “user” collectively refers to

all readers.)

SQL Rookie: Anyone wanting a “getting started” tutorial on SQL.

SQL Super-User: This person already knows some SQL and desires

to become proficient in the language. Frequently, a super-user

does not work in an IT Department. Instead, a super-user could

be an accountant, engineer, actuary, bookie, or scientist who

spends a considerable amount of time retrieving and manipulating

data that is stored in a relational database.

Application Developer: This person has a working knowledge of

some procedural programming language (e.g., Java, C++, COBOL,

PHP, Python). Application developers usually write “embedded

SQL” where SQL statements are embedded within an application

program. An application developer must first learn SQL (as

presented in this book) before she can embed SQL statements

within a program. This book does not discuss the embedding

process per se because the details, while not difficult, differ

among various database systems and programming languages.

College Student: This person may be attending an academic course

that covers a wide spectrum of database topics, including SQL.
Typically, classroom time constraints imply that the instructor
can offer no more than a few lectures on SQL. The tutorial
orientation of this book allows such students to learn SQL via
independent reading and homework exercises.

Free SQL Book, Tim Martyn 4 Copyright Pending, 2022

Appendices: This book includes two categories of appendices, Book

Appendices and Chapter Appendices.

Book Appendices: These appendices are located at the end of the

book. The first book appendix (Create Sample Tables for The Free

SQL Book) is relevant for all readers. The second book appendix

(Obtain Access to some Relational Database System) should help

those readers who do not have access to any relational database

system. The remaining book appendices are optional reading.

Chapter Appendices: All chapter appendices are optional reading.

These appendices are located at the end of some (but not all)

chapters. Each chapter appendix offers incidental by-the-

commentary on topics related to the SQL statements introduced in

the corresponding chapter. These appendices address Relational

Database Theory, SQL Efficiency, and Database Analysis and Design.

Suggestion for Reading this Book: This book frequently presents a

sample query on two pages as illustrated by Sample Query 1.1. The

even-numbered page presents: (i) the query objective, (ii) the SQL

statement that satisfies this objective, and (iii) the result

table. The odd-numbered page presents commentary on syntax and

logic.

If the reader has a large computer screen that can conveniently

display two pages, this layout should facilitate reading the

narrative about the sample query without flipping between pages.

(This layout also facilitates reading a physical copy of this

book. But hopefully very few readers will print this book. Save a

tree!)

Suggestions for Academic Faculty & Professional Trainers

Some thoughts about using this book can be found at the

www.freesqlbook.com website.

Feedback from Readers

A method for offering feedback to the author, especially error

identification, can be found at the www.freesqlbook.com website.

Even
Page

Odd
Page

http://www.freesqlbook.com/
http://www.freesqlbook.com/

Free SQL Book, Tim Martyn 5 Copyright Pending, 2022

Where’s Tim Hartley?

Tim Hartley and I have long shared a personal and SQL

friendship. We coauthored multiple SQL articles and early SQL

books on DB2 and ORACLE (published by McGraw Hill). So, why did

I go it alone with this book? First, I would like to emphasize

that, when writing this book, there were many occasions when I

wished Tim were a coauthor. However, I didn’t want to take

advantage of his good nature. Imagine a friend approaches you

with the following proposal.

Let’s write another SQL book. It will be considerably

longer than our previous books, and the selling price will

be $0.00! Furthermore, I expect to dillydally with my

writing obligations, and I may arbitrarily “call it quits”

anytime along the way.

I would be embarrassed to offer this proposal to anyone. Also, I

have not asked Tim to read this book because I know how I would

feel if I were asked to read a very long book (950+ pages) where

I would learn absolutely nothing. Finally, Tim is still in

working mode, whereas I am joyfully retired.

Note: I did indeed dillydally when writing this book. I took

approximately 10 years to complete this task because, although I

enjoyed playing with SQL code, I preferred to play with my young

grandchildren, dig holes in my garden, and attempt to play some

golf.

Free SQL Book, Tim Martyn 6 Copyright Pending, 2022

Acknowledgements

In my previous SQL books, I lightheartedly acknowledged my

favorite watering-hole and a few of its resident philosophers. The

following acknowledgements are more sincere.

In my early working life, my mindset could be described by the old

adage: Work is the curse of the drinking class. I worked to earn

some honest money for the same reasons that most of us do. While I

enjoyed most of my early work experiences, I never committed to

any organization. I was too skeptical (and perhaps a little too

cynical) to buy into any kind of organizational rah-rah. However,

my attitude changed after I joined the Computer Science Department

at The Hartford Graduate Center (HGC) in Hartford, Connecticut.

I attribute this change to my fellow faculty members in the

Computer Science Department. No superficial rah-rah stuff here.

These folks walked the walk. They always demonstrated a sincere

commitment to our department’s mission, which I summarize as:

Provide a first-rate Master’s Degree in Computer Science for the

working professional. Beyond a strong commitment to their academic

disciplines, these individuals were always friendly and helpful

toward other faculty, staff, and students. In the academic world,

where egomania and petty back-biting are not unknown, I never

encountered any such chicken-shxt within our department. I

acknowledge the following individuals by name because we were

together during what I consider to be our department’s golden age.

Roger Brown

Michael Danchak

Lynn DeNoia

Heidi Ellis

Tim Hartley

Jim McKim

Houman Younessi

These individuals earned my deepest respect. It is my very good

fortune that we became friends.

Free SQL Book, Tim Martyn 7 Copyright Pending, 2022

I also acknowledge other members of the HGC family. These include

two wonderful administrative women who made things happen, Judy

Rohan and Flo Josephs. Both were kind enough to kick my butt when

it (frequently) needed kicking. Also, I would like to acknowledge

fellow faculty members in the Engineering Department and School of

Management, and two former HGC Presidents, Homer Babbage and Worth

Loomis.

Finally, I note that HGC students received their degrees from

Rensselaer Polytechnic Institute (RPI) in Troy, NY. (In 1996, the

Hartford Graduate Center was renamed to Rensselaer at Hartford.) I

would like to acknowledge those members of the RRI Computer

Science Faculty who graciously helped our small department fulfill

its mission.

Free SQL Book, Tim Martyn 8 Copyright Pending, 2022

Table of Contents

Part I The SELECT Statement Page

Chapter 0 Read this Chapter! 13

Chapter 1 Getting Started: The SELECT Statement 23

Chapter 2 Sorting the Result Table: ORDER BY 49

Chapter 3 Prohibiting Duplicate Rows: DISTINCT 73

Chapter 4 Boolean Connectors: AND-OR-NOT 83

Chapter 5 IN and BETWEEN 129

Chapter 6 Pattern Matching: LIKE 139

Chapter 7 Arithmetic Expressions 167

Part II Built-in Functions & Null Values

Chapter 8 Aggregate Functions 187

Chapter 9 GROUP BY and HAVING Clauses 197

Chapter 9.5 Grouping by Multiple Columns 217

Chapter 10 Individual Functions 243

Chapter 10.5 Processing DATE Values 255

Chapter 11 Null Values 283

Part III Data Definition & Data Manipulation

Chapter 12 Preview Sample Sessions 313

Chapter 13 CREATE TABLE Statement 331

Chapter 14 CREATE INDEX Statement 359

Chapter 15 INSERT, UPDATE, & DELETE Statements 371

Part IV Join Operations

Chapter 16 Inner-Join: Getting Started 383

Chapter 17 More about Inner-Join 417

Chapter 18 Multi-Table Inner-Joins 445

Chapter 19 Outer-Join: Getting Started 515

Chapter 20 Multi-Table Outer-Joins 547

Chapter 20.5 Mixing Inner-Join & Outer-Join Operations 581

Free SQL Book, Tim Martyn 9 Copyright Pending, 2022

Part V Set Operations & CASE Expressions Page

Chapter 21 Set Operations: UNION, INTERSECT, and EXCEPT 607

Chapter 22 CASE Expressions 637

Part VI Sub-SELECTs

Chapter 23 “Regular” Sub-SELECTs 667

Chapter 24 Sub-SELECTs in DML 701

Chapter 25 Correlated Sub-SELECTs 715

Chapter 26 Inline Views 743

Chapter 27 WITH-Clause: Common Table Expressions 759

Chapter 28 CREATE VIEW Statement 775

Part VII Special Topics

Chapter 29 Transaction Processing: COMMIT & ROLLBACK 805

Chapter 30 Recursive Queries 837

Book Appendices

I. Create Sample Tables for The Free SQL Book 933

II. Obtain Access to a Relational Database System 943

III. Summary of Chapter Appendices 958

IV. Post-Relational Database Systems 965

V. Abbreviated Bibliography 969

Free SQL Book, Tim Martyn 10 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 11 Copyright Pending, 2022

PART I

The SELECT Statement

This first part of this book introduces the most popular SQL

statement, the SELECT statement, which is used to retrieve data

from a relational database. If you are a SQL rookie, Chapter 0

is an especially important chapter.

Chapter 0 presents a very brief introduction to relational

database concepts. It describes the PRESERVE table, one of the

FREESQL sample tables, and previews six sample queries that

retrieve data from this table. [Note: All sample queries in the

following seven chapters reference the PRESERVE table.]

Chapter 1 introduces sample queries that retrieve data from the

PRESERVE table. Attention is directed towards the column data-

types specified in this table.

Chapter 2 introduces the ORDER BY clause that a displays a

result table in a specified row sequence.

Chapter 3 introduces the DISTICT keyword that removes duplicate

rows from a result table.

Chapter 4 introduces the Boolean Connectors (AND, OR, and NOT)

that facilitate the specification of more complex row selection

criteria.

Chapter 5 introduces the IN and BETWEEN keywords that, in some

circumstances, support the abbreviation of row selection criteria.

Chapter 6 introduces the LIKE keyword that supports searching

character-string columns for specified character-string patterns.

Chapter 7 introduces arithmetic expressions that are used to

perform basic addition, subtraction, multiplication, and division.

Free SQL Book, Tim Martyn 12 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 13 Copyright Pending, 2022

Chapter

 0
 Read this Chapter!

Preliminary Comment: This is a simple but very important chapter.

Read this chapter as you would read a history book, for conceptual

purposes only. The last few pages will direct you towards “hands-

on” execution of SQL statements.

SQL is a popular computer language that is used to create,

retrieve, and modify data in a relational database, such as

ORACLE, SQL Server, DB2, and MYSQL. Relational base concepts will

be introduced on the following page. For the moment we begin with

a few preliminary observations about SQL.

More explicitly:

This book, like all other SQL books, presents the basic syntax and

semantics of SQL statements. However, unlike many other SQL books,

this book explicitly addresses issues pertaining to knowing-your-

data and knowing-your-logic.

• SQL is easy.

• However, a careless user can easily produce an

“almost correct” (i.e., incorrect) result.

• Again, SQL is easy.

• However: Knowing your data can be a challenge.

• And: Knowing your logic can be a challenge.

Free SQL Book, Tim Martyn 14 Copyright Pending, 2022

Relational Databases

All relational database systems store data in tables. The

following Figure 0.1 illustrates a table called PRESERVE. This

table describes 14 nature preserves that have been acquired and

maintained by the Nature Conservancy. (You are encouraged to visit

www.nature.org)

The PRESERVE table, like every other table in this book, contains

rows and columns. Each column has a name (PNO, PNAME, STATE,

ACRES, and FEE). This table has 14 rows, where each row describes

one nature preserve. (Most real-world database tables contain

hundreds, thousands, millions, or billions of rows.)

The SELECT Statement

This book will focus on the SELECT statement which is the most

popular SQL statement. You will execute a SELECT statement

whenever you want to retrieve and display data from a database

table. As an example, we preview the SELECT statement for Sample

Query 1.1 in Chapter 1.

 SELECT *

 FROM PRESERVE

This statement will display all data stored in the PRESERVE table.

PNO PNAME STATE ACRES FEE
 5 HASSAYAMPA RIVER AZ 660 3.00

 3 DANCING PRAIRIE MT 680 0.00
 7 MULESHOE RANCH AZ 49120 0.00
 40 SOUTH FORK MADISON MT 121 0.00
 14 MCELWAIN-OLSEN MA 66 0.00
 13 TATKON MA 40 0.00
 9 DAVID H. SMITH MA 830 0.00
 11 MIACOMET MOORS MA 4 0.00
 12 MOUNT PLANTAIN MA 730 0.00
 1 COMERTOWN PRAIRIE MT 1130 0.00
 2 PINE BUTTE SWAMP MT 15000 0.00
 80 RAMSEY CANYON AZ 380 3.00
 10 HOFT FARM MA 90 0.00

 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Figure 0.1: PRESERVE Table

Free SQL Book, Tim Martyn 15 Copyright Pending, 2022

Data-Types

Examination of the PRESERVE table shows that some columns
contain numeric data and other columns contain character-string
data.

 The numeric columns are: PNO, ACRES, and FEE

 The character-string columns are: PNAME and STATE

At a more detail level, you must learn about some different

types of numbers and different types of character-strings. More
precisely, you must learn the data-type of each column.

Regarding PRESERVE’s numeric columns, note that:

• PNO is an INTEGER data-type.

• ACRES is an INTEGER data-type.

• FEE is a DECIMAL data-type.

You should already understand the difference between an integer
value (e.g., 77, 0, -14) and a decimal value (e.g., 77.1, 0.0,
-14.9). However, this difference will not become relevant until
Chapter 7 where sample queries will illustrate numerical
calculations using values from the ACRES and FEE columns.

Regarding PRESERVES’s character-string columns, note that:

• STATE is a CHAR (fixed-length) character-string.

• PNAME is a VARCHAR (variable-length) character-string.

The difference between a fixed-length character-string (CHAR)
and a variable-length character-string (VARCHAR) cannot be
deduced by simply observing sample data. For example, eyeballing
the data in the STATE column in Figure 0.1 does not allow you to
definitively conclude that STATE is a fixed-length character-
string. Likewise, eyeballing the data in the PNAME column does
not allow you to definitively conclude that PNAME is a variable-
length character-string. Chapter 6 will describe the differences
between fixed-length and variable-length character-strings.

If you intend to query a table, you must learn the name and
data-type of its columns. Frequently, you can read documentation

about this information. You can also learn this information by
examining the CREATE TABLE statement that created the table, as
illustrated on the following page.

Free SQL Book, Tim Martyn 16 Copyright Pending, 2022

Know-Your-Data (Knowing the PRESERVE Table)

Before you can retrieve data from a table, someone, usually a
database administrator (DBA), must create the table and insert
rows into it. The DBA executes a CREATE TABLE statement to
create a table. Because the DBA is not a member of our target
audience, the CREATE TABLE statement will not be presented in
great detail. However, our know-your-data philosophy requires a
brief introduction to the CREATE TABLE statement (Figure 0.2)
that was used to create the PRESERVE table shown in Figure 0.1.

A CREATE TABLE statement assigns a name to the table; and it
assigns a name to each column and specifies the column’s data-
type. The data-type specification also determines the maximum

length of a column. Referencing the above figure, we note that:

• PNO and ACRES contain INTEGER values. The largest INTEGER
value is slightly larger than 2,147,000,000.

• FEE contains DECIMAL values. Each FEE value has a maximum
of five digits with two places after the decimal point.
Hence the largest FEE value cannot exceed 999.99.

• STATE contains fixed-length (CHAR) character-strings. Each
STATE value must have exactly two characters.

• PNAME contains variable-length (VARCHAR) character-strings.
The length of each PNAME value can vary, but its length
cannot exceed 25 characters.

Also observe that:

• The PNO column is designated as UNIQUE. Hence, the PNO
column cannot contain any duplicate values.

• Each column is specified as NOT NULL. This means that no
column value can be an “unknown” value.

[For the moment, there is no need to illustrate the INSERT
statements that inserted the 14 rows into the PRESERVE table.]

Figure 0.2: CREATE TABLE Statement

CREATE TABLE PRESERVE
(PNO INTEGER NOT NULL UNIQUE,
 PNAME VARCHAR (25) NOT NULL,
 STATE CHAR (2) NOT NULL,
 ACRES INTEGER NOT NULL,
 FEE DECIMAL (5,2) NOT NULL)

Free SQL Book, Tim Martyn 17 Copyright Pending, 2022

Preview: Sample Queries from Chapter 1

Without any explanation, we preview all sample queries that will

be presented in Chapter 1. We expect that most readers can rely on

their intuition to deduce “what’s going on here.”

Sample Query 1.1: Display all data in the PRESERVE table.

SELECT *

FROM PRESERVE

PNO PNAME STATE ACRES FEE
 5 HASSAYAMPA RIVER AZ 660 3.00
 3 DANCING PRAIRIE MT 680 0.00
 7 MULESHOE RANCH AZ 49120 0.00
 40 SOUTH FORK MADISON MT 121 0.00
 14 MCELWAIN-OLSEN MA 66 0.00
 13 TATKON MA 40 0.00
 9 DAVID H. SMITH MA 830 0.00

 11 MIACOMET MOORS MA 4 0.00
 12 MOUNT PLANTAIN MA 730 0.00
 1 COMERTOWN PRAIRIE MT 1130 0.00
 2 PINE BUTTE SWAMP MT 15000 0.00
 80 RAMSEY CANYON AZ 380 3.00
 10 HOFT FARM MA 90 0.00
 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Sample Query 1.2: Display all information about any nature

preserve that has an admission fee of $3.00. (More
precisely, display just those rows where the FEE value
equals 3.00. Display all columns in these rows.)

 SELECT *

FROM PRESERVE

WHERE FEE = 3.00

 PNO PNAME STATE ACRES FEE

 5 HASSAYAMPA RIVER AZ 660 3.00
 80 RAMSEY CANYON AZ 380 3.00
 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Free SQL Book, Tim Martyn 18 Copyright Pending, 2022

Observation: Sample Query 1.3a references STATE, a CHAR column,

whereas Sample Query 1.3b references PNAME, a VARCHAR column.

WHERE STATE = 'AZ'

WHERE PNAME = 'RAMSEY CANYON'

The similarity of the above WHERE-clauses illustrates that, in

many (but not all) circumstances, fixed-length character-strings

and variable-length character-strings are treated in the same

manner.

Sample Query 1.3a: Display all information about any nature
preserve that is located in Arizona. (I.e., Display just
those rows where the STATE value is AZ.)

SELECT *

FROM PRESERVE

WHERE STATE = 'AZ'

PNO PNAME STATE ACRES FEE
 5 HASSAYAMPA RIVER AZ 660 3.00
 7 MULESHOE RANCH AZ 49120 0.00
 80 RAMSEY CANYON AZ 380 3.00
 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Sample Query 1.3b: Display all information about the Ramsey

Canyon nature preserve.

SELECT *

FROM PRESERVE

WHERE PNAME = 'RAMSEY CANYON'

PNO PNAME STATE ACRES FEE
 80 RAMSEY CANYON AZ 380 3.00

Free SQL Book, Tim Martyn 19 Copyright Pending, 2022

Chapter 1 will present details about the preceding sample queries.

Many readers will find these sample queries to be self-evident. In

fact, some SELECT statements are so obvious that you may be

tempted to fly through Charter 1 and ignore the related narrative.

This might be OK for an experienced professional. However, most

readers should not yield to this temptation. The narrative will

highlight important know-your-data concepts.

Sample Query 1.4: For every row in PRESERVE, display its
PNAME, ACRES, and STATE values (in that left-to-right
column sequence).

 PNAME ACRES STATE

HASSAYAMPA RIVER 660 AZ
DANCING PRAIRIE 680 MT

MULESHOE RANCH 49120 AZ
SOUTH FORK MADISON 121 MT
MCELWAIN-OLSEN 66 MA
TATKON 40 MA
DAVID H. SMITH 830 MA
MIACOMET MOORS 4 MA
MOUNT PLANTAIN 730 MA
COMERTOWN PRAIRIE 1130 MT
PINE BUTTE SWAMP 15000 MT
RAMSEY CANYON 380 AZ
HOFT FARM 90 MA

 PAPAGONIA-SONOITA CREEK 1200 AZ

SELECT PNAME, ACRES, STATE

FROM PRESERVE

Sample Query 1.5: Select the PNAME and ACRES values for every
nature preserve that is located in Arizona.

 PNAME ACRES
 HASSAYAMPA RIVER 660
 MULESHOE RANCH 49120
 RAMSEY CANYON 380

 PAPAGONIA-SONOITA CREEK 1200

SELECT PNAME, ACRES

FROM PRESERVE

WHERE STATE = 'AZ'

Free SQL Book, Tim Martyn 20 Copyright Pending, 2022

System Architecture: Front-End Tool & Database Engine

A “Front-End Tool” is a software product that presents screen

images (pages) similar to those shown in the preceding sample

queries. Here, the front-end tool provides a (presumably)

friendly interface to a Relational Database Management System

(RDBMS) such as ORACLE, DB2, or SQL Server. The front-end tool

and RDBMS constitute the high-level system architecture as

illustrated in the following Figure 0.3.

Front-End Tool: After starting the front-end tool, it should
present a SQL-Page similar to the following Figure 0.4.

This generic SQL-Page displays two panels: (1) an SQL Panel

where you enter your SELECT statement, and (2) a Result Panel

which displays the result table. (This generic SQL-Page only

illustrates part of what a user will see. Also, with some front-

end tools, the user may have to interact with one or more

preliminary pages before the SQL-Page is displayed.)

RDBMS: Most users never directly interact with the “back-end”

RDBMS which is “under the hood.” The RDBMS will: (i) accept a

SELECT statement from a front-end tool, (ii) process this

statement to retrieve the desired data from the database which

resides on a physical disk, and (iii) return the result to the

front-end tool for display.

The following Chapter 1 says more about the SQL-Page and expands

upon Figure 0.4. Book Appendix-II presents more details about

the front-end tool and its relationship to the database engine.

(Both the front-end tool and RDBMS may be obtained from the same

software vendor (e.g., Microsoft). Alternatively, a front-end

tool and RDBMS may be obtained from different software vendors.)

Figure 0.4: SQL-Page

(1) SQL Panel

(2) Result Panel

Front-End

Tool

RDBMS

Database

Figure 0.3: System Architecture

Free SQL Book, Tim Martyn 21 Copyright Pending, 2022

Hands-On SQL: Learn by Doing

An intellectually gifted reader might be able to learn SQL by

reading this entire book without executing a SQL statement on a

computer. However, learning SQL is really a learn-by-doing

experience. Therefore, you are strongly encouraged to try some

of the many exercises presented throughout this book. (An Answer

Book is available at the www.freesqlbook.com website.) Of

course, this presumes that you can: (1) gain access to some

RDBMS, and (2) create the sample tables referenced in this

book’s sample queries and exercises.

1. Access some RDBMS

Most readers already have access to some RDBMS. However, some

readers do not yet have access to any such system. Gaining access

to an RDBMS may be easy, or it may require some effort. Book-

Appendix-II describes three general methods to satisfy this

objective. This appendix will also describe how to gain access to

some front-end tool that can interact with the RDBMS.

2. Create the FREESQL sample tables in your system

After gaining access to some front-end tool and RDBMS, you will

want to create the FREESQL sample tables. This is not difficult.

The process for creating these tables is described in Book-

Appendix-I.

http://www.freesqlbook.com/

Free SQL Book, Tim Martyn 22 Copyright Pending, 2022

”What should I do Next?”

It depends upon your personal situation.

If you already have access to an RDBMS:

1. Read Book-Appendix-I and create the FREESQL tables.

2. Start reading this book.

If you do not have access to an RDBMS:

1. Read Book-Appendix-II to gain access to some relational

database system (and front-end tool).

2. Read Book-Appendix-I, and create the FREESQL sample tables.

3. Start reading this book.

[If you think it could take you some time to gain access to an

RDBMS, do not let this logistical problem cause a significant

delay in your learning experience. Most readers will be able to

understand the material presented in Chapters 1-5 without

executing any SQL statements. After you gain access to an RDBMS

and create the FREESQL sample tables, return to Chapters 1-5 and

try its exercises.]

Free SQL Book, Tim Martyn 23 Copyright Pending, 2022

 Chapter

 1
 Getting Started:

 The SELECT Statement

The SELECT statement is used to retrieve data from one or more
tables. In this chapter, you will learn how to retrieve data from

a single table, the PRESERVE table. You will do this by examining
six sample queries and their SELECT statement solutions.

Suggestion: If this is your first exposure to SQL, it may be
helpful to manually type and execute some of the SELECT statements
presented in the sample queries. The results should match the
results shown in this book. Do not cut-and-paste. For some reason,
manually typing the SELECT statements reinforces the learning
process.

Again – Read the narrative for the sample queries: As indicated in
the previous chapter, some SELECT statements are so obvious that

you may be tempted to ignore the related narrative. This might be
appropriate for experienced users. However, most readers should
not yield to this temptation. The narrative will highlight
important know-your-data concepts.

Exercises: You are encouraged to try (some of) the exercises. This
chapter’s exercises are not difficult and should enhance your
learning experience. (The last three pages in the previous chapter
direct you towards gaining access to a relational database system
and creating the sample tables used in this book.)

Free SQL Book, Tim Martyn 24 Copyright Pending, 2022

Display an Entire Table

The first sample query asks you to display the entire PRESERVE
table (i.e., display all rows and all columns). Executing the
following simple SELECT statement will satisfy this objective.

Sample Query 1.1: Display all data in the PRESERVE table.

Typing SQL Statements: You can enter the above SELECT statement on
a single line as shown below.

 SELECT * FROM PRESERVE

Syntax: "SELECT" and "FROM" are reserved words, sometimes called
keywords. Each reserved word has a specific meaning. Your SQL
reference manual will contain a comprehensive description of all
your system’s reserved words.

FROM: The FROM-clause identifies the table that you want to query.
Your system will have many tables. Each table will have a unique
name. This name immediately follows the FROM keyword. The FROM-
clause must follow the SELECT-clause.

SELECT: The SELECT-clause identifies the columns that you want to
select. The asterisk (*) following SELECT tells the system to
"select all columns." The left-to-right column sequence in the

result corresponds to the default column sequence determined by
the order in which the columns were specified in the CREATE TABLE
statement. (Review Figure 0.2). Sample Query 1.4 will illustrate
how to select and display some subset of columns.

SELECT *

FROM PRESERVE

PNO PNAME STATE ACRES FEE
 5 HASSAYAMPA RIVER AZ 660 3.00
 3 DANCING PRAIRIE MT 680 0.00
 7 MULESHOE RANCH AZ 49120 0.00
 40 SOUTH FORK MADISON MT 121 0.00
 14 MCELWAIN-OLSEN MA 66 0.00
 13 TATKON MA 40 0.00
 9 DAVID H. SMITH MA 830 0.00
 11 MIACOMET MOORS MA 4 0.00
 12 MOUNT PLANTAIN MA 730 0.00

 1 COMERTOWN PRAIRIE MT 1130 0.00
 2 PINE BUTTE SWAMP MT 15000 0.00
 80 RAMSEY CANYON AZ 380 3.00
 10 HOFT FARM MA 90 0.00
 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Free SQL Book, Tim Martyn 25 Copyright Pending, 2022

Logic: This SELECT statement retrieves all rows because it does
not contain a WHERE-clause. The following Sample Query 1.2
introduces the WHERE-clause that is used to retrieve a subset rows
from a table. We emphasize that the absence of a WHERE-clause asks
the system to retrieve all rows.

Row Sequence: Observe that the rows in this result table are not
displayed in any particular row sequence. This is because:

• In principle, database tables do not have any predefined row
sequence, and

• This SELECT statement does not contain an ORDER BY clause.
(The ORDER BY clause will be introduced in Chapter 2.)

In general, you should never assume that a result table has any
specific row sequence unless the SELECT statement has specified an
ORDER BY clause.

[* If you execute this statement on your system, you might see a
sorted result because your system happened to produce an
“incidentally” sorted result. No harm here. We discuss
incidentally sorted results in the following Chapter 2.]

Termination Character: Your system may require the specification
of a termination character. Many systems use the semicolon (;) for
this purpose. For example, you might be required to terminate this
SELECT statement as shown below.

 SELECT *
 FROM PRESERVE;

We emphasize that the semicolon is not part of the SELECT
statement. The semicolon only indicates the end of the statement.
Most of this book’s SQL statements will not specify a semicolon.

Formatting the Result Table: This book does not focus on report
formatting because SQL does not (directly) support this
functionality. However, your front-end tool may offer some method
to format a result table. Such formatting includes report
headings, column spacing, the inclusion of dollar signs and commas
in numeric values, etc.

Articulating Query Objectives: This sample query, like many future
sample queries, asks you to: “Display ...” To be more precise,
this query objective should state: “Retrieve and display ...” We
make this distinction because we may want to execute a SELECT

statement that retrieves data, but does not display the retrieved
data. For example, in Chapter 8, some SELECT statements will
retrieve and summarize data, but only display the summary total
(without displaying the retrieved data that was summarized).

Free SQL Book, Tim Martyn 26 Copyright Pending, 2022

WHERE-Clause: Numeric Comparison

With the exception of a very small table, you will rarely want to
display all rows in a table. You will usually specify a WHERE-
clause to identify some subset of rows that you want to display.

Sample Query 1.2: Display all information about any nature

preserve that has an admission fee of $3.00. (I.e., Display
just those rows where the FEE value equals 3.00.) Display all
columns in these rows.

Syntax: If specified, the WHERE-clause must follow the FROM-
clause. The syntax of the WHERE-clause is:

 WHERE condition

A condition identifies the rows to be retrieved. (Sometimes a
condition is called a “predicate.”) In this example, the condition
is "FEE = 3.00". Only rows that match the condition will be
retrieved. A condition can specify any of the following comparison
operators:

 = “Equals"

 <> “Not equals"

 < "Less than"

 > "Greater than"

 <= "Less than or equal to"

 >= "Greater than or equal to"

Punctuation: A numeric value may include a minus sign (-). If

desired, you could code something like: WHERE FEE = -3.00.
However, no other punctuation is permitted. In particular, numeric
values should not contain dollar signs and commas.

SELECT *

FROM PRESERVE

WHERE FEE = 3.00

PNO PNAME STATE ACRES FEE
 5 HASSAYAMPA RIVER AZ 660 3.00
 80 RAMSEY CANYON AZ 380 3.00
 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Free SQL Book, Tim Martyn 27 Copyright Pending, 2022

Logic - Know-Your-Data: Recall that FEE is defined as a DECIMAL
data type. Hence, “FEE = 3.00” is an example of a numeric
comparison. This means the system compares on a mathematical basis
rather than on a character-by-character basis. The following
WHERE-clauses are logically equivalent and will retrieve the same
rows.
 WHERE FEE = 3

 WHERE FEE = 3.0

 WHERE FEE = 3.0000

Because FEE is a DECIMAL, it is strongly recommended (but not
required) that the comparison value (3.00) be specified as a
decimal value as illustrated in this SELECT statement.

Incidental Sort: Again, on some systems, you might observe that
the result table is incidentally sorted. Likewise, for all of this
chapter’s sample queries (because their SELECT statements do not
specify an ORDER BY clause).

Simple Conditions: The WHERE-clause (WHERE FEE = 3.00) specifies a
simple condition because it does not specify any Boolean operators

(e.g., AND, OR, NOT) that are used to formulate compound-
conditions. Chapter 4 will discuss compound-conditions.

Terminology - Restrict: This SELECT statement retrieves all
columns from a subset of rows. We will use the term “restrict” to
refer to this kind of operation. (Appendix 1B will offer a more
formal description of the restrict operation.)

Exercises:

The following three exercises (1A, 1B, and 1C) reference the
PRESERVE table.

1A. Display the row with a preserve number (PNO) of 5.

1B. Display all information about any nature preserve that does

not charge an admission fee (i.e., the admission fee is
zero).

1C. Display all information about any nature preserve that is

larger than 1,000 acres.

The following Exercise 1D references another table.

1D. The sample database contains a table called EMPLOYEE. Assume
you know nothing about this table except that it has a small
number of rows. Display all data in this table.

Free SQL Book, Tim Martyn 28 Copyright Pending, 2022

WHERE-Clause: Fixed-Length Character-String Comparison

The next sample query specifies a condition that references
STATE, a fixed-length character-string (CHAR) column.

Sample Query 1.3a: Display all information about any nature

preserve that is located in Arizona. (I.e., Display just
those rows where the STATE value is AZ.)

Syntax: The character-string value must be enclosed within
apostrophes ('AZ'). A rookie user might incorrectly specify a

double quote (“) instead of an apostrophe which will produce an
error.

Case Sensitivity: All characters in the STATE column are stored in
uppercase. Hence, this WHERE-condition must specify uppercase
characters. The following WHERE-clauses would produce a “no hit”
(no rows returned) result.

 WHERE STATE = 'az' → Error

 WHERE STATE = 'Az' → Error

 WHERE STATE = 'aZ' → Error

Case sensitivity can be a nuisance if a column contains both
uppercase and lowercase characters. Chapter 10 will address this
potential problem.

Case sensitivity (usually) does not apply to reserved words,
table-names, and column-names. The following statement is ugly,
but (on most systems) it is correct, and it will produce the same
result as the above SELECT statement.

 seLEct *
 fRom PrEServe
 WherE STatE = 'AZ'

SELECT *

FROM PRESERVE

WHERE STATE = 'AZ'

PNO PNAME STATE ACRES FEE
 5 HASSAYAMPA RIVER AZ 660 3.00
 7 MULESHOE RANCH AZ 49120 0.00
 80 RAMSEY CANYON AZ 380 3.00
 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Free SQL Book, Tim Martyn 29 Copyright Pending, 2022

Logic - Comparing CHAR Values: The following comments apply when
comparing a fixed-length (CHAR) column, such as the STATE column,
to a character-string value.

Character-string comparison compares on a character-by-character
basis. A special circumstance occurs when comparing two strings
that do not have the same length. Before starting the compare
operation, the system effectively pads the end of the shorter
string with blanks such that both strings have the same length.
This behavior is called “blank-padded comparison semantics.”
(Note: The system considers a blank to be a real character.)

For example, assume that Ireland joined the United States and was
assigned a STATE code of I, a character-string of length 1.
Because the data-type of the STATE column is CHAR (2), the I value
would be stored as two characters, 'I '. Observe the trailing
blank.

To display Irish nature preserves, your SELECT statement could
correctly specify the following WHERE-clause.

 WHERE STATE = 'I'

When comparing this single-character value ('I') to the two-
character STATE column, the system pads the 'I' such that it
becomes 'I '. Hence, the above WHERE-clause is evaluated as:

 WHERE STATE = 'I '

You could explicitly code the trailing blank in the above WHERE-
clause. However, this is unconventional and we generally
discourage coding trailing blanks in WHERE-clauses. (A special
case exception will be described in Chapter 6.)

Note that two strings are be equal only if all corresponding

characters match. This means that you have to be careful about
leading and embedded blanks. Note that the following WHERE-clause
would not match the stored two-character STATE value of 'I '.

 WHERE STATE = ' I' → No Hit

Exercise:

1E. Display all information about any nature preserve located in

Montana.

Free SQL Book, Tim Martyn 30 Copyright Pending, 2022

WHERE-Clause: Variable-Length Character-String Comparison

The following sample query specifies a condition that references
PNAME, a variable-length character-string (VARCHAR) column.

Sample Query 1.3b: Display all information about the Ramsey

Canyon nature preserve.

Syntax & Logic: Nothing New. This query objective requires
retrieving information about the Ramsey Canyon preserve. Because
the stored data contains all uppercase letters, this WHERE-
condition requires specification of uppercase letters.

Important Observation: The STATE column contains CHAR values, and
the PNAME column contains VARCHAR values. Note the similarity in
the WHERE-clauses for this and the preceding sample query.

WHERE STATE = 'AZ'

WHERE PNAME = 'RAMSEY CANYON'

This similarity always applies with the exception of a rare
special case circumstance that will be described in Chapter 6.

Embedded Blanks: We must know that there is exactly one blank

character between individual words in a PNAME value. (We are told
the system enforces this rule.) Hence, there is exactly one blank
between RAMSEY and CANYON. This means that the following
statements would produce a “no hit.”

SELECT *
FROM PRESERVE

WHERE PNAME = 'RAMSEYCANYON' → No Hit

SELECT *
FROM PRESERVE

WHERE PNAME = 'RAMSEY CANYON' → No Hit

Exercise:

1F. Display all information about the Pine Butte Swamp preserve.

SELECT *

FROM PRESERVE

WHERE PNAME = 'RAMSEY CANYON'

PNO PNAME STATE ACRES FEE
 80 RAMSEY CANYON AZ 380 3.00

Free SQL Book, Tim Martyn 31 Copyright Pending, 2022

CHAR versus VARCHAR: What’s the Difference?

What is the difference between fixed-length (CHAR) versus
variable-length (VARCHAR) character-strings? We are not going to
tell you here, but Chapter 6 will answer to this question.
Furthermore, with the exception of a few Chapter 6 sample queries,
you will rarely need to consider these differences. Below we make
some observations that apply throughout this book.

CHAR Columns: Most CHAR columns in our sample tables (and real-
world tables) contain trailing blanks. However, when comparing a

CHAR column to a constant character-string in a WHERE-clause, you
never need to specify any trailing blanks.

Sample Query 1.3a discussed storing a one-character STATE code 'I'
for Ireland in the two-character STATE column. We noted that the
WHERE-clause to search for Irish nature preserves should look
like:

 WHERE STATE = 'I'

Again, we generally discourage coding trailing blanks like:

 WHERE STATE = 'I '

VARCHAR Columns: Unlike CHAR columns, VARCHAR columns in our
sample tables (and real-world tables) almost never contain
trailing blanks. (We said “almost” because there is a special case
circumstance that will be described in Chapter 6.) Therefore, when
coding a constant character-string in a WHERE-clause, you almost
never need to specify trailing blanks as illustrated by the
following WHERE-clause specified in the preceding sample query.

 WHERE PNAME = 'RAMSEY CANYON'

We generally discourage coding explicitly trailing blanks like:

 WHERE PNAME = 'RAMSEY CANYON '

Eyeballing Data Values: In Chapter 0 we noted that the difference
between a CHAR character-string and a VARCHAR character-string
cannot be deduced by observing sample data. Eyeballing data in
the STATE column does not allow you to definitively conclude
that STATE is a fixed-length character-string. Likewise,
eyeballing data in the PNAME column does not allow you to
definitively conclude that PNAME is a variable-length character-
string. Eyeballing data is not helpful because differences

pertain to the internal (under-the-hood) representation of data.
These differences will be described in Chapter 6.

Free SQL Book, Tim Martyn 32 Copyright Pending, 2022

Displaying Specific Columns

Previous sample queries specified "SELECT *" which asked the
system to display all columns. In practice, we frequently want to
display just some subset of columns. The following sample query
illustrates how to achieve this objective by specifying the
column-names of the desired columns in the SELECT-clause.

Sample Query 1.4: For every row in PRESERVE table, display its

PNAME, ACRES, and STATE values (in that left-to-right column
sequence).

 PNAME ACRES STATE

HASSAYAMPA RIVER 660 AZ
DANCING PRAIRIE 680 MT
MULESHOE RANCH 49120 AZ
SOUTH FORK MADISON 121 MT
MCELWAIN-OLSEN 66 MA

TATKON 40 MA
DAVID H. SMITH 830 MA
MIACOMET MOORS 4 MA
MOUNT PLANTAIN 730 MA
COMERTOWN PRAIRIE 1130 MT
PINE BUTTE SWAMP 15000 MT
RAMSEY CANYON 380 AZ
HOFT FARM 90 MA
PAPAGONIA-SONOITA CREEK 1200 AZ

Syntax: Columns can be displayed in any left-to-right sequence.
Commas must separate the column-names. You may optionally include

one or more spaces before or after each comma.

Logic: No WHERE-clause is specified because all rows should be
selected. Because the SELECT-clause specifies three column-names
(PNAME, ACRES, STATE), only these column values are displayed.

Terminology - Project: This SELECT statement retrieves a subset of
columns from all rows. Sometimes we will use the term “project” to
refer to this kind of operation. (Appendix 1B will offer a more
formal description of the project operation.)

SELECT PNAME, ACRES, STATE

FROM PRESERVE

Free SQL Book, Tim Martyn 33 Copyright Pending, 2022

Duplicate Column-Names: You can specify the same column-name
multiple times in a SELECT-clause as illustrated below.

 SELECT STATE, PNAME, FEE, FEE, FEE
 FROM PRESERVE

Redundant specification of the same column-name may seem strange.
However, it is valid and will produce three identical columns in
the result table. Occasionally, this redundancy may be reasonable.
For example, you may wish to return multiple copies of the same
column to a front-end tool so that the front-end tool can perform

a different calculation on each copy.

Exercises:

1G. Display the preserve number and name, in that left-to-right

order, of all nature preserves.

1H. Display the state code and preserve name, in that left-to-

right order, of all nature preserves.

Free SQL Book, Tim Martyn 34 Copyright Pending, 2022

Display Some Subset of Rows and Columns

The following sample query does not introduce any new concepts or
reserved words. This sample query uses previously described
techniques to select some subset of rows (using a WHERE-clause)
and some subset of columns (by specifying column-names in the
SELECT-clause).

Sample Query 1.5: Display the PNAME and ACRES values of every

nature preserve that is located in Arizona.

 PNAME ACRES
 HASSAYAMPA RIVER 660
 MULESHOE RANCH 49120
 RAMSEY CANYON 380

 PAPAGONIA-SONOITA CREEK 1200

Syntax & Logic: Nothing new. Notice that this page’s title uses
the term “subset” to hint at the mathematical theory that serves
as the theoretical foundation for all relational database systems.
(You are invited to read the optional Appendix 1B to learn some
basic concepts about this theory.)

Exercises:

1I. Display the preserve number and name for all nature preserves

where the number of acres exceeds 2,000.

1J. Display the preserve name of all nature preserves located in
Massachusetts.

SELECT PNAME, ACRES

FROM PRESERVE

WHERE STATE = 'AZ'

Free SQL Book, Tim Martyn 35 Copyright Pending, 2022

Metadata: Learning about Tables, Columns, and Data-Types

Metadata is “data about data.” Within the context of a relational
database, metadata describes the names of all tables in the
database, the column-names and data-types of all columns in these
tables, and other relevant information. Most front-end tools
provide a SQL-Page with a general structure that looks like the
following Figure 1.1. (This figure enhances Figure 0.4).

Thus far, we have focused on (1) the SQL Panel where you enter
your SELECT statements, and (2) the Result Panel which displays
result tables. Most front-end tools also provide (3) a Metadata
Panel that displays metadata. The Metadata Panel may look

something like the following Frame-1.

In Frame-1, if you click on TABLES, Frame-2 appears with a list
of all tables (or maybe just those tables that you are allowed

to access). This list includes our EMPLOYEE and PRESERVE tables.
When you click on PRESERVE, Frame-3 appears with a list of
PRESERVE’s column-names, corresponding data-types, NOT NULL
indicators, and any UNIQUE designations. Notice that Frame-3
reflects the column descriptions specified in the CREATE TABLE
statement that created PRESERVE. (See Figure 0.2.)

The Metadata Panel is very useful when you want to access
unfamiliar tables. For example, assume you were just assigned to a
new project for a zoology application. You could examine Frame-2,
and then, using your intuition, start to explore the BIRD, FISH,
and REPTILE tables.

Aside: Your front-end tool derives its metadata from the
system’s Data Dictionary. We will say more about data
dictionaries later in this book.

Frame-1
Frame-2

Frame-3

USERS
TABLES
PROCEDURES
...

BIRD
EMPLOYEE
FISH
PRESERVE
REPTILE
...

PNO INTEGER NOT NULL UNIQUE
PNAME VARCHAR(25) NOT NULL
STATE CHAR(2) NOT NULL
ACRES INTEGER NOT NULL
FEE DECIMAL(5,2) NOT NULL

(1) SQL Panel

(2) Result Panel

(3)
Meta
Data

Figure 1.1: Front-end Tool SQL-Page

Free SQL Book, Tim Martyn 36 Copyright Pending, 2022

Qualified (Two-Part) Table-Names

All sample queries in this book reference a “one-part” table-
name (e.g., PRESERVE). However, every table really has a “two-
part” table-name (e.g., TM99999.PRESERVE) where the first part
(TM9999) specifies the user-id of the owner of the table. (This
user-id is usually the user-id of the person who executed the
CREATE TABLE statement that created the table.)

Consider the following scenario.

Assume you are Jacqueline Juniper, and the DBA has assigned you
a user-id of JJ011019. Then, if you were to create a table
called PRESERVE, this table’s qualified name would be:
JJ011019.PRESERVE.

Now, assume you (Jacqueline) execute the following statement:

 SELECT *
 FROM PRESERVE

Because the system knows who you are, it automatically (under-
the-hood) includes your user-id within the table-name and

executes:

 SELECT *
 FROM JJ011019.PRESERVE

Next, assume two other users, Josephine Violet (user-id is
JV061317) and Johnny Trouble (user-id is JT051015), also create
tables called PRESERVE. The qualified names of these tables are:
JV061317.PRESERVE and JT051015.PRESERVE. (These three PRESERVE
tables may or may not have the same column-names and data-
types.)

Question: Can you (Jacqueline) access Josephine’s PRESERVE table
by executing?

SELECT *
 FROM JV061317.PRESERVE

Answer: Maybe. If Josephine has (somehow) granted you a SELECT-
privilege on her JV061317.PRESERVE table, this SELECT statement
will execute and display Josephine’s PRESERVE table. However, if
Josephine has not granted you this privilege, the system will
deny you access to her table.

* In this book, we assume that you have created all sample
tables. Therefore, all sample queries will reference one-part
table-names.

Free SQL Book, Tim Martyn 37 Copyright Pending, 2022

Preview: Next Two Chapters

We review this chapter’s result tables to make some observations
about topics to be presented in the next two chapters.

Chapter 2 (ORDER BY): The result tables is this Chapter 1 are not
displayed in any particular row sequence. Chapter 2 will show how
an ORDER BY clause can be specified within a SELECT statement to
produce a desired row sequence.

Chapter 3 (DISTINCT): The result tables in this Chapter 1 do not
contain any duplicate rows. Chapter 3 will illustrate that some
SELECT statements may produce duplicate rows. This chapter will
introduce the DISTINCT keyword that removes duplicate rows (if
present) from a result table.

You will see that specification of ORDER BY and DISTICT is quite
simple. However, know-your-data issues can present some
complexity. For example, consider the following optional exercise
pertaining to duplicate rows.

Optional (Unfair) Preview Exercise:

This exercise is unfair because you have not read Chapter 3.

1K. Review the SELECT statement and result table for Sample Query

1.4. This SELECT statement is:

SELECT PNAME, ACRES, STATE
FROM PRESERVE

 This result table does not show any duplicate rows. However,

sometime in the future, in a very unusual circumstance, this
result table could contain duplicate rows. Why might this
happen?

Free SQL Book, Tim Martyn 38 Copyright Pending, 2022

Summary

Basic Syntax: This chapter introduced the basic syntax of the
SELECT statement as shown below.

Brackets around the WHERE-clause indicate this clause is optional.

From a logical perspective, a SELECT statement is formulated by:

1. Identifying the table that contains the desired data and

specifying its table-name in the FROM-clause.

2. Identifying the columns to be displayed and specifying their

column-names in the SELECT-clause. ("SELECT *" will display
all columns.)

3. Coding a WHERE-clause to specify row selection criteria. The
absence of a WHERE-clause implies that every row will be
selected.

Know-Your-Data: You have to learn the name and data-type of each
column in relevant tables. While this is not difficult, it may
take some time. Also, some subtle points deserve your attention.

• Numbers versus character-strings: Sometimes a "number" is a
string of digits that is defined as a character-string. For
example, a social security may be defined as CHAR(9). We will
see that mathematical calculations cannot be (directly)

performed on a character-string of digits that happens to look
like a number.

Caveat: Most systems provide some form of automatic data-type
conversion. For example, some systems will execute the
following statement and return the correct result.

SELECT *
FROM PRESERVE

 WHERE PNO = '10'

The system will automatically convert the character-string '10'

into an integer 10 before it does the comparison operation.
You might think that automatic data-type conversion is a
desirable feature. Maybe, in some circumstances. However, this
author recommends the explicit specification of data-type
conversion functions to be introduced in Chapter 10.

 SELECT column-name(s)

 FROM table-name

 [WHERE condition]

Free SQL Book, Tim Martyn 39 Copyright Pending, 2022

• CHAR versus VARCHAR: In this chapter, the under-the-hood
differences between CHAR and VARCHAR values did not impact the
coding of WHERE-clauses. However, Chapter 6 will present
sample queries where these differences (to be described)
become significant.

• INTEGER versus DECIMAL: Sample Query 1.2 explicitly coded a
decimal point (WHERE FEE = 3.00) when comparing on a decimal
column. We discouraged coding “WHERE FEE = 3” because FEE is a
decimal column. However, most systems will automatically

convert the integer 3 into a decimal value (3.0). Likewise, we
would not code a decimal point when comparing on an integer
value. For example, coding “WHERE ACRES > 100.00” is
discouraged because ACRES is defined as INTEGER.

Encoded Values: Writing a correct WHERE-clause requires that you
understand coding schemes used within your data. For example, you
must know that the STATE column contains two-character versus
four-character STATE codes. Our sample queries presume you know
that MA (not MASS) represents the state of Massachusetts, MT (not
MONT) represents Montana, and AZ (not ARIZ) represents Arizona.

This coding scheme is simple. However, many real-world tables
contain column values that utilize more complex coding schemes.

Regarding Efficiency: Don’t worry about efficiency.

However, if you are interested in efficiency, you are invited to
read Appendix 1A.

Regarding Theory: Don’t worry about theory. However, if you are
interested in the theoretical foundation of relational databases,
you are invited to read Appendix 1B.

Focus on writing correct statements. At this
early stage of learning SQL, efficiency is
not important.

It makes no sense to do the wrong thing fast!

Free SQL Book, Tim Martyn 40 Copyright Pending, 2022

Summary Exercises

Exercise 1D asked you to display the EMPLOYEE table. The result
table looked like:

ENO ENAME SALARY DNO

 1000 MOE 2000.00 20
 2000 LARRY 2000.00 10
 3000 CURLY 3000.00 20
 4000 SHEMP 500.00 40
 5000 JOE 400.00 10

 6000 GEORGE 9000.00 20

The following exercises reference this table. Details about its
columns are described below.

 ENO Employee Number: CHAR (4)
 This column contains unique values.
 Note: This “number” is represented by a character-

string.

 ENAME Employee Name: VARCHAR (25)

 SALARY Employee Salary: DECIMAL (7, 2)

 DNO Employee’s Department Number: INTEGER

1L. Display all information about any employee whose SALARY value

exceeds $1,000.00.

1M. Display all information about Employee 2000 (i.e., ENO value

is '2000').

1N. Display the ENAME and DNO values of every employee.

1O. Display the ENAME and SALARY values of every employee whose

SALARY value is less than $1,000.00.

Free SQL Book, Tim Martyn 41 Copyright Pending, 2022

Appendix 1A: Efficiency

Again, we emphasize that the primary objective of this book is to
help you write logically correct SQL statements. Therefore, you
can skip this and other Efficiency Appendices. However, someday
you may execute a correct SELECT statement and then have to wait a
long time for the result to appear. These appendices offer some
insight into why a SELECT statement may not execute with optimal
efficiency. We begin by reconsidering the SELECT statement for
Sample Query 1.5.

SELECT PNAME, ACRES
FROM PRESERVE
WHERE STATE = 'AZ'

To satisfy this query, the system has to perform multiple under-
the-hood operations. Two of these operations are:

1. Disk Input: The system will access the disk to retrieve rows

from the PRESERVE table and copy these rows into main memory.

2. Process Rows: The system will use its Central Processing Unit

(CPU) to select those rows that match the WHERE-clause. Then

it will extract the desired columns for display.

The first operation (reading the disk) is much slower than the
second operation (CPU processing) because disk Input-Output (I/O)
is always very slow when compared to CPU speed. Therefore,
database designers usually focus most of their attention on
reducing disk I/O.

When the system retrieves rows from disk, two factors impact
efficiency. These are: (1) the size of the table, and (2) the
access method the system uses to retrieve the desired rows.

Table Size: The SELECT statements for Sample Queries 1.1 and 1.4
did not specify WHERE-clauses. Hence, these queries asked the
system to retrieve all rows from the PRESERVE table. Because
PRESERVE only contains 14 rows, performance is very efficient.
However, if PRESERVE contained 14 million rows, these queries
would be much slower. The basic observation is that retrieving all
rows (or many rows) from a large table would be slow because there
would be a significant amount of disk input.

Access Methods: An access method is a low-level (under-the-hood)
procedure used by the system to retrieve desired rows from disk.
There are two general types of disk access methods: (1) sequential

scan and (2) direct access.

Free SQL Book, Tim Martyn 42 Copyright Pending, 2022

1. A sequential scan of a table retrieves and copies all of its
rows from the disk into main memory. Again, because the
SELECT statements for Sample Queries 1.1 and 1.4 did not
specify WHERE-clauses, these queries retrieved all rows. This
type of query usually encourages the system to perform a
sequential scan. Scanning a small table (analogous to reading
a small book) is efficient. Scanning a large table (analogous
to reading a large book) is less efficient.

2. A direct access method is basically a “shortcut” used by the

system to retrieve only the desired rows. The system might

use a direct access method if a table is large and the SELECT
statement contains a WHERE-clause indicating that the desired
result will only contain a few rows. The most popular direct
access method is a database index.

Database Indexes: A database index is conceptually similar to an
index found at the end of a very large book. If the book is about
American history, you might ask: “What does this book say about
Calvin Coolidge?” You could answer this question by reading the
entire book (i.e., sequentially scan all pages in the book).
Alternatively, it is probably more efficient to read the book’s
index and follow the page numbers that point to those pages that
discuss Coolidge.

The following Figure A1.1 illustrates the basic features of a
database index called INDSTATE which is based on the STATE
column. This index could help Sample Query 1.5. Given the
condition (STATE = 'AZ'), the system could access the index and
follow the four AZ “pointers” to directly access the four
Arizona rows. (A pointer is the physical disk address of a row.)

PNO PNAME STATE ACRES FEE
 5 HASSAYAMPA RIVER AZ 660 3.00

 3 DANCING PRAIRIE MT 680 0.00
 7 MULESHOE RANCH AZ 49120 0.00
 40 SOUTH FORK MADISON MT 121 0.00
 14 MCELWAIN-OLSEN MA 66 0.00
 13 TATKON MA 40 0.00
 9 DAVID H. SMITH MA 830 0.00
 11 MIACOMET MOORS MA 4 0.00
 12 MOUNT PLANTAIN MA 730 0.00
 1 COMERTOWN PRAIRIE MT 1130 0.00
 2 PINE BUTTE SWAMP MT 15000 0.00
 80 RAMSEY CANYON AZ 380 3.00
 10 HOFT FARM MA 90 0.00

 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Figure A1.1: INDSTATE Index References STATE Column in PRESERVE Table

AZ

MA

MT

INDSTATE
Index

Free SQL Book, Tim Martyn 43 Copyright Pending, 2022

While there are conceptual similarities between a database index
and a typical book index, two important differences must be
noted.

First, imagine that, instead of a large book’s index being
located in the back of the book, the index is located in another
much smaller book that references the page numbers in the larger
book. In a similar manner, most (but not all) database indexes
are stored separately from the table. Figure A1.1 shows that the
INDSTATE index is a separate dataset from the PRESERVE table.

Second, most books have just one index that references all major
topics. For example, a history book’s index might reference the
persons, locations, wars, treaties, etc. described in the book.
However, a database table usually has multiple indexes where
each index usually references just one column (analogous to one
topic). Here the INDSTATE index is based on one column, the
STATE column.

Because the PRESERVE table has six columns, the DBA could create
six indexes, one for each column. (For the moment, we ignore the
fact that it is possible to create a single index based on
multiple columns.) Because an index incurs some cost (to be

described in Appendix 2A), most designers only create a few
indexes. Here we assume that PRESERVE has just one index
(INDSTATE).

The system could use the INDSTATE index to satisfy Sample Query
1.5. This index could be very useful if the PRESERVE table
contained 14 million rows. However, because PRESERVE only
contains 14 rows, using this index would probably be slower than
a sequential scan. (Appendix 4A will say more about this
scenario.)

No Relevant Index: What if you looked at the end of the large
history book and did not find an index? Then, to satisfy a query
objective, you would be forced to read (sequentially scan) the
entire book. Now, consider a similar scenario. Assume PRESERVE
has 14 million rows and consider the following query that
presumably retrieves just a few rows.

SELECT *
FROM PRESERVE
WHERE FEE = 97.22

Because there is no index of the FEE column, the system must
scan the disk to copy every row into memory, and then examine

the FEE value in each row to determine if it equals 97.22. The
basic observation is that, in the absence of a useful index, a
simple SELECT statement could incur an expensive sequential
scan.

[Appendix A2 will continue this discussion of database indexes.]

Free SQL Book, Tim Martyn 44 Copyright Pending, 2022

Appendix 1B: Theory

Again, we emphasize that the primary objective of this book is to
help you write logically correct SQL statements. Therefore, as
with the Efficiency Appendices, you can skip this and other Theory
Appendices. However, you are encouraged to read on.

Why Theory? We offer a few good reasons for discussing database
theory within a tutorial textbook directed towards practitioners.

• Database theory is interesting.

• Database theory is not difficult.

• Database theory offers practical insights.

• These Theory Appendices will complement theory topics
presented in an academic database course. They offer a
potpourri-like informal introduction to a formal topic.

History: Once upon a time, way back in the late 1960s, Ted Codd, a
researcher at IBM, concluded that his employer’s database system
(IMS/DLI), and every other commercial database system, contained
many undesirable properties. These properties were associated with

the architecture; they were so fundamental that they could not be
remedied with just a few modifications to the database software.
So Codd started from scratch and proposed a novel idea (a “model”)
of what a good database should look like. He called his idea a
“Relational Model” for database systems.

Also, in the late 1960’s, people began using the term “software
engineer.” When designing systems, engineers frequently use
applied mathematics which is derived from some area of theoretical
mathematics. (Do you want to fly in an airplane designed by an
aeronautical engineer who did poorly in his math courses?) Codd’s
Relational Model offered a firm mathematical foundation to a new

discipline called “data engineering.” This foundation was based
upon elementary set theory.

Codd effectively said to IBM and the rest of the world: Here is a
good idea (a good model). I encourage you to build your database
systems based on this idea. Sometime around 1974 IBM took his
advice. Codd’s Relational Model served as the basic architecture
for IBM’s System-R, a prototype system that evolved into DB2.
Other database vendors (e.g., ORACLE) did likewise. The rest is
history.

Free SQL Book, Tim Martyn 45 Copyright Pending, 2022

Codd’s Fundamental Insight: Codd’s Relational Model was based on
set theory. A simple way to demonstrate the link between set
theory and a relational database is to draw two logically
equivalent Venn diagrams. (Hopefully you recall from junior high
school that a Venn Diagram can be used to illustrate the concept
of a subset.)

These diagrams represent the same concept: Set R is a subset of
set T. Most math textbooks use circles/ovals to represent a Venn
diagram as shown in left diagram. From a relational base
perspective, we prefer the rectangular diagram where set T
represents a database table, and the subset R represents a result
table produced by a query against table T.

Relational Model: Codd’s Relational Model is organized around
three concepts. We present the first two concepts: (1) the
structure of data, and (2) the query language. (The third concept,

database integrity, will be presented later in this book.)

1. Structure of Data

Codd wanted data to be represented by sets. For example, you can
consider the PRESERVE table to be a set where each row is an
element of the set. Furthermore, you can also consider the entire
database to be a set of tables. Therefore, a database is set of
tables, where each table is itself a set of rows.

Codd’s Terminology: A mathematical “Relation” formalizes a table.
A relations contain “n-tuples” which formalize rows. Each n-tuple

contains “attributes” which formalize column values.

2. Query Languages

Codd described a query result as a subset of a set. Consider the
following example.

You are given set T consisting of all even integers between and
including 2 and 10. (T is analogous to a table.)

 T = {2, 4, 6, 8, 10}

Query Objective: Retrieve all T values that are greater than 5.

The following set R is a subset of T that satisfies this query
objective. (R is analogous to a result table.)

 R = {6, 8, 10}

T

R

T

R

Free SQL Book, Tim Martyn 46 Copyright Pending, 2022

We have described set T and set R by enumerating their elements.
This is convenient because these sets are very small.
Mathematicians, in order to deal with very large (perhaps
infinite) sets, use a mathematical language called the predicate
calculus. Using the predicate calculus, the following notation
describes set R as a subset of set T.

 R = {x T: x > 5}

This notation says: “Set R contains those elements (x) from set T
where each element (x) is greater than 5.”

Codd’s critical insight is that, if relation T (table T) is a set
within a relational database system, the predicate calculus could
be used to describe the subset relation (the result table) that
you want the database system to retrieve. The user would code a

statement similar to {x T: x > 5} and submit it to the system.
The system would analyze the statement and return R, the desired
subset.

Codd extended the predicate calculus into a query language for his
Relational Model. He called this language the “relational
calculus.” However, some influential managers at IBM did not like

Codd’s relational calculus. Apparently, they did not think it was
a very friendly language.

Codd responded by developing another (presumably friendlier) query
language that he called the “relational algebra.” Again, some
people at IBM did not like this language. But they did like the
idea of storing data in tables. Eventually other database
researchers at IBM developed SQL. Conceptually, a SELECT statement
has language features derived from both the relational calculus
and the relational algebra. Below, we illustrate some similarities
between SQL and Codd’s database languages.

SQL & the Relational Calculus: Reconsider Sample Query 1.3a.

SELECT *
FROM PRESERVE
WHERE STATE = 'AZ'

The following calculus statement is equivalent to this SELECT
statement.

 {r PRESERVE: r.STATE = 'AZ'}

Here r represents a row in the PRESERVE table, and r.STATE = 'AZ'

corresponds to a WHERE-clause which identifies the desired subset
of rows to be retrieved.

Free SQL Book, Tim Martyn 47 Copyright Pending, 2022

SQL & the Relational Algebra: Codd defined eight operations in his
relational algebra. This chapter has already introduced two of
these operations: restrict and project.

Restrict

Informally, restrict is a database operation that returns a
horizontal subset of rows. Sample Query 1.2 executes a restrict
operation.

 SELECT *

FROM PRESERVE
WHERE FEE = 3.00

This statement retrieves a horizontal subset of PRESERVE. We
call this horizontal subset a “restriction” of PRESERVE.

Sample Queries 1.3a and 1.3b also represent restrict operations on
PRESERVE.

Project

Informally, project is a database operation that returns a
vertical subset of a table. Sample Query 1.4 executes a project
operation.

SELECT PNAME, ACRES, STATE
FROM PRESERVE

This statement retrieves a vertical subset of PRESERVE. We call
this vertical subset a “projection” of PRESERVE.

Note: Codd’s definition of project (unlike SQL) automatically

removes duplicate rows. (Duplicate rows will be discussed in
Chapter 3.)

PRESERVE

PRESERVE

Free SQL Book, Tim Martyn 48 Copyright Pending, 2022

Combining Restrict & Project

The SELECT statement for Sample Query 1.5 specifies both a
restrict operation and a project operation.

SELECT PNAME, ACRES
FROM PRESERVE
WHERE STATE = 'AZ'

When a SELECT statement executes both restrict and project
operations, the result table can be visualized as the

intersection of a horizontal subset (defined by the WHERE-
clause) and a vertical subset (defined by the SELECT-clause) as
illustrated below.

Conceptually, this SELECT statement asks the system to (i) perform
a restrict operation on PRESERVE to produce an intermediate
result, and then (ii) perform a project operation of this
intermediate result to produce the final result.

Efficiency Comment: Some Efficiency Appendices will describe the
physical implementation of relational operations. For example, the
system might use an index to implement the restrict operation. It
may also incorporate project within restrict. For example, in the

above SELECT statement, after the system retrieves an Arizona row,
it may immediately extract its PNAME and ACRES values before
retrieving the next Arizona row.

History: This appendix has introduced Codd’s classic Relational
Model as he defined it over 50 years ago. Subsequently, other
database researchers have refined and extended this model.

Conclusion: Codd’s grand idea, which laid the foundation for a
trillion-dollar industry, is an elegant application of basic set
theory.

PROJECT

RESTRICT

Free SQL Book, Tim Martyn 49 Copyright Pending, 2022

Chapter

 2

 Sorting the Result Table:

 ORDER BY Clause

Terminology – “Base Table” versus “Result Table”: Occasionally we
will use the term “base table” to refer to a stored table such as

the PRESERVE and EMPLOYEE tables. The CREATE TABLE statement
creates a base table. Executing a SELECT statement produces a
"result table" which is not a base table.

ORDER BY Clause: In general, we cannot make any assumptions about
a predefined row sequence within a base table. However, it is
usually desirable to display a result table in some specific row
sequence. This objective is realized by coding an ORDER BY clause
in the SELECT statement. (An ORDER BY clause cannot be specified
in a CREATE TABLE statement.)

This chapter will demonstrate the simplicity and flexibility of
the ORDER BY clause.

Free SQL Book, Tim Martyn 50 Copyright Pending, 2022

ORDER BY Clause: Sorting by a Single Column

The following sample query specifies an ORDER BY clause to sort
the result table by a single column.

Sample Query 2.1: Retrieve the STATE, PNO, and PNAME values from

all rows in the PRESERVE table. Display the rows sorted by
STATE values in ascending sequence.

 STATE PNO PNAME

 AZ 5 HASSAYAMPA RIVER
 AZ 7 MULESHOE RANCH
 AZ 80 RAMSEY CANYON
 AZ 6 PAPAGONIA-SONOITA CREEK
 MA 14 MCELWAIN-OLSEN
 MA 13 TATKON
 MA 9 DAVID H. SMITH

 MA 11 MIACOMET MOORS
 MA 12 MOUNT PLANTAIN
 MA 10 HOFT FARM
 MT 3 DANCING PRAIRIE
 MT 40 SOUTH FORK MADISON
 MT 1 COMERTOWN PRAIRIE
 MT 2 PINE BUTTE SWAMP

Syntax: The ORDER BY clause is usually the last clause in a SELECT
statement. ORDER BY is followed by the name of the sort column.
You can sort by any column. However, as illustrated here, you
usually sort by the leftmost column in the result table.

Logic: This ORDER BY clause specifies STATE as the sort column.
Because STATE contains character-string values, the sequence is an
alphabetical sequence. Here the sequence defaults to an ascending
sequence. Alternatively, you can use the ASC keyword to explicitly
specify an ascending sequence.

 ORDER BY STATE ASC

Sample Query 2.3 will illustrate the DESC keyword that produces a
descending sort sequence.

Important Observation: We cannot make any assumptions about a
second-level sort sequence within duplicate STATE values. The
following sample query illustrates sorting by two columns to
establish a two-level sort sequence.

SELECT STATE, PNO, PNAME

FROM PRESERVE

ORDER BY STATE

Free SQL Book, Tim Martyn 51 Copyright Pending, 2022

Sorting by Multiple Columns

The following sample query illustrates that an ORDER BY clause can
reference multiple columns.

Sample Query 2.2: Display STATE, PNO, and PNAME values for every

nature preserve. Sort the result by PNO within STATE. (I.e.,
STATE is the primary sort column, and PNO is the secondary
sort column.)

 STATE PNO PNAME ___
 AZ 5 HASSAYAMPA RIVER
 AZ 6 PAPAGONIA-SONOITA CREEK
 AZ 7 MULESHOE RANCH
 AZ 80 RAMSEY CANYON
 MA 9 DAVID H. SMITH

 MA 10 HOFT FARM
 MA 11 MIACOMET MOORS
 MA 12 MOUNT PLANTAIN
 MA 13 TATKON
 MA 14 MCELWAIN-OLSEN
 MT 1 COMERTOWN PRAIRIE

 MT 2 PINE BUTTE SWAMP

 MT 3 DANCING PRAIRIE
 MT 40 SOUTH FORK MADISON

Syntax: ORDER BY is followed by the primary sort column (STATE)
which is followed by the secondary sort column (PNO). A comma must

separate the column names.

An ORDER BY clause can specify (practically) any number of
columns. The following ORDER BY clause is valid and would
establish a five-level sort sequence.

 ORDER BY COL1, COL2, COL3, COL4, COL5

Logic: Observe the Arizona group (the first four rows) in this
result table. The PNO values within this group are sorted (5, 6,
7, 80). Likewise for the MA and MT groups.

Because STATE contains character-string values, the STATE sequence
is an alphabetical sequence; and, because PNO contains integer
values, the PNO sequence is based on mathematical value.

SELECT STATE, PNO, PNAME

FROM PRESERVE

ORDER BY STATE, PNO

Free SQL Book, Tim Martyn 52 Copyright Pending, 2022

Descending Sort: DESC

The following sample query demonstrates the use of the DESC
keyword to produce a result table that is displayed in a
descending sequence.

Sample Query 2.3: Display the PNO, PNAME, and ACRES values acres

for all nature preserves that are located in Arizona. Display
the result by PNO values in descending sequence.

 PNO PNAME ACRES
 80 RAMSEY CANYON 380

 7 MULESHOE RANCH 49120
 6 PAPAGONIA-SONOITA CREEK 1200

 5 HASSAYAMPA RIVER 660

Syntax: DESC follows the column-name in the ORDER BY clause. One
or more spaces must separate the column name and the DESC keyword.

If an ORDER BY clause references multiple columns, ASC or DESC can
be specified for each column as shown below.

ORDER BY COL1 ASC, COL2 DESC, COL3 ASC, COL4 DESC, COL5 ASC

Logic: Because the sort column (PNO) contains integer values, the
descending sequence is based on mathematical value.

SELECT PNO, PNAME, ACRES

FROM PRESERVE

WHERE STATE = 'AZ'

ORDER BY PNO DESC

Free SQL Book, Tim Martyn 53 Copyright Pending, 2022

“Sequence” versus “Sort”

Previous query objectives used the terms “sort” and “sequence” in
a very casual manner. Sample Query 2.1 asked you to “Display the
rows ... in ascending sequence,” whereas Sample Query 2.2 asked
you to “sort the result by ...”.

Sequence: Stating a desired row sequence (versus asking the system
to sort by some column) is a more accurate articulation of the
query objective because it is a declarative statement. It states
“what” to do, not “how to” do it.

Sort: Sorting is an internal (under-the-hood) process that may or
may not be used to satisfy some sequence objective. (Appendix 2A
will describe another internal method the system may use to
produce a desired row sequence.)

Having made this distinction, many future query objectives will
continue to state something like: “Sort the rows by column COLX.”

Exercise:

2A. Display the entire PRESERVE table. Sort the result by the
ACRES column in ascending sequence.

2B. Display the preserve name and admission fee of every nature

preserve located in Montana. Sort the result by preserve name
in descending sequence.

2C. Display the FEE and ACRES columns for every row in the

PRESERVE table. Sort the displayed rows by ACRES within FEE.
(FEE is the major sort field, and ACRES is the minor sort
field.)

Free SQL Book, Tim Martyn 54 Copyright Pending, 2022

ORDER BY Column-Number

An ORDER BY clause can reference a column by its relative position
in the result table.

Sample Query 2.4: Display the preserve number, acres, and name

of every nature preserve located in Arizona. Sort the result
by the third column.

PNO ACRES PNAME
 5 660 HASSAYAMPA RIVER
 7 49120 MULESHOE RANCH
 6 1200 PAPAGONIA-SONOITA CREEK

 80 380 RAMSEY CANYON

Syntax & Logic: The relative column-number (3) refers to the
column position in the result table, not the underlying base
table. Here, PNAME is the third column of the result table
(although PNAME is the second column in the underlying base
table).

Recommendation: Specifying a column-number is acceptable for a
one-time ad hoc query. However, if the SELECT statement will be
saved for future execution, it is better to explicitly specify a
column-name. This enhances readability and will not be affected by
any future change to the SELECT-clause that reorders the left-to-
right column sequence. This advice is especially relevant for

application developers who code SELECT statements that will be
embedded within stored procedures and application programs.

Exercise:

2D. Display the entire PRESERVE table sorted by the fourth column

in descending sequence.

SELECT PNO, ACRES, PNAME

FROM PRESERVE

WHERE STATE = 'AZ'

ORDER BY 3

Free SQL Book, Tim Martyn 55 Copyright Pending, 2022

Sorting by a Non-displayed Column

Sometimes you want to sort by a column, but you do not want to
display values from the sorted column. For example, the following
result table is sorted by the ACRES column, but it does not
display the ACRES values.

Sample Query 2.5: Display the PNO and PNAME values for all

preserves. Display the result by ACRES in descending
sequence.

PNO PNAME
 7 MULESHOE RANCH
 2 PINE BUTTE SWAMP
 6 PAPAGONIA-SONOITA CREEK
 1 COMERTOWN PRAIRIE
 9 DAVID H. SMITH

 12 MOUNT PLANTAIN
 3 DANCING PRAIRIE
 5 HASSAYAMPA RIVER
 80 RAMSEY CANYON
 40 SOUTH FORK MADISON
 10 HOFT FARM
 14 MCELWAIN-OLSEN
 13 TATKON
 11 MIACOMET MOORS

Syntax & Logic: Nothing new. You rarely want to sort a result
table by a non-displayed column. However, on occasion, this can be
useful. For example, you might want to display the ENAME column

from the EMPLOYEE table and sort the result by the SALARY column.
However, for confidentiality reasons, you do not want to display
the SALARY values.

 SELECT ENAME
 FROM EMPLOYEE
 ORDER BY SALARY

Exercise:

2E. Assume (unrealistically) that PNO values are considered to be

confidential. Display the PNAME value for each Arizona nature

preserve. Display the result in ascending PNO sequence
without displaying the PNO values.

SELECT PNO, PNAME

FROM PRESERVE

ORDER BY ACRES DESC

Free SQL Book, Tim Martyn 56 Copyright Pending, 2022

The following sample query does not introduce any new concepts or
keywords. It merely illustrates that all variations of the ORDER
BY clause can be incorporated within a single clause. The
following sample query, while not very realistic, demonstrates the
flexibility of the ORDER BY clause.

Sample Query 2.6: Display the STATE, FEE, and PNAME values from

all rows in the PRESERVE table where:

• STATE is the 1st level sort column (ascending)

• FEE is the 2nd level sort column (descending)

• PNAME is the 3rd level sort column (descending)

 STATE FEE PNAME
 AZ 3.00 RAMSEY CANYON

AZ 3.00 PAPAGONIA-SONOITA CREEK
AZ 3.00 HASSAYAMPA RIVER

AZ 0.00 MULESHOE RANCH
MA 0.00 TATKON
MA 0.00 MOUNT PLANTAIN
MA 0.00 MIACOMET MOORS
MA 0.00 MCELWAIN-OLSEN
MA 0.00 HOFT FARM
MA 0.00 DAVID H. SMITH
MT 0.00 SOUTH FORK MADISON
MT 0.00 PINE BUTTE SWAMP
MT 0.00 DANCING PRAIRIE
MT 0.00 COMERTOWN PRAIRIE

Syntax and Logic: Nothing new. The ORDER BY clause references the
STATE and FEE columns by name. Quite arbitrarily, the PNAME column
is referenced as the third column. The system displays STATE
values in ascending sequence. FEE and PNAME values are displayed
in descending sequence.

Exercise:

2F. Display the STATE, FEE, and PNO values for any preserve

having more than 100 acres. Sort the result table. STATE is
the first-level sort field in descending sequence. FEE is the
second-level sort field in descending sequence. PNO is the

third-level sort field in ascending sequence.

SELECT STATE, FEE, PNAME

FROM PRESERVE

ORDER BY STATE ASC, FEE DESC, 3 DESC

Free SQL Book, Tim Martyn 57 Copyright Pending, 2022

Incidental Sort

The following query objective asks the system to display all
values from a single column. No ORDER BY clause is specified
because the query objective does designate any row sequence.

Sample Query 2.7: Display the PNO values for all preserves.

 PNO
 1
 2
 3
 5
 6
 7
 9
 10
 11

 12
 13
 14
 40
 80

Syntax & Logic: Nothing new. Note: No ORDER BY clause is
specified, but the result is incidentally sorted. (Without
explanation, this incidental sort would probably, but not
necessarily, occur on most systems. Appendix 2A offers an
explanation for this behavior.)

Should You Care about Incidental Sorts: You can correctly say: “So
what – I don’t care about any incidental sort.” Good. But remember
that you must specify an ORDER BY clause when you do want a sorted
result.

Important Observation: This incidental sort may or may not happen
in the future. Consider the following scenario. On Monday, you
execute the above statement and observe an incidental sort. Then,
you execute the very same statement on the following Wednesday,
and you do not see the same incidental sort. Did some system
change occur on Tuesday? Maybe. But you don’t need to know. (Read
Appendix 2A if you do want to know.)

Conclusion: From a logical perspective, if you do not specify an
ORDER BY clause, you cannot make any unqualified prediction about
the presence or absence of a row sequence.

SELECT PNO

FROM PRESERVE

Free SQL Book, Tim Martyn 58 Copyright Pending, 2022

Character (Collating) Sequence

Determining row sequence becomes slightly more complex if
character-strings contain both uppercase and lowercase letters,
digits, and special symbols (e.g., !, ?, +). Your system resolves
this complexity by sorting according to a system-defined
“collating sequence.”

ASCII Collating Sequence: Most database systems (excluding DB2
mainframe) use the ASCII collating sequence to determine the
sequence of a column of character-strings. With the ASCII

sequence, most (but not all) special characters sort before the
digits, which sort before the uppercase letters, which sort before
the lowercase letters. A blank character (space) is a special
character that sorts before all characters. Your SQL reference
manual will describe the details.

ASCII Example: The following figure shows an unsorted column of
character-string values and the same values sorted according to
the ASCII sequence.

DB2 Mainframe: The DB2 mainframe database system uses a different
collating sequence called the EBCDIC sequence. This chapter’s
Summary displays the above sample data in the EBCDIC sequence.

Sorted (ASCII)
!!!FIDO!!!

3M
77aaaaaaaAAAA
JEssie
JULIE
JULIe
Jessie
Zeek
jessie
julie

Unsorted
Zeek

jessie
JULIE

77aaaaaaaAAAA
JEssie
julie
Jessie
3M
!!!FIDO!!!

Free SQL Book, Tim Martyn 59 Copyright Pending, 2022

Character-String Comparison

We usually compare character-string data with the equals (=)
comparison operator. However, occasionally we want to compare
character-string data using some other comparison operator (<, >,
<=, >=, <>).

Sample Query 2.8: Display all information about any nature

preserve with a PNAME value that follows the letter R in
alphabetical sequence.

Syntax: Nothing new.

Logic: Because the PNAME column contains uppercase letters with
embedded spaces, character-string comparison produces a simple
alphabetic sequence. Any row having a PNAME value that is
alphabetically greater than R will be displayed.

Recall that a blank character (space) is a special character that
sorts before all characters. When the system compares the string
'R' (length of 1) to 'RAMSEY CANYON' (length of 13), it
effectively pads the 'R' with 12 trailing blanks such that its
effective length is 13. Then it compares the following strings:

 'R '

 'RAMSEY CANYON'

RAMSEY CANYON appears in the result because its second character
(A) is greater than the blank character.

Exercises:

2G. Display all rows where the STATE value is greater than or

equal to the letter M.

2H. Display every row where the preserve name value is less than

TATKON.

SELECT *

FROM PRESERVE

WHERE PNAME > 'R'

PNO PNAME STATE ACRES FEE
 40 SOUTH FORK MADISON MT 121 0.00
 13 TATKON MA 40 0.00
 80 RAMSEY CANYON AZ 380 3.00

Free SQL Book, Tim Martyn 60 Copyright Pending, 2022

Deterministic versus Non-Deterministic Statements &Result Tables

Below we distinguish between a “deterministic” versus a “non-
deterministic” statement and result table. Consider the following
examples.

Example-1: Reconsider Sample Query 2.1 and the first four rows in
its result table.

SELECT STATE, PNO, PNAME
FROM PRESERVE

ORDER BY STATE

 STATE PNO PNAME

 AZ 5 HASSAYAMPA RIVER
 AZ 7 MULESHOE RANCH
 AZ 80 RAMSEY CANYON
 AZ 6 PAPAGONIA-SONOITA CREEK

This ORDER BY clause specified a single non-unique column (STATE).
Because a second-level sort is not specified, the four Arizona
rows could have appeared in a different row sequence such as that

shown below.

 STATE PNO PNAME

 AZ 80 RAMSEY CANYON
 AZ 5 HASSAYAMPA RIVER
 AZ 7 MULESHOE RANCH
 AZ 6 PAPAGONIA-SONOITA CREEK

Both of the above result tables are considered to be correct
because both results satisfy the query objective which was silent
about any second-level sequence. When a given SELECT statement can

produce multiple correct results, we can say that the statement is
a non-deterministic statement, and the result is a non-
deterministic result.

Comment: We usually try to avoid non-deterministic statements with
non-deterministic result tables. (See the following Example-2.)

Comment: Chapter 10.5 will introduce some useful non-deterministic
functions such as the Date Functions which can return different
results according to the date of statement execution.

Free SQL Book, Tim Martyn 61 Copyright Pending, 2022

Example-2: The following SELECT statement and result table for
Sample Query 2.2 are deterministic.

SELECT STATE, PNO, PNAME
FROM PRESERVE
ORDER BY STATE, PNO

 STATE PNO PNAME ___
 AZ 5 HASSAYAMPA RIVER
 AZ 6 PAPAGONIA-SONOITA CREEK
 AZ 7 MULESHOE RANCH

 AZ 80 RAMSEY CANYON

This ORDER BY clause references a unique column (PNO). Hence, this
result is a deterministic result.

Example-3: Consider the following statement and result table.

SELECT STATE, PNAME
FROM PRESERVE
ORDER BY STATE, PNAME

 STATE PNAME
 AZ HASSAYAMPA RIVER
 AZ MULESHOE RANCH
 AZ PAPAGONIA-SONOITA CREEK

 AZ RAMSEY CANYON

This statement and its result table are non-deterministic because
neither the STATE nor PNAME columns are declared to be UNIQUE. You
might reasonably presume that no two nature preserves would have
the same name. Furthermore, it would be very reasonable to presume
that no two nature preserves within the same state would ever have

the same name. However, you should not make these presumptions.
Therefore, you cannot conclude that this statement and its result
are deterministic.

If you want a deterministic result, you can include the unique PNO
column in the ORDER BY clause as shown below.

SELECT STATE, PNAME
FROM PRESERVE
ORDER BY STATE, PNAME, PNO

Note: The PNO column is not displayed.

Free SQL Book, Tim Martyn 62 Copyright Pending, 2022

“First” N Rows

Different systems offer different methods to realize the
following query objective.

Preliminary Comment: Theory Appendix 2B will explain why the
word “first” is enclosed within quotation marks.

Sample Query 2.9: Reference the PRESERVE table. Display the PNO

and ACRES values of the “first” three rows. Sort the
result by PNO values. The result table should look like:

 PNO ACRES
 1 1130
 3 680
 9 830

DB2 and MYSQL can specify the LIMIT clause

DB2 and ORACLE can specify the FETCH clause

SQL Server can specify the TOP clause

Each of the above clauses support code variations that provide
some flexibility. For example, you could specify an offset such
that you can skip some designated number of rows before
displaying the “first” N rows. Consult your SQL manual to learn
these coding variations.

The above clauses specify an ORDER BY clause. This is not

required, but it is a good idea. Without this ORDER BY clause,
the result would not be deterministic.

SELECT PNO, ACRES DB2 & MYSQL
FROM PRESERVE
ORDER BY PNO
LIMIT 3

SELECT PNO, ACRES DB2 & ORACLE
FROM PRESERVE
ORDER BY PNO
FETCH FIRST 3 ROWS ONLY

SELECT TOP (3) PNO, ACRES SQL Server

FROM PRESERVE
ORDER BY PNO

Free SQL Book, Tim Martyn 63 Copyright Pending, 2022

Summary

This chapter expanded our generic SELECT statement to include the
optional ORDER BY clause. (Again, brackets around a clause imply
that the clause is optional.)

A result table can be sorted by one or more columns. The ORDER BY
clause can reference a column-name or a relative column-number.
The default sort sequence is ascending (ASC). The DESC keyword can
be used to specify a descending sequence.

DB2 Mainframe – EBCDIC Sequence: Almost all systems utilize the
ASCII collating sequence to determine the sequence of character-
strings. Mainframe DB2 uses the EBCDIC collating sequence. An
example of the EBCDIC is shown below. Most special symbols sort

low, followed by lowercase letters, followed by uppercase letters,
followed by digits.

The ASCII and EBCDIC sequences are very different. You might
wish to compare the above EBCDIC example with the previously
described example of an ASCII sequence.

Sorted (EBCDIC)
!!!FIDO!!!
jessie
julie
Jess
Jessie
JULIe
JULIE
Zeek

3M
77aaaaaaaAAAA

Unsorted
Zeek
jessie
JULIE

77aaaaaaaAAAA
JEssie
julie
Jessie

3M
!!!FIDO!!!

 SELECT column-name(s)

 FROM table-name

 [WHERE condition]

 [ORDER BY sort-column(s)]

Free SQL Book, Tim Martyn 64 Copyright Pending, 2022

Summary Exercises

The following three exercises (2I, 2J, and 2K) pertain to the
previously described EMPLOYEE table. Column-names are ENO, ENAME,
SALARY, and DNO.

2I. Display the entire EMPLOYEE table sorted by employee name in

ascending sequence.

2J. Display the name and salary of any employee whose salary is

greater than $2,000.00. Sort the result by salary in

descending sequence.

2K. Display the department number, employee number, and employee

name of all employees. Sort the result by employee number (in
ascending sequence) within department number (in descending
sequence).

2L. Do Sample Queries 2.3 - 2.5 return deterministic result

tables?

SQ 2.3: SELECT PNO, PNAME, ACRES
FROM PRESERVE

WHERE STATE = 'AZ'
ORDER BY PNO DESC

SQ 2.4: SELECT PNO, ACRES, PNAME

FROM PRESERVE
WHERE STATE = 'AZ'
ORDER BY 3

SQ 2.5: SELECT PNO, PNAME

FROM PRESERVE
ORDER BY ACRES DESC

Free SQL Book, Tim Martyn 65 Copyright Pending, 2022

Appendix 2A: Efficiency

In Appendix A1, we noted that a relational database system can
retrieve rows from a table by: (i) scanning all rows in the table,
or (ii) using an index to directly access only the desired rows
that were identified by a WHERE-clause. This appendix has more to
say about indexes. However, before discussing indexes, we make
some preliminary comments about sorting rows.

Sorting

Although computer science textbooks describe a wide variety of
sort methods, some general observations apply to all methods.

Table Size: The efficiency of a sort operation primarily depends
upon the size of the result table (or intermediate result table)
that needs to be sorted.

Main Memory Sorting: If the data is relatively small, then the
system may be able to perform the entire sort operation within
main memory. This internal sorting is very efficient. However,
if the data are too large to fit into main memory, sorting

becomes more complex and expensive.

External (Non-Main-Memory) Sorting: In general, the system will
first sort one part of the data and write the sorted result to a
temporary area on disk. Then it will sort a second part of the
data and write the sorted result to another temporary area on
disk. Etc. Finally, the system reads and merges the sorted
intermediate results from the temporary disk areas, and passes a
completely sorted result onto the next processing step.
Frequently, this next step returns the sorted result to a front-
end tool or program. Note that writing data to and then reading
data from temporary disk areas involves relatively expensive

disk I/O.

Example: Consider the result table size for Sample Query 2.1.

SELECT *
FROM PRESERVE
ORDER BY STATE

This statement retrieves all rows from the PRESERVE table.
Because this table only has 14 rows, the sort would involve a
very fast in-memory sort. However, if PRESERVE had 14 million
rows, the sort operation would involve disk I/O and be much

slower.

Free SQL Book, Tim Martyn 66 Copyright Pending, 2022

Distribution of Values: Assume PRESERVE has 14 million rows, but
only 10 rows have a FEE of 9.23. Consider the following
statement.

 SELECT *
 FROM PRESERVE
 WHERE FEE = 9.23
 ORDER BY PNAME

The system may or may not have to do a lot of work to retrieve the
desired 10 rows. But, the subsequent cost of sorting the 10 rows

would be trivial. However, if 9 million rows had a FEE value of
9.23, the system may have to sort the 9 million rows implying a
significantly greater sort cost.

More about Indexes

Assume the DBA has created an index called XPNO that is based on
the PNO column. Recall that the PNO column contains unique values.
Hence, XPNO is a unique index. The following Figure A2.1
illustrates this index and its connection to the PRESERVE table.

\\\\

Figure A2.1: XPNO Index

PRESERVE Table

PNO PNAME STATE ACRES FEE

5 HASSAYAMPA RIVER AZ 660 3.00

3 DANCING PRAIRIE MT 680 0.00

7 MULESHOE RANCH AZ 49120 0.00

40 SOUTH FORK MADISON MT 121 0.00

14 MCELWAIN-OLSEN MA 66 0.00

13 TATKON MA 40 0.00

9 DAVID H. SMITH MA 830 0.00

11 MIACOMET MOORS MA 4 0.00

12 MOUNT PLANTAIN MA 730 0.00

1 COMERTOWN PRAIRIE MT 1130 0.00

2 PINE BUTTE SWAMP MT 15000 0.00

80 RAMSEY CANYON AZ 380 3.00

10 HOFT FARM MA 90 0.00

6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

XPNO Index

PNO (ptr)

1

2

3

5

6

7

9

10

11

12

13

14

40

80

Free SQL Book, Tim Martyn 67 Copyright Pending, 2022

The XPNO index has the same basic structure as the INDSTATE index
described in Appendix A1. Hence, it can be used for a direct-
access search. For example, consider the following statement:

 SELECT *
 FROM PRESERVE
 WHERE PNO = 10

The system can search the XPNO index for 10 and then follow the
“pointer” to the desired row. (The pointer is the disk address of
the desired row.) If the PRESERVE table were very large, this

direct access operation would be more efficient than scanning the
table. If the PRESERVE table were very small, the system would
ignore this index and scan the table.

Other Index Advantages: Beyond direct access advantages, indexes
offer other advantages that will be described below. We begin by
making a simple but very important observation.

Figure A2.1 shows that the PNO values in the XPNO index are

organized in an ascending sequence. Also, Figure A1.1 shows the
INDSTATE index values (AZ, MA, MT) are organized in ascending
sequence. This sequential organization of index values offers four
advantages.

1. Avoid Sorting: If a WHERE-clause references an indexed-
column (PNO or STATE), the system might be able to avoid a
potentially expensive sort by using the index. Consider the
following statement:

 SELECT *

FROM PRESERVE

WHERE PNO >= 14
 ORDER BY PNO

The system could access the XPNO index for PNO 14 and follow the
pointer to retrieve the row that becomes the first row in the
result table. Then, it could get the next index entry for PNO 40
and follow its pointer to retrieve the next row. Then, it could
get the next index entry for PNO 80 and follow its pointer to
retrieve the last row. This process retrieves these rows in PNO
sequence without sorting any data. This method could be more
efficient than scanning the table for rows with PNO values that
are greater 14 and then sorting these rows. However, this method

would be less efficient if the WHERE-clause specified PNO >= 2.

Index values are stored in sequence.

Free SQL Book, Tim Martyn 68 Copyright Pending, 2022

2. Help Search a Large Index: Because indexes are sorted, it
is easier to search a large index. Again, consider the history
book analogy. If the book were very large (say 10,000 pages),
then its index would also be large (maybe 200 pages). Assume you
wanted to search the index to find the pages that discuss John
Muir. Would you begin searching the 200-page index by
sequentially reading from the first page in this 200-page index?
No! Because, you know that the book index is sorted, you would
estimate that the name “Muir” is about halfway into the
alphabet, and so you would jump into the middle of the 200-page

index, and work forwards or backwards to find “Muir”. (This
search logic is similar to manually searching on last name in an
old paper telephone book.) A database system can utilize similar
logic to search a large database index.

3. Index-Only Searches: Assume the large history book has an
index that only references the names of people who are mentioned
in the book. This person-index would not have any entries for
locations, wars, etc.

Consider the following questions.

 What are the names of all people referenced in the history
book?

 What are the names of all people referenced in the history

book whose last name begins with the letter M?

You could answer these questions by only reading the person-
index because all desired information is in this index. There is
no need to follow page pointers to read the book’s content
pages. A similar search pattern applies to database indexes. For
example, assume you executed the following statement:

 SELECT PNO
FROM PRESERVE

 ORDER BY PNO

The system knows there is an index (XPNO) based on PNO which is
the only column that is referenced in this SELECT-clause.
Therefore, the system can access all PNO values by scanning the
PNO values in the XPNO index without accessing the PRESERVE table.

Also, note that the PNO values in the XPNO index are stored in
ascending sequence (Figure A2.1). Hence, the system would not need
to sort the PNO values to satisfy the ORDER BY clause.

Free SQL Book, Tim Martyn 69 Copyright Pending, 2022

4. Enforce Column Uniqueness: A unique index can be used to
enforce uniqueness on a unique column. For example, assume
PRESERVE has 14 million rows. The system can use the XPNO index to
enforce uniqueness on the PNO column. Whenever a user attempts to
insert a new row into the PRESERVE table, the system (before
inserting the row) determines if the XPNO index already has an
entry which equals this new PNO value. If it does, the system
rejects the insert operation. Directly accessing the smaller XPNO
index is much faster than scanning the larger PRESERVE table. (If
the DBA drops the XPNO index, the system will use some other
method to maintain PNO uniqueness.)

Incidental Sorts

Consider the following scenario for Sample Query 2.7 which
produced an incidental sort.

SELECT PNO

FROM PRESERVE [No ORDER BY clause]

On Monday, the system does an index-only search on the XPNO index,
and the rows are returned in PNO sequence. This produces the

incidental sort.

On Tuesday, for some unspecified reason, the DBA drops the XPNO
index.

On Wednesday, because the XPNO index is gone, the system scans the
table to satisfy the same SELECT statement. On most systems, it is
unlikely that this scan would return the rows in some sequence.
Hence, no incidental sort.

Index Costs

Indexes have three costs that usually discourage the creation of
many indexes on a single table. Assume the XPNO and INDSTATE
indexes have been created on the PRESERVE table.

1. Indexes Penalize Update Operations: This is usually the
major disadvantage. Assume a user executes an INSERT statement
to insert a new row into the PRESERVE table. (INSERT, UPDATE, and
DELETE statements will be presented in Chapter 15.) In addition to
inserting the new row, the system will automatically insert new
entries into the XPNO index and the INDSTATE index. From the
user’s perspective, the system only executes one INSERT

operation. But internally the system executes three operations:
(i) insert a row into the PRESERVE table, (ii) insert an entry
into the XPNO index, and (iii) insert an entry into the INDSTATE
index. Similar observations apply to UPDATE and DELETE
statements.

Free SQL Book, Tim Martyn 70 Copyright Pending, 2022

2. Indexes use Disk Storage: The index in the back of the
history book occupies pages. Likewise, database indexes occupy
disk storage. The good news is that disk storage continues to
become very cheap. However, disk storage is not infinite, and
it’s not free.

3. Index Reorganization: Without explanation, we note that,
after many INSERT, UPDATE, and DELETE operations, an index may
become physically fragmented. This can have a negative impact on
index efficiency. To address this problem, the DBA must
periodically execute a utility program to reorganize the index.

Tradeoffs

Fundamental Design Objective: Data retrieval benefits should
exceed index costs.

Understanding index costs should help you sympathize with a DBA
who rejects your (presumably reasonable) request to create a new
index. For example, you might desire a new index that could help
your SELECT statement that references a very large CUSTOMER
table. Assume your SELECT statement will be executed once a day.

However, the DBA knows that every day, approximately 5,000
INSERT, UPDATE, or DELETE operations are applied to the same
CUSTOMER table. Creating the index means that you gain a
retrieval benefit once a day while the INSERT/UPDATE/DELETE
operations suffer a greater cost 5,000 times a day. Hence, for
good reason, the DBA denies your request to create another
index.

Special Case Scenario: Assume your SELECT statements are
executed within a data warehouse application where all INSERT,
UPDATE, and DELETE operations have been moved to an off-line
system that “runs at midnight.” Then, your daytime on-line

system can have many indexes because index-update costs (except
for disk storage) are significantly reduced.

Concluding Comments

Indexing is not the only method that can provide direct access
to rows in a table. Some systems (e.g., ORACLE) can utilize
another direct-access method called “hashing.” A discussion of
hashing is beyond the scope of this book.

Thus far, we have not been definitive about how and when the

system decides to use an index. Appendix A4 will address this
important issue.

Free SQL Book, Tim Martyn 71 Copyright Pending, 2022

Appendix 2B: Theory

Tables do not have any predefined sequence.

The theoretical justification for this assertion is that, ideally,
a table is a set, and sets do not have any predefined sequence.
Consider the following set T containing all even integers between
and including 2 and 10. Most math books would enumerate the
elements of T in ascending sequence as shown below.

 T = {2, 4, 6, 8, 10}

However, the following enumeration is also valid.

 T = {4, 10, 6, 8, 2}

Also, when you enumerate a set of character-string values, you may
be less inclined to list these values in sequence. Consider the
values in the following STOOGES set. These values are not listed
in alphabetical sequence.

 STOOGES = {'MOE', 'LARRY', 'CURLY', 'JOE', 'SHEMP'}

“First” N Rows?

Sample Query 2.9 asked you to display the “first” three rows from
a result table. We enclosed “first” within quotation marks
because, mathematically, there is no first element of a set.

Consider the following four of 32 possible enumerations of the
above set T.

 T = {2, 4, 6, 8, 10}

 T = {4, 10, 6, 8, 2}

 T = {10, 4, 6, 8, 2}

 T = {6, 10, 4, 2, 8}

No specific element in set T is the first element.

Because a result table is a table, and a table is a set, a result
table is also a set. Hence, there is no first element (first row)

in a result table.

Free SQL Book, Tim Martyn 72 Copyright Pending, 2022

Appendix 2C: Theory & Efficiency

“Theory is Practical” (C.J. Date)

We describe two advantages associated with the absence of a
predefined row sequence within a table.

1. Data Independence: This is the primary advantage. For
example, assume an applications developer knows that the
PRESERVE table has a predefined PNO sequence. Then she might
code a program containing logic that relies on this sequence.

What happens if the DBA changes this row sequence? If the DBA
changed this sequence such that rows are stored in PNAME
sequence, then the logic of the program would fail.
Therefore, this design change would require the developer to
modify her program.

If desired, the DBA might specify some internal row sequence
that is unknown to the application developers. Then the DBA
could occasionally change this sequence without notifying the
developers and asking them to change their programs. This is
just one example of data independence, a very important
concept to be described in later appendices.

2. Simplify INSERT Operations: If there is no predefine row

sequence, then the system is not required to maintain any
physical row sequence. Whenever a user executes an INSERT
statement, the system can insert the new row(s) into any
convenient location within the table. (But sequence would
still be maintained within the indexes.)

Free SQL Book, Tim Martyn 73 Copyright Pending, 2022

 Chapter

3 3
Prohibiting Duplicate Rows:

DISTINCT

Base Tables: Examination of the PRESERVE table does not reveal any
duplicate rows. (No two rows show all corresponding column values
equal to each other.) Each row is distinct.

By adhering to an excellent design principle, all base tables in
this book contain distinct rows. For reasons to be described in
Chapter 15, the system will not allow any INSERT or UPDATE
operation to introduce duplicate rows into a base table.

Result Tables: Does the distinctness property apply to result
tables? If you examine the result tables shown in the preceding
two chapters, you will observe that all result tables contain
distinct rows. However, in this chapter, Sample Queries 3.1 and
3.3 will illustrate that, in some circumstances, duplicate rows
can appear in a result table. Because duplicate rows can be

confusing, this chapter’s other sample queries will remove them by
specifying the keyword DISTINCT in the SELECT-clause.

Free SQL Book, Tim Martyn 74 Copyright Pending, 2022

Duplicate Rows in a Single-Column Result Table

The following sample query illustrates that duplicate rows can
appear in a result table.

Sample Query 3.1: Display the STATE column in every row of the

PRESERVE table.

 STATE
AZ
MT
AZ
MT
MA
MA
MA
MA
MA

MT
MT
AZ
MA
AZ

Syntax & Logic: Nothing new.

Observation: The result table contains duplicate rows. There are
fourteen rows, but these rows only have three distinct STATE
values (AZ, MA, and MT). The next sample query will specify the
reserved word DISTINCT to prohibit duplicate rows.

Exercises:

3A1. Retrieve every row in PRESERVE. Only display the FEE value

for each row. (Do not attempt to remove duplicate rows.)
Before you execute the SELECT statement for this exercise,
ask yourself the following question. “Can duplicate values
possibly appear in this result?”

3A2. Retrieve every row in PRESERVE. Only display the ACRES

value for each row. (Do not attempt to remove duplicate

rows.) Before you execute the SELECT statement for this
exercise, ask yourself the following question. “Can
duplicate values possibly appear in this result?”

SELECT STATE

FROM PRESERVE

Free SQL Book, Tim Martyn 75 Copyright Pending, 2022

DISTINCT

The next sample query is similar to the previous sample query, but
duplicate rows are not displayed in the result table. The keyword
DISTINCT is specified in the SELECT-clause to achieve this
objective.

Sample Query 3.2: Modify the previous sample query. Display the

state code of every state that contains a nature preserve
described in the PRESERVE table. Do not display duplicate
rows.

 STATE
 AZ
 MA
 MT

Syntax: DISTINCT must immediately follow the SELECT keyword

separated by one or more spaces.

Logic: The result does not show any duplicate STATE values.

Observation: The above statement does not specify an ORDER BY
clause, but the result table is incidentally sorted. On most (but
not all) systems, execution of this statement will produce an
incidental sort. (Appendix 3A will describe why specification of
DISTINCT may produce an incidental sort.)

Exercise:

3B. Display all admission fees in the PRESERVE table. Do not

display duplicate values.

SELECT DISTINCT STATE

FROM PRESERVE

Free SQL Book, Tim Martyn 76 Copyright Pending, 2022

Duplicate Rows in a Multi-Column Result Table

The following sample query displays multiple columns. Such queries
are less likely to produce duplicate rows. However, as this
example illustrates, duplicate rows can occur.

Sample Query 3.3: Display the STATE and FEE values for every row

in the PRESERVE table. Do not remove duplicate rows from the
result table. Sort the result by FEE within STATE to make it
easier to detect duplicate rows.

STATE FEE
 AZ 0.00
 AZ 3.00
 AZ 3.00

AZ 3.00

MA 0.00
 MA 0.00
 MA 0.00
 MA 0.00

MA 0.00
MA 0.00

 MT 0.00
 MT 0.00
 MT 0.00
 MT 0.00

Syntax & Logic: Nothing new.

Observation: There are many duplicate rows in this result table.
For example, the second, third, and fourth rows in this result
table are duplicates. Also, the last four rows are duplicates.
Recall that a row is considered to be a duplicate if every column
value in the row matches every corresponding column value in some
other row.

Important Exercise:

3C. Display the FEE and ACRES values for every row in the

PRESERVE table. Before you execute the SELECT statement for

this exercise, ask yourself the following question. “Can
duplicate rows possibly appear in this result?” What know-
your-data insights help you answer this question?

SELECT STATE, FEE

FROM PRESERVE

ORDER BY STATE, FEE

Free SQL Book, Tim Martyn 77 Copyright Pending, 2022

DISTINCT

Sample Query 3.4: Modify the preceding sample query. Display
distinct pairs of STATE and FEE values from the PRESERVE
table. Sort the result by FEE within STATE.

 STATE FEE
AZ 0.00
AZ 3.00
MA 0.00

 MT 0.00

Syntax: Nothing new. DISTINCT can only appear once in a SELECT-
clause. Sometimes a rookie user might incorrectly code multiple
DISTINCT keywords as illustrated below.

 SELECT DISTINCT COL1, COL2, DISTINCT COL3 → Error
 FROM SOMETABLE

Logic: In the above statement, specifying DISTINCT twice might
imply an invalid attempt to prohibit duplicate values in COL1 and
COL3, but allow duplicate values in COL2. This is not consistent
with the logic of DISTINCT which prohibits duplicate rows, not
just duplicate values in some columns.

Exercise:

3D. Display the FEE and ACRES values for every row in the
PRESERVE table. Do not display duplicate rows in the result
table.

3E. Optional Exercise: Remove the ORDER BY clause from the above

Sample Query 3.4 such that it looks like:

 SELECT DISTINCT STATE, FEE

FROM PRESERVE

 Execute this statement. Most likely you will observe that the

result table is incidentally sorted. If this occurs, the

first-level sort column could be either the STATE column or
the FEE column.

SELECT DISTINCT STATE, FEE

FROM PRESERVE

ORDER BY STATE, FEE

Free SQL Book, Tim Martyn 78 Copyright Pending, 2022

Know-Your-Data

Because you know that, within the PRESERVE table, the PNO column
is unique, you can be confident that duplicate rows cannot not
appear in either of the following circumstances.

• The SELECT-clause specifies PNO.

• The result table contains just one row because the WHERE-
clause compares on the PNO column using an equals (=)
comparison operator. (E.g., WHERE PNO = 40)

Sample Query 3.5: Display the PNO and ACRES values of nature
preserves located in Montana. Do not display duplicate rows.

 PNO ACRES

 3 680
 40 121
 1 1130
2 15000

Logic: You do not need to specify DISTINCT because the SELECT-
clause references PNO, a unique column. (An argument can be made
that every SELECT-clause should specify DISTINCT. See Appendix
3A.)

Exercise:

3F. The following two statements return the same rows. Will these
rows be in the same row sequence? Answer: Yes, No, or Maybe.

 SELECT PNO
 FROM PRESERVE;

 SELECT DISTINCT PNO
 FROM PRESERVE;

SELECT PNO, ACRES

FROM PRESERVE

WHERE STATE = 'MT'

Free SQL Book, Tim Martyn 79 Copyright Pending, 2022

Summary

This chapter introduced the optional DISTINCT keyword that is used
to prohibit duplicate rows from appearing in a result table. Our
generic SELECT statement is now extended to include DISTINCT in
the SELECT-clause.

Specifying DISTINCT is simple. Knowing-your-data is the challenge.
If you do not like duplicate rows, you could specify DISTINCT in
all your SELECT statements. (The following Appendix 3A will
comment on this issue.)

Also, your SQL reference manual will show

 SELECT [ALL | DISTINCT] column-names
 FROM . . .

ALL is the default, versus the optional DISTINCT. The ALL keyword
allows duplicate rows to appear in a result table. Most
practitioners never code ALL in a SELECT statement, as illustrated
by every SELECT statement in this book.

Summary Exercises

The following exercises reference the EMPLOYEE table.

3G. Display all DNO values in the EMPLOYEE table. Do not display
duplicate values.

3H. Execute each of the following statements. Examine the result

tables and make relevant observations.

 SELECT DNO, SALARY
 FROM EMPLOYEE;

 SELECT DISTINCT DNO, SALARY
 FROM EMPLOYEE;

 SELECT DISTINCT DNO, SALARY
 FROM EMPLOYEE
 ORDER BY DNO, SALARY;

SELECT [DISTINCT] column-names

FROM table-name

[WHERE condition]

[ORDER BY column-name(s)]

Free SQL Book, Tim Martyn 80 Copyright Pending, 2022

Appendix 3A: Efficiency

Specifying DISTINCT may force the system to perform additional
work to detect and remove any duplicate rows from a result table.
Two methods for detecting and removing duplicate rows are
described below.

1. System does sort operation: The system must detect duplicate
rows before it can remove them. Therefore, DISTINCT may
encourage the system to sort an intermediate result to
facilitate detecting duplicate rows. In this circumstance,

sort costs (as described in Appendix A2) would apply. Also,
this sort process might indirectly produce a result table
that is incidentally sorted.

2. System references an index: Consider the following statement
for Sample Query 3.2.

 SELECT DISTINCT STATE

FROM PRESERVE

 Assuming the INDSTATE index (Figure A1.1) is available, the
system could reference this index to extract just the

distinct index values ('AZ', 'MA', 'MT'). This would be an
index-only search. Also, because the index values are
stored in ascending sequence, the result table would
probably be displayed in an incidentally sorted sequence.

Because DISTINCT may require extra work, most practitioners do not
specify DISTINCT in every SELECT statement. For example, consider
the following statement.

 SELECT DISTINCT PNO
 FROM PRESERVE

Question: Why might we want to remove DISTINCT from the above
statement?

Answer: We know that the PNO column is unique. Hence, we can
deduce that DISTINCT is superfluous. Likewise, because the system
knows that PNO is unique, the system should also deduce that
DISTINCT is superfluous. Therefore, the system would (probably)
not do any extra work to remove duplicate rows that cannot
possibly occur.

Always Specify DISTINCT? A relational purist could argue that you
should specify DISTINCT in every SELECT statement. From a logical

perspective this is a good idea. However, perhaps unfortunately,
this is not a standard practice among practitioners.

Free SQL Book, Tim Martyn 81 Copyright Pending, 2022

Appendix 3B: Theory

“Theory is Practical” (C.J. Date):

Set Theory: A set cannot contain duplicate values. Hence, the
following lists of values are not valid sets.

 N = {6, 3, 3, 3, 12}

 S = {‘MOE’, ‘LARRY’, ‘LARRY’, ‘LARRY’, ‘MOE’}

Because a table should be a set, all tables, including result
tables, should not contain duplicate rows.

Cognitive Psychology: Duplicate rows can be confusing. Consider
the result tables shown for the following two SELECT statements.

 Statement-1: SELECT STATE, FEE FROM PRESERVE

 Statement-2: SELECT DISTINCT STATE, FEE FROM PRESERVE

Many business users would find Result-1, with duplicate rows, to
be confusing. They might find Result-2, without duplicate rows,
to more understandable. However, most users would probably
prefer the following Result-3 that displays a count of duplicate
rows.

Chapter 9 will show how to produce Result-3.

 STATE FEE
 AZ 3.00
 MT 0.00

 AZ 0.00
 MT 0.00
 MA 0.00

 MA 0.00
 MA 0.00
 MA 0.00

 MA 0.00
 MT 0.00
 MT 0.00

 AZ 3.00
 MA 0.00

 AZ 3.00

Result-1

STATE FEE
AZ 0.00
AZ 3.00

MA 0.00
MT 0.00

Result-2

STATE FEE COUNT

AZ 0.00 1
AZ 3.00 3

MA 0.00 6

MT 0.00 4

Result-3

Free SQL Book, Tim Martyn 82 Copyright Pending, 2022

Controversy: We begin with two observations.

Regarding Base Tables: Although it is very unusual, a base table
could have duplicate rows. For example, the CREATE TABLE
statement that created the PRESERVE table (Figure 0.2) could
have omitted the optional keyword UNIQUE.

Regarding Result Tables: A result table may contain duplicate
rows. (Review Sample Queries 3.1 and 3.3.)

These observations illustrate a SQL feature where SQL has not

been completely faithful to its mathematical heritage. This
allows us to speculate on two hypothetical versions of SQL.

1. Ideal-SQL: This version of SQL conforms to the Relational
Model. All CREATE TABLE statements must specify some unique
column (or unique combination of columns). Hence, duplicate
rows would be prohibited from all base tables. Also,
duplicate rows would be automatically removed from all
intermediate and final result tables.

2. Almost-Ideal-SQL: This version of SQL would enforce default

actions that conform to Ideal-SQL. However, Almost-Ideal-

SQL would allow a user to explicitly override a specific
default action. For example, SELECT DISTINCT would be the
default. However, a user could allow duplicate rows in a
result table by specifying SELECT ALL. Also, if a user’s
CREATE TABLE statement did not designate a unique column,
then this statement must specify some other clause such as
“ALLOW_DUPLICATE_ROWS”. In general, Almost-Ideal-SQL would,
by default conform to Ideal-SQL (which conforms to the
Relational Model). However, unlike Ideal-SQL, it would
allow user-specified deviations from Ideal-SQL.

Real-World-SQL: Some database experts believe that Real-World-

SQL should conform to Ideal-SQL (which conforms to the
Relational Model). However, other experts would accept some
version of Almost-Ideal-SQL.

Unfortunately, regarding the matter of uniqueness, Real-World-
SQL is not Almost-Ideal-SQL. In Real-World-SQL, designating a
unique column in a CREATE TABLE statement is optional; and
specifying DISTINCT in a SELECT statement is optional. These
options are not consistent with Almost-Ideal-SQL.

Comment: Codd and Date have described many practical problems
associated with duplicate rows. This is just one reason why they

were very disappointed with Real-World SQL.

Free SQL Book, Tim Martyn 83 Copyright Pending, 2022

 Chapter

 4

 Boolean Connectors:

 AND - OR - NOT

This chapter emphasizes the know-your-logic aspect of coding
correct SQL statements. Rookie users must read this important

chapter. Application developers who already understand Boolean
logic can “fly thru” this chapter, briefly scanning the sample
queries.

Previous sample queries illustrated WHERE-clauses that specified
simple-conditions. This chapter introduces compound-conditions
that contain Boolean connectors (AND, OR, and NOT). Here you will
see WHERE-clauses that look like:

• WHERE condition-1 AND condition-2

• WHERE condition-1 OR condition-2

• WHERE NOT condition

This chapter is organized into three sections.

 Section-A: Fundamental Boolean Connectors

 Section-B: Mixing Different Boolean Connectors

 Section-C: Logically Equivalent WHERE-Clauses

Free SQL Book, Tim Martyn 84 Copyright Pending, 2022

A. Fundamental Boolean Connectors

AND Connector

The following sample query asks the system to select a row if it
matches both of the specified conditions.

Sample Query 4.1: Display all information about any nature

preserve that is located in Arizona and has no admission fee
(i.e., fee is zero dollars).

 PNO PNAME STATE ACRES FEE
 7 MULESHOE RANCH AZ 49120 0.00

Syntax: This WHERE-clause specifies two simple-conditions that are
connected by the AND connector. These conditions are:

• STATE = 'AZ'

• FEE = 0.00

Logic: A selected row must match both conditions. This result
table shows that only one row matches both conditions. The logic
for AND is represented by the following truth table.

Truth Table for AND: The following table truth table illustrates
the precise definition of AND. Consider the four possible
True/False values for two arbitrary conditions, C1 and C2. Observe

that C1 AND C2 is True only if both conditions are True (T).
Otherwise, C1 AND C2 evaluate to False (F).

SELECT *

FROM PRESERVE

WHERE STATE = 'AZ' AND FEE = 0.00

C1 C2 C1 AND C2
T T T

T F F

F T F

F F F

Free SQL Book, Tim Martyn 85 Copyright Pending, 2022

The following sample query illustrates two conditions that
reference the same column (ACRES).

Sample Query 4.2: Display the PNO, PNAME, and ACRES values for

any nature preserve with an ACRES value that is strictly
between 90 and 1200.

PNO PNAME ACRES
 5 HASSAYAMPA RIVER 660
 3 DANCING PRAIRIE 680
 40 SOUTH FORK MADISON 121
 9 DAVID H. SMITH 830
 12 MOUNT PLANTAIN 730
 1 COMERTOWN PRAIRIE 1130
 80 RAMSEY CANYON 380

Syntax: The column-name (ACRES) must be specified in both

conditions. The following WHERE-clause is invalid and will cause
an error.

 WHERE ACRES > 90 AND < 1200 → Error

Logic: This WHERE-clause selects rows with an ACRES value that is
strictly greater than 90 and strictly less than 1200. Note that
rows with ACRES values of 90 (HOFT FARM) and 1200 (PAPAGONIA-
SONOITA CREEK) were not selected.

Comment: The following Chapter 5 will introduce the BETWEEN
keyword which means “between and including.” Use of BETWEEN would
be incorrect in the current example.

Exercise:

4A. Display all information about any nature preserve in Montana

that is smaller than 1,000 acres.

4B. Display all information about any nature preserve that has an

ACRES value between and including 1200 and 15000.

SELECT *

FROM PRESERVE

WHERE ACRES > 90 AND ACRES < 1200

Free SQL Book, Tim Martyn 86 Copyright Pending, 2022

Multiple ANDs

A compound-condition can contain more than two simple-conditions.
The following sample query illustrates four simple-conditions that
are connected with AND. In this example, a given row will be
selected if it matches all four conditions.

Sample Query 4.3: Display the PNO, PNAME, FEE and ACRES values

of all nature preserves that are located in Arizona, have a
non-zero admission fee, and are greater than or equal to 660
acres, and less than or equal to 1200 acres.

 PNO PNAME FEE ACRES
 5 HASSAYAMPA RIVER 3.00 660
 6 PAPAGONIA-SONOITA CREEK 3.00 1200

Syntax & Logic: Nothing new. This WHERE-clause AND-connects four
conditions. Any row that matches all four conditions will be
displayed.

For all practical purposes there is no limit on the number of
conditions that can be specified within a WHERE-clause.

Exercise:

4C. Display all information about any nature preserve that is

located in Montana, does not have an admission fee, and is
greater than 10,000 acres.

SELECT PNO, PNAME, FEE, ACRES

FROM PRESERVE

WHERE STATE = 'AZ'

AND FEE <> 0.00

AND ACRES >= 660

AND ACRES <= 1200

Free SQL Book, Tim Martyn 87 Copyright Pending, 2022

OR Connector

When two conditions are connected with OR, a row is selected if it
matches either one or both of the specified conditions.

Sample Query 4.4: Display the PNO, PNAME, and STATE values of

all nature preserves that are located in Arizona or Montana.

 PNO PNAME STATE
 5 HASSAYAMPA RIVER AZ
 3 DANCING PRAIRIE MT
 7 MULESHOE RANCH AZ
 40 SOUTH FORK MADISON MT
 1 COMERTOWN PRAIRIE MT

 2 PINE BUTTE SWAMP MT
 80 RAMSEY CANYON AZ
 6 PAPAGONIA-SONOITA CREEK AZ

Syntax: The column-name must be explicitly specified in each
simple-condition. Hence the following WHERE-clause is invalid and
will cause an error.

 WHERE STATE = 'AZ' OR 'MT' → Error

Logic: This WHERE-clause selects a row if it has a STATE value of
AZ, or if it has a STATE value of MT. This logic is embodied in

the following truth table.

Truth Table for OR: The following table truth table illustrates
the precise definition of OR. Consider two arbitrary conditions,
C1 and C2. Observe that C1 OR C2 is False if both conditions are
False. Otherwise, C1 OR C2 evaluates to True.

SELECT PNO, PNAME, STATE

FROM PRESERVE

WHERE STATE = 'AZ'

OR STATE = 'MT'

C1 C2 C1 OR C2
T T T

T F T

F T T

F F F

Free SQL Book, Tim Martyn 88 Copyright Pending, 2022

OR Means “Inclusive OR”

The next sample query illustrates that OR selects a row if it
matches both conditions. This logic denotes an inclusive (versus
exclusive) interpretation of OR.

Sample Query 4.5: Display the PNAME, ACRES, and STATE value of

any preserve that is located in Arizona or has more than 1000
acres.

PNAME ACRES STATE
HASSAYAMPA RIVER 660 AZ
MULESHOE RANCH 49120 AZ
COMERTOWN PRAIRIE 1130 MT

PINE BUTTE SWAMP 15000 MT
RAMSEY CANYON 380 AZ
PAPAGONIA-SONOITA CREEK 1200 AZ

Logic – OR means Inclusive-OR: This SELECT statement will display
any row which has a STATE value of AZ or an ACRES value greater
than 1000. Observe that all Arizona nature preserves are selected,
regardless of their acreage; and, all preserves over 1000 acres
are selected, regardless of their location. We emphasize that any
row matching both conditions (e.g., MULESHOE RANCH and PAPAGONIA-
SONOITA CREEK) is included in the result table.

Exclusive-OR (XOR): Careful! Sometimes people casually use the

word “or” to imply the Exclusive-OR (XOR). For example, a parent
might tell a child that “you can have a slice of pie OR a slice of
cake.” Presumably, the parent does not mean that the child can eat
both pie and cake. Exclusive-OR implies that the pie-and-cake
option is excluded. (Summary Exercise 4U will show how to code an
Exclusive-OR condition.)

Exercise:

4D. Display all information about nature preserves located in

Montana or Massachusetts.

4E. Display all information about any nature preserve located
in Montana or any preserve that is less than 1,000 acres.

SELECT PNAME, ACRES, STATE

FROM PRESERVE

WHERE STATE = 'AZ'

OR ACRES > 1000

Free SQL Book, Tim Martyn 89 Copyright Pending, 2022

Multiple ORs

As with the AND connector, it is possible to connect multiple
conditions by coding multiple OR connectors. The following SELECT
statement illustrates five simple-conditions that are OR-
connected.

Sample Query 4.6: Display the PNO and PNAME values for any

nature preserve that has a PNO value equal to any of the
values {3, 4, 7, 12, 40}

PNO PNAME
 3 DANCING PRAIRIE

 7 MULESHOE RANCH
 40 SOUTH FORK MADISON

 12 MOUNT PLANTAIN

Syntax: For all practical purposes, there is no limit on the
number of conditions that can be OR-connected. Note that the
column-name (PNO) must be explicitly specified in each condition.
Both of the following abbreviated WHERE-clauses are invalid.

 WHERE PNO = 3 OR 4 OR 7 OR 12 OR 40 → Error

 WHERE PNO = (3, 4, 7, 12, 40) → Error

Logic: The nature preserves with PNO values of 3, 7, 12, 40 were
selected. No nature preserve has a PNO value of 4.

Comment: Chapter 5 will introduce the IN operator that offers a
more concise method for coding this statement.

SELECT PNO, PNAME
FROM PRESERVE
WHERE PNO = 3
OR PNO = 4
OR PNO = 7
OR PNO = 12
OR PNO = 40

Free SQL Book, Tim Martyn 90 Copyright Pending, 2022

NOT

Previous sample queries specified conditions that identified, in a
positive sense, the rows that you wanted to retrieve. Sometimes,
it is more convenient to identify those rows that you do not want
to retrieve.

Sample Query 4.7: Display the PNAME and STATE values of all

nature preserves that are not located in Massachusetts.

 PNAME STATE
 HASSAYAMPA RIVER AZ
 DANCING PRAIRIE MT
 MULESHOE RANCH AZ
 SOUTH FORK MADISON MT
 COMERTOWN PRAIRIE MT

 PINE BUTTE SWAMP MT
 RAMSEY CANYON AZ
 PAPAGONIA-SONOITA CREEK AZ

Syntax: The NOT operator can be placed before any condition. This
example uses NOT to negate a simple-condition. Sample Query 4.10
will use NOT to negate a compound-condition.

Common Error: Placing NOT immediately before a comparison operator
will cause an error. The following WHERE-clause is invalid:

 WHERE STATE NOT = 'MA' → Error

Logic: Obvious. See the following truth table.

Truth Table for NOT: The following truth table illustrates the
precise definition of NOT.

Exercises:

4F. Display the preserve number and name of any nature preserve

having an admission fee that is not equal to zero. Use the
keyword NOT in your solution.

4G. Same as the preceding exercise: Specify a not-equal symbol in

your WHERE-clause.

SELECT PNAME, STATE

FROM PRESERVE

WHERE NOT STATE = 'MA'

C1 NOT C1
T F

F T

Free SQL Book, Tim Martyn 91 Copyright Pending, 2022

B. Mixing Different Boolean Connectors

Sample queries in this section will specify compound-conditions
that include different Boolean connectors.

Sample Query 4.8 will specify the following compound-condition
which includes both the OR and AND logical connectors:

 ACRES > 1000 OR (STATE = 'AZ' AND FEE = 3.00)

When a compound-condition contains different logical connectors,

the system must determine which logical operation should be
evaluated first. This is important because the order of evaluation
is significant. In the above compound-condition, the parentheses
indicate that the user wants to evaluate the AND operation before
the OR operation.

Sample Query 4.9 will specify the following compound-condition.

(ACRES > 1000 OR STATE = 'AZ') AND FEE = 3.00

Here, the parentheses indicate that the OR operation is evaluated
before the AND operation.

Observe that both of the above compound-conditions specify the
same three simple-conditions. The only difference is the placement
of the parentheses. Sample Queries 4.8 and 4.9 will show different
result tables because the order of operations, as specified by the
parentheses, makes a significant difference.

What if a user does not specify any parentheses as shown below?

 ACRES > 1000 OR STATE = 'AZ' AND FEE = 3.00

Then the system would evaluate the compound-condition according to

a hierarchy of logical operations that will be described later in
this section. (Preview: The system would evaluate the AND before
the OR.)

Free SQL Book, Tim Martyn 92 Copyright Pending, 2022

Sample Query 4.8: Display the PNAME, STATE, FEE, and ACRES values
of any nature preserve with more than 1000 acres, or any
Arizona preserve with a $3.00 admission fee.

 PNAME STATE FEE ACRES

 HASSAYAMPA RIVER AZ 3.00 660
 MULESHOE RANCH AZ 0.00 49120
 COMERTOWN PRAIRIE MT 0.00 1130
 PINE BUTTE SWAMP MT 0.00 15000
 RAMSEY CANYON AZ 3.00 380
 PAPAGONIA-SONOITA CREEK AZ 3.00 1200

Logic: For example, consider the PRESERVE row shown below.

 PNO PNAME STATE ACRES FEE
 7 MULESHOE RANCH AZ 49120 0.00

The evaluation for this row is:

 WHERE ACRES > 1000 OR (STATE = 'AZ' AND FEE = 3.00)

 TRUE OR (TRUE AND FALSE)

Therefore, the evaluation for this row is:

 TRUE OR (TRUE AND FALSE) =

TRUE OR (FALSE) =
 TRUE

The final evaluation of TRUE implies this row is selected and
appears in the above result table.

Similar “logical calculations” are applied to all rows in the
PRESERVE table to produce to above result table.

SELECT PNAME, STATE, FEE, ACRES

FROM PRESERVE

WHERE ACRES > 1000 OR (STATE = 'AZ' AND FEE = 3.00)

Free SQL Book, Tim Martyn 93 Copyright Pending, 2022

Sample Query 4.9: Display the PNAME, STATE, FEE, and ACRES
values of any nature preserve with more than 1000 acres or is
located in Arizona, and has a $3.00 admission fee (regardless
of its location and acreage).

 PNAME STATE FEE ACRES
 HASSAYAMPA RIVER AZ 3.00 660
 RAMSEY CANYON AZ 3.00 380
 PAPAGONIA-SONOITA CREEK AZ 3.00 1200

Logic: Again, consider the PRESERVE row that was analyzed in the
previous Sample Query 4.8.

 PNO PNAME STATE ACRES FEE
 7 MULESHOE RANCH AZ 49120 0.00

The evaluation for this row is:

 WHERE (ACRES > 1000 OR STATE = 'AZ') AND FEE = 3.00)

 (TRUE OR TRUE) AND FALSE

Therefore, the evaluation for this row is:

(TRUE OR TRUE) AND FALSE =
 TRUE AND FALSE =
 FALSE

The final evaluation of FALSE implies this row is not selected and

does not appear in the above result table.

Similar “logical calculations” are applied to all rows in the
PRESERVE table to produce to above result table.

SELECT PNAME, STATE, FEE, ACRES

FROM PRESERVE

WHERE (ACRES > 1000 OR STATE = 'AZ') AND FEE = 3.00

Free SQL Book, Tim Martyn 94 Copyright Pending, 2022

“Display Every Row Except…”

This following statement illustrates the formulation of a
compound-condition to identify those rows that we do not want to
display.

Sample Query 4.10: Display the PNO, STATE, and FEE values of

every nature preserve except for those preserves that are
located in Arizona and have a $3.00 admission fee.

PNO STATE FEE
 3 MT 0.00
 7 AZ 0.00
 40 MT 0.00
 14 MA 0.00
 13 MA 0.00

 9 MA 0.00
 11 MA 0.00
 12 MA 0.00
 1 MT 0.00
 2 MT 0.00
 10 MA 0.00

Logic: The logic is straightforward. We first code a condition to
identify the rows we do not want. This is:

 STATE = 'AZ' AND FEE = 3.00

Then we negate this condition by enclosing it within parentheses
and placing a NOT in front of it.

 NOT (STATE = 'AZ' AND FEE = 3.00)

SELECT PNO, STATE, FEE

FROM PRESERVE

WHERE NOT (STATE = 'AZ' AND FEE = 3.00)

Free SQL Book, Tim Martyn 95 Copyright Pending, 2022

Exercises:

4H. Display the preserve number and name of those nature

preserves that do not have an admission fee of $3.00 and do
not have a fee of $10.00.

4I. Display all information about any nature preserve located in

Arizona that does not have an admission fee, or any preserve
that is smaller than 100 acres (regardless of its STATE and
FEE values).

4J. Display all information about any nature preserve that is
smaller than 1,000 acres, and has an admission fee of zero
dollars or is located in Arizona.

4K. Select all information about any nature preserve with an

admission fee that is not greater than zero, or any other
preserve, regardless of its fee, that is located in Montana
and is larger than 1,000 acres.

4L. Display all information about every nature preserve except

those Montana preserves without an admission fee.

Free SQL Book, Tim Martyn 96 Copyright Pending, 2022

Hierarchy of Logical Operators

If a WHERE-clause contains three or more conditions, and this
WHERE-clause does not contain parentheses, the system uses the
following default hierarchy of operations:

• NOTs are evaluated first

• ANDs are evaluated second

• ORs are evaluated third

This is the same hierarchy that applies to most programming
languages (e.g., JAVA, COBOL).

Example-1: Consider the following WHERE-clause that does not
specify parentheses.

WHERE ACRES > 1000 OR STATE = 'AZ' AND FEE = 3.00

Because this compound-condition specifies different logical
operators, and parentheses are not specified, the default
hierarchy comes into play. The AND-condition is evaluated first as
illustrated by the parentheses.

 WHERE ACRES > 1000 OR (STATE = 'AZ' AND FEE = 3.00)

Note: This WHERE-condition was specified in Sample Query 4.8.

Example-2: Consider the following WHERE-clause that does not
specify parentheses.

WHERE NOT FEE = 3.00 OR ACRES > 1000 AND STATE = 'AZ'

Because this compound-condition specifies different logical

operators, and parentheses are not specified, the default
hierarchy comes into play. The NOT-condition is evaluated first,
the AND-condition is evaluated second, and the OR-condition is
evaluated last, as illustrated below.

 WHERE (NOT FEE = 3.0) OR (ACRES > 1000 AND STATE = 'AZ')

Strong Recommendation:

Always use parentheses to specify the desired order of evaluation.

Free SQL Book, Tim Martyn 97 Copyright Pending, 2022

An Ugly WHERE-Clause

The following WHERE-clause specifies three different Boolean
operators (AND, OR, NOT), but it does not specify any parentheses.
This example requires you to understand the Boolean hierarchy of
“first NOT, then AND, then OR.”

Sample Query 4.11: Display PNAME, STATE, FEE, and ACRES values

about all preserves that are smaller than 50 acres, or any
preserve that has a $3.00 admission fee and is not located in
Massachusetts.

PNAME STATE FEE ACRES

HASSAYAMPA RIVER AZ 3.00 660
TATKON MA 0.00 40
MIACOMET MOORS MA 0.00 4
RAMSEY CANYON AZ 3.00 380
PAPAGONIA-SONOITA CREEK AZ 3.00 1200

Logic: Most users would prefer the following equivalent WHERE-
clause with parentheses.

 WHERE ACRES < 50 OR (FEE = 3.00 AND (NOT STATE = 'MA'))

This WHERE-clause specifies a nested pair of parentheses.

Specifying a not-equal symbol (<>) may enhance readability.

 WHERE ACRES < 50 OR (FEE = 3.00 AND STATE <> 'MA')

Exercise:

4M. Consider the following modified WHERE-clauses (without

parentheses) for Sample Queries 4.8, 4.9 and 4.10. Which of
the following modified WHERE-clauses will satisfy the
specified query objectives?

4.8 WHERE ACRES > 1000 OR STATE = 'AZ' AND FEE = 3.00

4.9 WHERE ACRES > 1000 OR STATE = 'AZ' AND FEE = 3.00
4.10 WHERE NOT STATE = 'AZ' AND FEE = 3.00

SELECT PNAME, STATE, FEE, ACRES

FROM PRESERVE

WHERE ACRES < 50

OR FEE = 3.00

AND NOT STATE = 'MA'

Free SQL Book, Tim Martyn 98 Copyright Pending, 2022

C. Logically Equivalent WHERE-Clauses

Exercise 4G required you to understand that the following WHERE-
clauses are logically equivalent.

 WHERE NOT STATE = 'MA'

 WHERE STATE <> 'MA'

This section continues the theme of logical equivalency by
revisiting three sample queries.

Sample Query 4.8. The WHERE-clause for this query is:

WHERE ACRES > 1000 OR (STATE = 'AZ' AND FEE = 3.00)

An alternative WHERE-clause is shown below. Convince yourself that
this WHERE-clause is equivalent to the above WHERE-clause. (If
this is problematic, reading the following pages should help.)

WHERE (ACRES > 1000 OR STATE = 'AZ')
 AND

 (ACRES > 1000 OR FEE = 3.00)

Analyzing the above WHERE-clauses raises four questions.

1. Are these two WHERE-clauses really equivalent? How do we know
these WHERE-clauses will retrieve the same rows? Considering
this question will take us into the game of “logical
gymnastics” that will be discussed on the following pages.

2. Does this “equivalent WHERE-clause business” really matter?
Assuming a given WHERE-clause is correct, why should you play
a game of logical gymnastics to formulate an alternative
WHERE-clause? Good question! In most circumstances, you do

not need to contemplate other equivalent WHERE-clauses.
However, someday you may have to analyze and possibly change
a WHERE-clause written by another user whose logical mindset
differs from yours.

3. Which WHERE-clause is friendlier? This question takes us into

cognitive psychology. Other than making an occasional
observation, we do not offer strong opinions on this matter.

4. Which WHERE-clause is more efficient? Both statements should
execute with the same efficiency. However, sometimes, a
WHERE-clause may be more efficient than another equivalent

WHERE-clause. (Appendices 4A, 4B, and 4C will address this
matter.)

Free SQL Book, Tim Martyn 99 Copyright Pending, 2022

Sample Query 4.9. The WHERE-clause for this query is:

WHERE (ACRES > 1000 OR STATE = 'AZ') AND FEE = 3.00

An alternative WHERE-clause is shown below. Convince yourself that
it is equivalent to the above WHERE-clause.

WHERE (FEE = 3.00 AND ACRES > 1000)
 OR
 (FEE = 3.00 AND STATE = 'AZ')

Author Comment: Working backwards from this alternative WHERE-
clause could encourage me to re-articulate the query objective as:

 Display the PNAME, STATE, FEE, and ACRES values of any

nature preserve that has a $3.00 admission fee and is larger
than 1000 acres, or any nature preserve that has a $3.00
admission fee and is located in Arizona.

This revised articulation, while it may less concise, may be a
simpler description of the query objective.

Sample Query 4.10. The WHERE-clause for this query is:

WHERE NOT (STATE = 'AZ' AND FEE = 3.00)

Two alternative WHERE-clauses are shown below. Convince yourself
that these clauses are equivalent to be above WHERE-clause.

 WHERE (NOT STATE = 'AZ') OR (NOT FEE = 3.00)

 WHERE (STATE <> 'AZ') OR (FEE <> 3.00)

Logical Gymnastics: In practice, most users rarely have to play
this game. Their query objectives usually require them to code

relatively simple WHERE-clauses, and then, maybe once a year, they
encounter a logically complex condition. In this circumstance,
they “muddle through” by testing many combinations of data values
to produce a correct WHERE-clause. This approach may be OK.
However!

Author Comment: When teaching SQL classes. I do not have enough
time to present a comprehensive discussion of Boolean Logic. My
sample queries are designed to present basic logic and “raise the
anxiety level” regarding complex logical conditions. I advise the
students, upon encountering a complex compound-condition, to “pay
attention,” perform robust testing, and review this chapter.

Free SQL Book, Tim Martyn 100 Copyright Pending, 2022

“Logical Gymnastics” via Laws of Logic

Laws of logic allow you to “mechanically” transform one logical
expression into another equivalent expression. To illustrate
some examples, we present two laws of logic, the Distributive
Laws and De Morgan’s Laws. (Appendix 4B will elaborate on these
and other laws of logic.)

Distributive Laws

1. Distribute OR over AND

C1 OR (C2 AND C3) = (C1 OR C2) AND (C1 OR C3)

If a compound-condition fits the form of the left-side of the
equation, you can rewrite the condition to fit the form of the
right-side of the equation; and, vice versa.

Consider the compound-condition in Sample Query 4.8.

ACRES > 1000 OR (STATE = 'AZ' AND FEE = 3.00)

This compound-condition conforms to: C1 OR (C2 AND C3)

Hence it can be rewritten as (C1 OR C2) AND (C1 OR C3)

 (ACRES > 1000 OR STATE = 'AZ') AND (ACRES > 1000 OR FEE = 3.00)

2. Distribute AND over OR

C1 AND (C2 OR C3) = (C1 AND C2) OR (C1 AND C3)

Again, if a compound-condition fits the form of the left-side
of the equation, you can rewrite the condition to fit the form

of the right-side of the equation; and, vice versa.

Consider the compound-condition in Sample Query 4.9.

(ACRES > 1000 OR STATE = 'AZ') AND FEE = 3.00

Before applying the distributive law, we rewrite this compound-
condition as:

FEE = 3.00 AND (ACRES > 1000 OR STATE = 'AZ')

This condition now conforms to: C1 AND (C2 OR C3)

Hence it can be rewritten as (C1 AND C2) OR (C1 AND C3)

 (FEE = 3.00 AND ACRES > 1000) OR (FEE = 3.00 AND STATE = 'AZ')

Free SQL Book, Tim Martyn 101 Copyright Pending, 2022

De Morgan’s Laws

1. NOT (C1 AND C2) = (NOT C1) OR (NOT C2)

If you encounter a compound-condition that fits the form of
NOT (C1 AND C2), you can produce an equivalent condition by
moving (distributing) the NOT inside the parentheses (place NOT
before C1, and place NOT before C2), and then replace AND with
OR. Likewise, if a compound-condition fits the form of the
right side of the equation, you can modify it to fit the form
of the left side of the equation.

2. NOT (C1 OR C2) = (NOT C1) AND (NOT C2)

If you encounter a compound-condition that fits the form of
NOT (C1 OR C2), you can produce an equivalent condition by
moving (distributing) the NOT inside the parentheses (place NOT
before C1, and place NOT before C2), and then replace OR with
AND. Likewise, if a compound-condition fits the form of the
right side of the equation, you can modify it to fit the form
of the left side of the equation.

Example: The compound-condition in Sample Query 4.10 fits De

Morgan’s first law: NOT (C1 AND C2)

NOT (STATE = 'AZ' AND FEE = 3.00)

Distributing NOT to each individual condition and replacing AND
with OR produces:

(NOT STATE = 'AZ') OR (NOT FEE = 3.00)

Optionally, this condition could be rewritten as:

 (STATE <> 'AZ') OR (FEE <> 3.00)

And, optionally, removing the superfluous parentheses yields:

 STATE <> 'AZ' OR FEE <> 3.00

Note: The above logical deductions yield four equivalent compound-
conditions.

1. NOT (STATE = 'AZ' AND FEE = 3.00)
2. (NOT STATE = 'AZ') OR (NOT FEE = 3.00)
3. (STATE <> 'AZ') OR (FEE <> 3.00)
4. STATE <> 'AZ' OR FEE <> 3.00

[Appendix 4B where will present other logical laws. Appendices 4A
and 4C describe how a database optimizer capitalizes on these
laws.]

Free SQL Book, Tim Martyn 102 Copyright Pending, 2022

Optional Exercises

The Distributed Laws apply to the following exercises.

4N1. Are the following WHERE-clauses logically equivalent?

WHERE STATE = 'MA' AND (ACRES > 1000 OR FEE = 0.0)

WHERE (STATE = 'MA' AND ACRES > 1000)

 OR
 (STATE = 'MA' AND FEE = 0.0)

4N2. Are the following WHERE-clauses logically equivalent?

WHERE STATE = 'MA' OR (ACRES > 1000 AND FEE = 0.0)

WHERE (STATE = 'MA' OR ACRES > 1000)
 AND

 (STATE = 'MA' OR FEE = 0.0)

De Morgan’s Laws apply to the following exercises.

4O1. Are the following WHERE-clauses logically equivalent?

WHERE NOT (ACRES < 50 AND STATE = 'MA')

WHERE NOT ACRES < 50 AND NOT STATE = 'MA'

4O2. Are the following WHERE-clauses logically equivalent?

WHERE NOT (ACRES < 50 AND STATE = 'MA')

WHERE ACRES >= 50 OR STATE <> 'MA'

4P. Are the following WHERE-clauses logically equivalent?

WHERE NOT (ACRES < 50 OR STATE = 'MA')

WHERE NOT ACRES < 50 OR NOT STATE = 'MA'

4Q. Are the following WHERE-clauses logically equivalent?

WHERE NOT (ACRES < 50 OR STATE = 'MA')

WHERE NOT ACRES < 50 AND NOT STATE = 'MA'

Free SQL Book, Tim Martyn 103 Copyright Pending, 2022

Articulating Query Objectives

Assume the “big boss” or a very important client sends you an
email with the following query objective.

 Display the PNO, PNAME, and STATE values of all preserves in

Arizona and Montana.

If you take this query objective as stated, you might code the
following SELECT statement.

SELECT PNO, PNAME, STATE
FROM PRESERVE
WHERE STATE = 'AZ' AND STATE = 'MT'

This would produce a “no hit,” and you suspect that something is
wrong. So, you decide to become a mind reader.

You (maybe correctly) think that this person intended to say “or”
(not “and”) in stating his query objective. So, you substitute OR
for AND in the above SELECT statement, get the (presumably)
correct result, and email it back. Hopefully, you are smart enough
to send a CYA memo that does not insult anyone’s intelligence.

You see the problem. Articulating a query objective may not be
easy, especially if a query objective is complex. Probably all
human languages (unlike computer languages) allow some ambiguity.
So, be careful because sloppy language can encourage sloppy logic.

Conclusion: Make sure that you really understand your query
objectives.

Author Comment: In writing this book, I had to articulate many
query objectives. Sometimes I cheated. For example, with some
sample queries, I worked backwards. I began by writing the WHERE-

clause’s compound-condition. Then, I used the WHERE-clause to
(somehow) derive the narrative articulation of the query
objective.

Bottom-Line: Writing a precise, concise, unambiguous query
objective in a human language can be a challenge.

Free SQL Book, Tim Martyn 104 Copyright Pending, 2022

Summary

Previous chapters emphasized knowing-your-data. This chapter
emphasized knowing-your-logic. Sample queries showed WHERE-clauses
that contained one or more Boolean connectors (AND, OR, and
NOT). Their syntax and behavior are summarized below.

 WHERE cond-1 AND cond-2: A row is selected only if both

cond-1 and cond-2 are true.

 WHERE cond-1 OR cond-2: A row is selected if either cond-1

or cond-2 or both conditions are
true.

 WHERE NOT condition: A row is selected if the condition

is not true.

Truth Tables offer a precise representation of this logic.

Understanding of Truth Tables is helpful for two reasons.

• Appendix 4B uses truth tables to verify some laws of logic.

• Chapter 11 (Null Values) will present more complex truth
tables that expand upon the above truth tables.

Again: Make your logic explicit by specifying parentheses when you
code compound-conditions.

C1 C2 C1 AND C2
T T T

T F F

F T F

F F F

C1 C2 C1 OR C2
T T T

T F T

F T T

F F F

C1 NOT C1

T F

F T

Free SQL Book, Tim Martyn 105 Copyright Pending, 2022

Summary Exercises

The following exercises 4R-4T reference the EMPLOYEE table.

4R. Display all information about any employee who works in

Department 20 and earns less than $5,000.00.

4S. Display the name and salary of any employee who earns less

than $1,000.00 or more than $6,000.00.

4T. Display the name and department number of all employees who

do not work for Department 20. Sort the result in ascending
sequence by employee name.

The following exercise references the PRESERVE table. It is
relatively complex. Yet it should be doable with a little
thought.

4U. OR means Inclusive-OR. Code an “Exclusive-OR” for the

following query which is a modification of Sample Query
4.5.

 Display the PNAME, ACRES, and STATE value of any preserve

that matches just one (but not both) of the following
conditions. (1) The preserve is located in Arizona, or (2)
the preserve has more than 1000 acres. The result should
look like:

PNAME ACRES STATE
HASSAYAMPA RIVER 660 AZ
COMERTOWN PRAIRIE 1130 MT
PINE BUTTE SWAMP 15000 MT
RAMSEY CANYON 380 AZ

 Hint-1: Assume you have two conditions, C1 and C2. The most

direct way to think about the Exclusive-OR is:

 The first condition (C1) is True OR the second

condition (C2) is True
 AND
 It is not the case that both conditions are True.

 Hint-2: Another way to think about the Exclusive-OR is:

 The first condition is True AND the second condition

is False.

 OR
 The first condition is False AND the second condition

is True.

4V. Draw a truth table for the Exclusive-OR (XOR).

Free SQL Book, Tim Martyn 106 Copyright Pending, 2022

Introduction to Appendices 4A - 4B - 4C

“Theory is Practical” - C. J. Date

The following three appendices total 21 pages, approximately the
same size as the preceding content of this chapter! (Many of the
following chapters do not have any appendices.)

• Appendix 4A (Efficiency) introduces the fascinating topic
of query optimization.

• Appendix 4B (Theory) introduces some laws of logic, a very
old topic that predates database theory by centuries.

• Appendix 4C (Theory & Efficiency) describes how the laws of
logic can help the optimizer produce efficient SELECT
statements.

 Author Comment: Appendix 4C integrates theory and practice.
Unfortunately, in my academic and professional consulting-
training experience, I have heard discouraging words like:
“Academic courses are too theoretical. Faculty members live

in an ivory tower, etc.” And, conversely: “Many practitioners
are hackers. They ignore formal logic, sound software
engineering and data engineering principles, etc.” I contend
that individuals who make such comments suffer from tunnel
vision, having an extreme bias towards practice or theory.
Their comments reflect an Exclusive-OR-Attitude toward theory
and practice. Adopting an Inclusive-OR-Attitude is more
interesting and more productive.

The following Appendix 4A is a conceptual introduction to query
optimization. Real-world optimizers utilize many but not all of
the techniques described on the following pages. Real-world

optimizers are very sophisticated and utilize many other
techniques not described herein. For example, the following three
appendices only consider optimizing a SELECT statement that
references a single table which is located on one computer;
whereas real-world optimizers have to optimize multi-table queries
where the tables may be distributed across multiple computers
connected via a communications network.

Free SQL Book, Tim Martyn 107 Copyright Pending, 2022

Appendix 4A: Efficiency

We have arrived at a point where we should discuss database query
optimization. Before discussing this topic, it may be helpful to
draw an analogy with travel by automobile.

Analogy: Automobile Travel Plans

Ancient History: Once upon a time, when traveling by car, if you
did not know the route to your destination, you obtained a paper
map, read it, and formulated your own travel plan. This was a do-

it-yourself approach to formulating a travel plan. One problem
with this approach was that a paper map, after publication, became
obsolete (e.g., a two-lane road became a four-lane road, or a
bridge was closed).

Modern-History-1: Along came the personal computer and the
Internet with programs like MapQuest. You specified your origin,

usually your current location, and your destination. (This was the
“What.”) The program generated a travel plan. (This was the “How
to.”) Because the program knew travel distances and road speed
limits, it would consider multiple possible travel plans and
recommend the most efficient plan in terms of minimum travel time.
Problems with obsolete information were reduced, but not
eliminated. For example, programs were not aware of real-time
traffic jams.

Modern-History-2: Along came smart phones with travel apps that
used GPS facilities to access real-time travel information. After
detecting a traffic problem, the app could dynamically generate an
alternative travel plan.

Although travel plans have improved at each historical stage, a
human being still has to drive the car to execute the travel plan.

Human
Optimizer

Road Map “How to”

Travel Plan

“What”

Destination

is _____

Travel
Optimizer
(MapQuest)

“How to”

Travel Plan

Travel
Optimizer

(Smartphone App)

“How to”

Real-Time
Travel Plan

“What”

Destination
is _____

Free SQL Book, Tim Martyn 108 Copyright Pending, 2022

Near Future: Self-driving cars/trucks should become common within
the next decade. After you state your destination, the travel
optimizer will generate a travel plan, and the self-driving car
will execute the plan.

*** Relational systems are analogous to self-driving cars.

Database Query Optimization & Application Plans

SQL is a declarative language. A SELECT statement declares “what”
data should be retrieved. A SELECT statement does not tell the
system “How to” (what internal processes to use to) retrieve the
desired data. Instead, a relational database system has a
component, called an optimizer, that figures out “how to” satisfy
a query objective. This “how to” method is called an application
plan. Also, if there is more than one application plan that can
satisfy a query objective, the optimizer (ideally) generates the
optimal plan.

Another database component, the database engine, reads and
executes the application plan and returns the result table. The
overall process of query optimization and execution is shown below
in Figure 4A.1.

Figure A4.1: Query Optimization and Execution

Optimizer

“How to”

Application Plan

Result Table

“What”

SELECT ___

FROM ___
WHERE ___
ORDER BY __

Database Engine
(Execute Plan)

Travel
Optimizer

(GPS)

Travel
Plan

Execute Plan
(Drive Car)

“What”

Destination
is _____

Free SQL Book, Tim Martyn 109 Copyright Pending, 2022

Data Dictionary

When a table is referenced by a SELECT statement, the optimizer
would like to know the table’s size, the availability of relevant
indexes, and the distribution of column values. This metadata is
stored in the system’s Data Dictionary. [DB2’s data dictionary is
called a “Catalog.”] The following Figure A4.2 illustrates
Optimizer access to the Data Dictionary. It also illustrates other
components that access the Data Dictionary.

When you execute a CREATE TABLE statement, in addition to creating
the table, the system automatically updates the Data Dictionary
with metadata that describes the table and its columns (data-type,

length, etc.). The DBA may also execute a utility program to store
and update other information in the data dictionary. Your front-
end tool can read the data dictionary and display its metadata in
the Metadata Panel. The following pages describe how the optimizer
utilizes this metadata.

Predicting the Optimizer

Previously, we made comments like: “The system might use an
index,” or “The system could scan the table.” We said “might” and
“could” because, in principle, we cannot always predict what
internal processes the system will use to satisfy a query

objective.

More precisely, we could have said:

 “The optimizer might decide to use an index . . .”
 “The optimizer could decide to scan the table . . .”

Again, we used these same weasel words (“might” and “could”). You

might ☺ wish that we could ☺ say:

 “The optimizer will decide to use an index . . .”
 “The optimizer will decide to scan the table . . .”

However, because circumstances change (e.g., a small table become
much larger), we cannot always predict the application plan the
optimizer will generate. In fact, your SQL reference manuals will
also use similar weasel words when discussing query optimization.

Figure A4.2: Dictionary Access

Optimizer

Data Dictionary

CREATE TABLE

Utility Program

Front-End Tool

(Metadata Panel)

Free SQL Book, Tim Martyn 110 Copyright Pending, 2022

Optimizer’s “Thought Process”

The following examples introduce the optimizer’s thought process.
These examples assume the optimizer examines the data dictionary
to learn if a table is small or large. (Periodically, the DBA
executes a utility program that scans specified tables and
indexes and stores relevant statistics in the data dictionary.)
The optimizer also learns about indexes by examining the data
dictionary. Here, we assume the XPNO index on the PNO column
(illustrated in Figure 2.1 in Appendix 2A.1) is the only index on
the PRESERVE table.

Example-1: SELECT * FROM PRESERVE

 There is no WHERE-clause in this statement. Hence, because

the query objective is to retrieve all rows, the optimizer
decides to scan the entire table.

Example-2: SELECT * FROM PRESERVE WHERE FEE = 0.00

 Because the objective is to retrieve a subset of rows, the

optimizer might consider using an index. However, after
consulting the data dictionary, the optimizer learns that

there is no index based on the FEE column. Therefore, the
optimizer decides to scan the entire table to return those
rows that match the FEE = 0.00 condition.

Example-3: SELECT * FROM PRESERVE WHERE PNO = 40

 This example forces the optimizer to do a little more

thinking. By referencing the data dictionary, the optimizer
learns that PNO values are unique, and it deduces that the
result table cannot contain more than one row. Hence, the
optimizer will consider using the XPNO index to perform a
direct access search. To make its decision, the optimizer

will consider the size of the table.

 Four Scenarios

 1. Assume PRESERVE is very large (14 million rows). Hence,

scanning the entire table would be very expensive.
Therefore, the optimizer decides to use the XPNO index
to directly access the desired row. We note that a
direct access to one row usually requires two disk
reads. The first read accesses the XPNO index; and, the
second read follows the index pointer to access the
desired row in the table.

 2. Assume PRESERVE is very small (14 rows). Most likely all

rows would be stored in one physical disk page (physical
block). In this case, the optimizer would decide to scan
the table because it only requires one disk read.

Free SQL Book, Tim Martyn 111 Copyright Pending, 2022

Continuing with Example-3 (WHERE PNO = 40), the next two
scenarios describe some “best guess” dilemmas.

3. Assume the optimizer knows PRESERVE is very small, containing

90 rows spread across 3 disk pages. This is a borderline
situation. Scanning the entire table involves reading 3 disk
pages. A direct access would involve reading 2 pages, one to
read the index and another to read the table. Although direct
access appears to be slightly more efficient, other factors
(not described here) could come into play.

4. Assume the optimizer does not know how many rows are in the
PRESERVE table. (Somehow, the utility program that updates
the data dictionary statistics was not executed.) Then, the
optimizer must make its best guess. Most likely it would
decide to use the index because directly accessing one row is
not expensive. This would be much cheaper than scanning a
potentially large table.

Selectivity: The optimizer estimates the percentage of rows to be
retrieved. This estimate is called the selectivity of the WHERE-
condition. For some SELECT statements, it is easy to determine
their selectivity. This applies to Example-1 and Example-3.

 Example-1 (no WHERE-clause): The optimizer knows that all rows

will be selected. Hence, we have the largest possible
selectivity value is 1.

 Example-3 (WHERE PNO = 40): The optimizer knows only one row

can be selected. If PRESERVE has 14 million rows, the
optimizer will estimate an extremely small selectivity of
1/14,000,000.

A small selectivity measure encourages the optimizer to use a
relevant index. However, determining selectivity can become a

challenge. [Note: SQL manuals rarely identify a specific
selectivity threshold value that determines the use of an index.]

 Example-2 (WHERE FEE = 0.00): The FEE column is not unique.

Hence it may contain duplicate values. To help estimate
selectivity, the data dictionary may store the number of
distinct FEE values. For example, if FEE contains five
distinct values, the optimizer estimates a selectivity of 1/5.
Of course, this presumes a uniform distribution of FEE values.
This presumption leads to another best-guess scenario.

Optimizers can usually derive accurate selectivity measures if the

DBA executes a utility program that stores data distribution
statistics (histograms) about column values in the data
dictionary. There is a cost to storing and maintaining such
statistics. Therefore, the DBA rarely stores detail statistics
about all columns in all tables.

Free SQL Book, Tim Martyn 112 Copyright Pending, 2022

Selectivity for Compound-Conditions: Estimating selectivity for
compound-conditions becomes more of a challenge. We offer some
insight into this topic by considering two statements that
reference a very large table called CUSTOMER.

 SELECT * FROM CUSTOMER
 WHERE SEX = ‘FEMALE’ AND FOOTSIZE > 19

 SELECT * FROM CUSTOMER
 WHERE SEX = ‘FEMALE’ OR FOOTSIZE > 19

Use your intuition to estimate the selectivity of each WHERE-
clause. The selectivity of the first WHERE-clause is extremely
small because there are very few women with a foot size over 19.
The selectivity of the second WHERE-clause is very large, about
51%. This estimate assumes that 51% of the customers are women,
and the few men with very big feet do not significantly increase
this estimate.

In some circumstances, the optimizer utilizes probability theory
to derive selectivity estimates for compound-conditions.

Summary: Optimizer’s (Simplified) Strategy

Assume a SELECT statement references just one table.

If the table is small, then scan the table.

 Otherwise

If the table is large, and the statement does not have a WHERE-
clause, then scan the table.

 Otherwise

If the table is large, and the statement has a WHERE-clause, then
look for a relevant index.

 If there is no relevant index, then scan the table.

 Otherwise

 If there is a relevant index and selectivity is good, use the

index.

 Otherwise

 Assuming selectivity is bad, scan the table.

Free SQL Book, Tim Martyn 113 Copyright Pending, 2022

Appendix 4B: Theory

Codd’s Relational Model is based on set theory, and there is a
very close relationship between set theory and logic. Therefore,
we will take a closer look at some laws of logic that are listed
in the following Figure 4B.1. This appendix will use truth tables
to validate these laws. The following Appendix 4C will show the
relevancy of each law to query optimization.

Laws Involving AND of Two Conditions (C1, C2)

1a. C1 AND C2 = C2 AND C1

1b. C1 AND FALSE = FALSE

1c. C1 AND TRUE = C1

Laws Involving OR of Two Conditions (C1, C2)

2a. C1 OR C2 = C2 OR C1

2b. C1 OR FALSE = C1

2c. C1 OR TRUE = TRUE

De Morgan’s Laws: Two Conditions (C1, C2)

3a. NOT (C1 AND C2) = (NOT C1) OR (NOT C2)

3b. NOT (C1 OR C2) = (NOT C1) AND (NOT C2)

Laws Involving One Condition (C)

4. C OR (NOT C) = TRUE

5. C AND (NOT C) = FALSE

6. NOT (C AND (NOT C)) = TRUE

Distributive Laws: Three Conditions (C1, C2, C3)

7a. C1 AND (C2 OR C3) = (C1 AND C2) OR (C1 AND C3)

7B. C1 OR (C2 AND C3) = (C1 OR C2) AND (C1 OR C3)

Figure 4B.1: Some Laws of Logic

Free SQL Book, Tim Martyn 114 Copyright Pending, 2022

Many of the following logical laws will conform to your intuition.
Some laws are so obvious that you may wonder why we even bother to
mention them. Appendix 4C will address this issue.

Validating Logical Laws

Laws 1-3 involve two conditions (C1 and C2). Sometimes a condition
is known be TRUE; other times a condition is known be FALSE.

1a. C1 AND C2 = C2 AND C1 (Commutative Law of AND)

 This law seems trivial. But it is such an important law

that it gets a name: Commutative Law of AND. Casually
speaking, we say this law allows us to “flip” conditions C1
and C2 such that C2 becomes the first condition, and C1
becomes the second condition.

Law 2a will present a similar Commutative Law of OR. We
note that a Commutative Law does not apply for all SQL
operations. Chapter 7 introduces arithmetic expressions.
There we will observe that addition and multiplication are
commutative (e.g., a+b=b+a and a*b=b*a), but subtraction

and division are not commutative.

1b. C1 AND FALSE = FALSE

This law states that: If you AND-connect any condition (C1)
to another condition (C2) that is known to be FALSE, the
result is FALSE.

More formally, there are two possible values for C1.
1. If C1 is TRUE, then TRUE AND FALSE = FALSE

2. If C1 is FALSE, then FALSE AND FALSE = FALSE
 Hence, in both cases, the result is FALSE.

 The following truth table also validates this law. The

third column represents this law. Observe that all its
column values are False (F).

C1 C2 (FALSE) C1 AND FALSE

T F F

F F F

Free SQL Book, Tim Martyn 115 Copyright Pending, 2022

1c. C1 AND TRUE = C1

If you AND-connect any condition (C1) to another condition
(C2) that is known to be TRUE, the result has the same
truth value as the first condition (C1).

More formally, consider the two possible values for C1.
1. If C1 is TRUE,

 then TRUE AND TRUE = TRUE (the value of C1)
2. If C1 is FALSE,

then FALSE AND TRUE = FALSE (the value of C1)

 In both cases, the result has same value as C1.

The following truth table also validates this law because
the first and third columns contain the same corresponding
T/F values.

2a. C1 OR C2 = C2 OR C1 (Commutative Law of OR)

This is another apparently trivial but important law that
gets a name: Commutative Law of OR. Casually speaking, we
say this law allows us to “flip” the conditions C1 and C2
such that C2 becomes the first condition, and C1 becomes
the second condition.

2b. C1 OR FALSE = C1

 If you OR-connect any condition (C1) to another condition

(C2) that is known to be FALSE, the result has the same
truth value as the first condition (C1).

More formally, consider the two possible values for C1:
1. If C1 is TRUE,

 then TRUE OR FALSE = TRUE (the value of C1)
2. If C1 is FALSE,

then FALSE OR FALSE = FALSE (the value of C1)
 In both cases, the result is same value as C1.

The following truth table also validates this law because
the first and third columns contain the same corresponding
T/F values.

C1 C2 (TRUE) C1 AND TRUE
T T T

F T F

C1 C2 (FALSE) C1 OR FALSE
T F T

F F F

Free SQL Book, Tim Martyn 116 Copyright Pending, 2022

2c. C1 OR TRUE = TRUE

If you OR-connect any condition (C1) to another condition
(C2) that is known to be TRUE, the result is TRUE.

More formally, consider the two possible values for C1:
1. If C1 is TRUE, then TRUE OR TRUE = TRUE
2. If C1 is FALSE, then FALSE OR TRUE = TRUE

 Hence, in both cases, the result is TRUE.

 The following truth table also validates this law. The

third column represents this law. Observe that all its
column values are True (T).

De Morgan’s Laws

3a. NOT (C1 AND C2) = (NOT C1) OR (NOT C2)

3b. NOT (C1 OR C1) = (NOT C1) AND (NOT C2)

We have already introduced De Morgan’s Laws without formally
validating these laws. We validate Law 3a below by developing
two truth tables. Observe that the last column in each table
shows the same corresponding T/F values. Hence, the two
compound-conditions are equivalent.

Similar truth tables validate Law 3b.

C1 C2 (TRUE) C1 OR TRUE
T T T

F T T

 C1 C2 C1 AND C2 NOT (C1 AND C2)
T T T F

T F F T

F T F T

F F F T

 C1 C2 NOT C1 NOT C2 (NOT C1) OR (NOT C2)
T T F F F

T F F T T

F T T F T

F F T T T

Free SQL Book, Tim Martyn 117 Copyright Pending, 2022

Laws 4-6 only reference one condition (C). Each law represents a
tautology or a contradiction.

A tautology is a statement that, because of its logical form,
is always TRUE. (Only T values appear in its Truth Table
column.)

A contradiction is a statement that, because of its logical
form, is always FALSE. (Only F values appear in its Truth
Table column.)

4. C OR (NOT C) = TRUE (Law of the Excluded Middle)

This is another apparently trivial law that has a rather sexy
name, the Law of the Excluded Middle. This law states that every
condition (C) must be TRUE or FALSE. No condition can be
“somewhere in the middle” between TRUE and FALSE.

The third column in the following truth table represents this
law. Note that all its column values are TRUE (T). Hence C OR
(NOT C) is a tautology.

5. C AND (NOT C) = FALSE

This law means that any condition (C) AND its negation (NOT C)
must be FALSE. (Common Sense: “A statement cannot be both true
and false at the same time.”)

The third column in the following truth table represents this
law. Note that all its column values are FALSE (F). Hence C AND
(NOT C) is a contradiction.

C NOT C C OR (NOT C)
T F T

F T T

C NOT C C AND (NOT C)
T F F

F T F

Free SQL Book, Tim Martyn 118 Copyright Pending, 2022

6. NOT (C AND (NOT C)) = TRUE (Non-Contradiction)

The negation of a contradiction is TRUE. (Common Sense: “Do not
tell me that some condition is both TRUE and NOT TRUE.”) To
validate this law, we start with a contradiction (Law 5).

 C AND (NOT C) = FALSE.

Then, negate both sides of this equation to produce Law-6.

 NOT (C AND (NOT C)) = NOT (FALSE)

= TRUE

The last column in the following truth table represents this
law. Note that all its column values are TRUE (T). Therefore,
NOT (C AND (NOT C)) is a tautology.

Distributive Laws: [Three conditions (C1, C2, C3)]

7a. C1 AND (C2 OR C3) = (C1 AND C2) OR (C1 AND C3)

7b. C1 OR (C2 AND C3) = (C1 OR C2) AND (C1 OR C3)

Validate Law 7a by developing the following truth tables. The
same corresponding T/F values in the last column of each table
show that the two compound-conditions are equivalent. Similar
truth tables validate Law 7b.

C NOT C C AND (NOT C) NOT (C AND (NOT C))
T F F T

F T F T

 C1 C2 C3 (C2 OR C3) C1 AND (C2 OR C3)

T T T T T

T F T T T

F T T T F

F F T T F

T T F T T

T F F F F

F T F T F

F F F F F

 C1 C2 C3 (C1 AND C2) (C1 AND C3) (C1 AND C2) OR (C1 AND C3)

T T T T T T

T F T F T T

F T T F F F

F F T F F F

T T F T F T

T F F F F F

F T F F F F

F F F F F F

Free SQL Book, Tim Martyn 119 Copyright Pending, 2022

Appendix 4C: Theory & Efficiency

This appendix illustrates how each logical law described in the
previous Appendix 4B can be utilized by the optimizer. The
following examples show how the optimizer can apply a specific
logical law to rewrite a user-coded WHERE-clause into a
presumably more efficient form.

Optimizer Query Rewrite: The laws of logic are symbolic patterns
that can be recognized by the optimizer. When the optimizer
detects such a pattern in a compound-condition within a user’s

WHERE-clause, it may “mechanically” rewrite this condition into
an equivalent and presumably more efficient condition.

The following examples reference a CUSTOMER table that describes
customer demographics. Assume the data dictionary shows that
CUSTOMER has 14 million rows where 7 million customers are
female. The data dictionary also has a histogram of FOOTSIZE
values indicating that 25 customers have a foot size that
exceeds 19.0.

* The following examples assume that dictionary statistics are
accurate. Appendix 24B will describe similar examples where the

dictionary statistics are inaccurate or approximately accurate.

1a. C1 AND C2 = C2 AND C1 (Commutative Law of AND)

Assume a user decides to inquire about female customers with big
feet by coding the following SELECT statement.

 SELECT * FROM CUSTOMER
 WHERE SEX = 'F' AND FOOTSIZE > 19.0

We consider three scenarios. Scenario-1 does not rewrite the

user’s WHERE-clause.

Scenario-1: Search the CUSTOMER table using the user’s compound-
condition (SEX = 'F' AND FOOTSIZE > 19.0). Because the SEX = 'F'
is specified first, we will assume that the system initially
searches for female customers, and then, for each female customer,
it examines her foot size information.

Assume there is no index on the SEX column, and no index on the
FOOTSIZE column. This means the system must scan all 14 million
CUSTOMER rows to satisfy the WHERE-condition. After the system
brings each row into memory, it examines its SEX value. If this

value is not F, the system immediately concludes the current row
is a no-hit. (It does not examine the FOOTSIZE value.) If the SEX
value is F, the system examines the FOOTSIZE value. This means
that it will perform 7 million comparison operations on FOOTSIZE
values.

Free SQL Book, Tim Martyn 120 Copyright Pending, 2022

In Scenario-2 and Scenario-3, the optimizer utilizes Logical Law
1a (Commutative Law of AND) to rewrite the user-coded WHERE-
condition.

Scenario-2: Search the CUSTOMERE table after rewriting the
compound-condition as:

 FOOTSIZE > 19.0 AND SEX = 'F

This rewrite implies that the system will initially search on the
FOOTSIZE > 19.0 condition. Then, for each big-footed customer, the

system will examine the corresponding SEX value.

Again, assume there are no indices on the SEX and FOOTSIZE
columns. This means that the system must scan all 14 million rows
to satisfy the WHERE-condition. For each row, the system first
examines the FOOTSIZE value. If this value is not greater than 19,
the system immediately concludes the current row is a no-hit. (It
does not need to examine the corresponding SEX value.) If the
FOOTSIZE value does exceed 19.0, the system examines the
corresponding SEX value. This means that it will only have to
perform 25 comparison operations on the SEX value. Obviously, this
is more efficient than Scenario-1 which executed 7 million

comparisons for the second condition.

The Commutative Law of AND allows the optimizer to perform this
rewrite operation. But, how does the optimizer know that it should
do this rewrite? Answer: Selectivity. The optimizer is motivated
to rewrite the user’s WHERE-condition because, after examining the
Data Dictionary, the optimizer learns that the FOOTSIZE > 19.0
condition has very good selectivity (25/14,000,000), whereas the
SEX = ’F’ condition has very poor selectivity
(7,000,000/14,000,000).

While Scenario-2 is better than Scenario-1, the improvement is not

dramatic because it only reduces CPU time associated with
examining SEX values in rows that are already in memory.

Scenario-3: Assume there is a selective index (XFOOTSIZE) on the
FOOTSIZE column, and there is no index on the SEX column. Here,
because the optimizer can use the XFOOTSIZE index, it decides to
initially compare on the FOOTSIZE > 19 condition. Hence, the user-
coded WHERE-clause is rewritten as:

 FOOTSIZE > 19.0 AND SEX = 'F

Using the XFOOTSIZE index to directly access the CUSTOMER table,

the system retrieves 25 rows, and then it examines the SEX value
in each of these 25 rows. This significantly improves efficiency
because, compared to scanning the entire table, the 25 disk reads
is significantly smaller; and the CPU time to examine the 25 SEX
values is trivial.

Free SQL Book, Tim Martyn 121 Copyright Pending, 2022

More than two Conditions: The Commutative Law of AND can include
any number of AND-connected columns. Assume a user-specified
WHERE-clause contained five simple-conditions (C1, ..., C5) that
are AND-connected as shown below.

 WHERE C1 AND C2 AND C3 AND C4 AND C5

Scenario-1: Assume there are no relevant indexes that could help
any of these conditions. Also assume the optimizer examines the
data dictionary and determines the following selectivity
measures for each condition.

Selectivity for C1 is 300/1000 (third best)
Selectivity for C2 is 500/1000 (fourth best)
Selectivity for C3 is 5/1000 (best)
Selectivity for C4 is 700/1000 (worst)
Selectivity for C5 is 10/1000 (second best)

Listing these selectivity values from best to worst we have:

Selectivity for C3 is 5/1000 (best)
Selectivity for C5 is 10/1000 (second best)
Selectivity for C1 is 300/1000 (third best)

Selectivity for C2 is 500/1000 (fourth best)
Selectivity for C4 is 700/1000 (worst)

This encourages optimizer rewrite this WHERE-clause as:

 WHERE C3 AND C5 AND C1 AND C2 AND C4

Historical Aside: If your grandmother ever coded an ancient
history COBOL program with an IF-statement that specified a
compound-condition, she should have specified the most selective
condition first. The efficiency gain could have been significant
when using old 1960’s mainframe technology.

Scenario-2: Assume there is a relevant index for the C5
condition. Because this index has good selectivity (10/1000),
the optimizer might be influenced to move C5 to the first
position in the above WHERE-clause as shown below.

 WHERE C5 AND C3 AND C1 AND C2 AND C4

Mathematical Aside: Given five conditions, there are 5! =
(5*4*3*2*1) = 120 possible permutations, or 120 ways to rewrite
the user’s WHERE-clause. In principle, the optimizer could

evaluate all 120 possibilities and then chose the optimal
compound-condition. In practice, the optimizer may start by
evaluating a few possible compound-conditions and stop when some
condition offers “good enough” efficiency, which might not be
optimal.

Free SQL Book, Tim Martyn 122 Copyright Pending, 2022

1b. C1 AND FALSE = FALSE

Assume a user’s WHERE-clause specified the following compound-
condition.

SEX = ’F’ AND FOOTSIZE > 19.0

Also assume that, after examining the data dictionary, the
optimizer learns that the maximum FOOTSIZE value is 17.0.
Therefore, without retrieving and examining any rows in the
table, the optimizer deduces that the FOOTSIZE > 19.0 condition

must evaluate to FALSE for every row. This allows the optimizer
to rewrite the above compound-condition as:

 SEX = 'F' AND FALSE

Next, by applying Logical Law 1b the optimizer deduces that this
compound-condition is FALSE. Hence, without retrieving and
examining any rows, the system returns a “no rows retrieved”
message. Obviously, this is an extremely efficient application
plan.

1c. C1 AND TRUE = C1

Assume a user’s WHERE-clause specified the following compound-
condition.

SEX = ’F’ AND FOOTSIZE > 4.0

Also assume that, after examining the data dictionary, the
optimizer learns that the minimum FOOTSIZE value is 5.5.
Therefore, without retrieving and examining any rows in the
table, the optimizer concludes that the FOOTSIZE > 4.0 condition
must evaluate to TRUE for every row. This allows the optimizer

to rewrite the above compound-condition as:

 SEX = 'F' AND TRUE

Next, by applying Logical Law 1c the optimizer concludes that
the compound-condition is equivalent to:

 SEX = 'F'

The optimizer tells the system to scan the table. For each row,
if the SEX = 'F' condition evaluates to TRUE, then the compound-
condition must be TRUE. There is no need to examine FOOTSIZE

values.

Free SQL Book, Tim Martyn 123 Copyright Pending, 2022

2a. C1 OR C2 = C2 OR C1 (Commutative Law of OR)

The following discussion parallels our presentation of the
Commutative Law of AND. Assume a user’s WHERE-clause specified
the following compound-condition:

 FOOTSIZE > 19.0 OR SEX = 'F'

Also, assume the data dictionary shows there are 7 million females
and 25 customers with a foot size that exceeds 19.0. Now, with an
OR comparison, it is more efficient to initially search on the

poor selectivity (many matches) condition. Therefore, the
optimizer could utilize the above Law 2a to justify rewriting the
above compound-condition as:

 SEX = 'F' OR FOOTSIZE > 19.0

For every row where the SEX = 'F' condition evaluates to TRUE
(about 50% of the time), there is no need to evaluate the
FOOTSIZE > 19.0 condition.

Similar to the Commutative Law of AND, the Commutative Law of OR
can be generalized to any number of conditions.

2b. C1 OR FALSE = C1

Assume a user’s WHERE-clause specified the following compound-
condition.

 SEX = 'F' OR FOOTSIZE > 19.0

Also, assume the dictionary shows the maximum FOOTSIZE value is
18.0. Then the optimizer concludes that the FOOTSIZE > 19.0
condition is FALSE for all rows. Then the above compound-

condition is rewritten as:

 SEX = 'F' OR FALSE

According to Logical Law 2b, this condition simplifies to:

 SEX = 'F'

The optimizer tells the system to scan the table. For each row,
if the SEX = 'F' condition evaluates to TRUE, then the compound-
condition must be TRUE. There is no need to examine any FOOTSIZE
values.

Free SQL Book, Tim Martyn 124 Copyright Pending, 2022

2c. C1 OR TRUE = TRUE

Assume a user’s WHERE-clause specified the following compound-
condition.

 SEX = 'F' OR FOOTSIZE > 4.0

Also assume the optimizer examines the data dictionary and
learns that the minimum FOOTSIZE value is 5.0. This implies that
FOOTSIZE > 4.0 is always TRUE. Hence the above condition becomes:

 SEX = 'F' OR TRUE

The above Law 2c tells us that the above compound-condition is
always TRUE. Hence, the system returns all rows to the result
table without examining any values in the retrieved rows.

3a. NOT (C1 AND C2) = (NOT C1) OR (NOT C2) [De Morgan’s Laws]

Assume the PRESERVE table contains 14 million rows, and the user’s
WHERE-clause specifies the following compound-condition (coded in

Sample Query 4.10).

NOT (STATE = 'AZ' AND FEE = 3.00)

Then, the optimizer may apply De Morgan’s Law to rewrite this
compound-condition as:

NOT (STATE = 'AZ') OR (NOT FEE = 3.00)

Then, removing the NOT keywords this condition becomes:

STATE <> 'AZ' OR FEE <> 3.00

Finally, the optimizer will examine dictionary statistics for
the STATE and FEE columns to determine if it should apply the
Commutative Law of OR (Law 2a) to rewrite the condition as:

FEE <> 3.00 OR STATE <> 'AZ'

Similar observations can be made about user-written compound-
conditions that fit De Morgan’s Second Law 3b.

Free SQL Book, Tim Martyn 125 Copyright Pending, 2022

4. C OR (NOT C) = TRUE [Excluded Middle]

Sometimes, a compound-condition similar to the following is
submitted to the system.

 SEX = 'F' OR NOT (SEX = 'F')

The optimizer, after observing that this compound-condition fits
the C OR (NOT C) pattern, evaluates to TRUE. Hence, the system
returns all rows without examining any SEX values.

You might think that any user who coded the above compound-
condition is not very intelligent. However, there is a
circumstance where an intelligent user could indirectly submit
such a condition to the system. This pertains to View Processing,
a topic that will be described in Chapter 28.

5. C AND (NOT C) = FALSE [Contradiction]

Sometimes, a compound-condition similar to the following is
submitted to the system.

SEX = 'F' AND NOT (SEX = 'F')

The optimizer observes that this compound-condition conforms to
the above C AND (NOT C) pattern and must evaluate to FALSE.
Therefore, without retrieving and examining any rows, the system
responds with a “no rows returned” message.

Again, an intelligent user might indirectly submit such a
compound-condition. This pertains to View Processing, a topic that
will be described in Chapter 28.

Free SQL Book, Tim Martyn 126 Copyright Pending, 2022

6. NOT (C AND (NOT C)) = TRUE [Non-Contradiction]

Sometimes, a compound-condition similar to the following is
submitted to the system.

NOT (SEX = 'F' AND NOT (SEX = 'F'))

The optimizer observes this compound-condition fits the above
NOT (C AND (NOT C)) pattern and evaluates to TRUE. Hence, the
system returns all rows without examining any SEX values.

Alternatively, the optimizer might apply De Morgan’s Law to
produce the following equivalent condition.

(NOT SEX = 'F') OR NOT (NOT SEX = 'F')

Then apply the Commutative Law of OR to produce:

NOT (NOT SEX = 'F') OR (NOT SEX = 'F')

Then, remove the double NOTs in the first condition to produce:

SEX = 'F' OR (NOT SEX = 'F')

This compound-condition fits the Law of the Excluded Middle
(Logical Law 4). Hence, the system returns all rows to the
result table without examining any SEX values.

Again, an intelligent user might indirectly submit such a
compound-condition. This pertains to View Processing, a topic that
will be described in Chapter 28.

Free SQL Book, Tim Martyn 127 Copyright Pending, 2022

Distributive Laws

7a. C1 AND (C2 OR C3) = (C1 AND C2) OR (C1 AND C3)

7b. C1 OR (C2 AND C3) = (C1 OR C2) AND (C1 OR C3)

Example-1: Assume a user’s WHERE-clause specified the following
compound-condition (where WT is the customer’s weight).

(FOOTSIZE > 4.0 AND SEX = 'F') OR (FOOTSIZE > 4.0 AND WT > 100)

The optimizer could apply the above Law 7a to factor out the
common condition (FOOTSIZE > 4.0) to get:

FOOTSIZE > 4.0 OR (SEX = 'F' AND WT > 100)

This compound-condition would be more efficient if FOOTSIZE > 4.0
is always TRUE, or there is an index on the FOOTSIZE column that
has good selectivity.

Example-2: Assume a user’s WHERE-clause specified the following

compound-condition.

SEX = 'F' AND (SEX = 'M' OR WT > 300)

The optimizer might apply Law 7a to get:

(SEX= 'F' AND SEX= 'M') OR (SEX= 'F' AND WT > 300)

Since no column in a row can simultaneously contain two different
values, (SEX= 'F' AND SEX= 'M') must evaluate to FALSE. Hence the
expression reduces to:

FALSE OR (SEX= 'F' AND WT > 300)

Then apply Law 2b to produce:

 (SEX = 'F' AND WT > 300)

If there is an index on the WT column, and WT > 300 has good
selectivity, the optimizer might apply Law 1a to generate the
final compound-condition.

WT > 300 AND SEX= 'F'

Free SQL Book, Tim Martyn 128 Copyright Pending, 2022

Conclusions

Optimizer Query-Rewrite: The Laws of Logic allow an optimizer to
mechanically transform a user-written compound-condition into
another equivalent condition. If a user-coded compound-condition
is complex, the optimizer may have to evaluate a large number of
equivalent conditions. The optimizer can (in principle) evaluate
the efficiency of all equivalent conditions. However, in
practice, the optimizer may decide to evaluate just some
conditions and choose to implement a condition that offers “good
enough” efficiency.

What about User Query-Rewrite? A user can also utilize the same
laws of logic to code a (presumably) efficient WHERE-clause.
This is a good idea, especially if an application developer is
coding an embedded SQL statement that will be executed many
times in the future. However, there are two caveats.

First. An ideal optimizer, with its knowledge of logical laws,
and its access to real-time metadata, will produce an optimal
application plan. Again, users should focus on logical
correctness.

Second. Things change. A small table can become much larger, or
vice versa. A new more helpful index could be created, or a
relevant index could be dropped. Etc. Hence the user’s SQL
statement may have to be re-optimized to account for these
changes. This could undo the user’s efforts at efficiency. So,
again, users should focus on logical correctness.

However, users should still understand the laws of logic for two
practical reasons.

First, the user may want to change a WHERE-clause originally
coded by another user who had a different logical mindset.

Second, on a rare occasion, a user may need to override a
decision made by an imperfect optimizer. This could involve a
do-it-yourself rewrite of a WHERE-clause (More details on this
issue will be presented towards the end of this book.)

Free SQL Book, Tim Martyn 129 Copyright Pending, 2022

 Chapter

5 5

 IN and BETWEEN

The previous chapter introduced compound-conditions that specified
the Boolean connectors: AND, OR, and NOT. This chapter introduces
two new keywords, IN and BETWEEN, that, in some circumstances, can
be used as alternatives to coding Boolean connectors.

The keywords IN and BETWEEN do not offer any new functionality.
Therefore, in principle, you can skip this entire chapter.
However, you may find IN and BETWEEN to be useful because these
keywords provide abbreviations that, in some circumstances, can
facilitate coding smaller and perhaps more understandable WHERE-
clauses.

This is a short chapter. The first five sample queries introduce
the IN and BETWEEN keywords. This is followed by commentary about
their equivalence to compound-conditions specified with AND, OR,
and NOT.

Free SQL Book, Tim Martyn 130 Copyright Pending, 2022

IN Keyword

The following sample query illustrates a convenient way of asking
the system to select a row if a specified column contains a value
in a set of values.

Sample Query 5.1: Display the PNO, PNAME, and ACRES values for any

nature preserve with an ACRES value equal to one of the
following values: {40, 90, 630, 660}.

PNO PNAME ACRES
 5 HASSAYAMPA RIVER 660
 13 TATKON 40
 10 HOFT FARM 90

Syntax: WHERE column IN (value1, value2, ...)

The set of values must be enclosed within parentheses with commas
separating each value. These values can be numeric or character-
strings. (Sample Query 5.2 will show that character-string values
must be enclosed by apostrophes.)

The values in this IN-clause happen to be written in ascending
sequence. This may help readability, but it is not required. For
all practical purposes there is no upper limit on the number of
specified values.

Equivalent WHERE-Clause: This WHERE-clause could be coded as:

 WHERE ACRES = 40
 OR ACRES = 90
 OR ACRES = 630
 OR ACRES = 660

Exercise:

5A. Display all information about any nature preserve that has a

preserve number in the set {2, 4, 6, 8, 10}

SELECT PNO, PNAME, ACRES

FROM PRESERVE

WHERE ACRES IN (40, 90, 630, 660)

Free SQL Book, Tim Martyn 131 Copyright Pending, 2022

NOT IN

The following sample query specifies a NOT IN comparison
operation.

Sample Query 5.2: Display the PNO, PNAME, and STATE of any nature

preserve that is not located in Arizona and is not located in
Montana.

PNO PNAME STATE
 14 MCELWAIN-OLSEN MA
 13 TATKON MA
 9 DAVID H. SMITH MA
 11 MIACOMET MOORS MA
 12 MOUNT PLANTAIN MA
 10 HOFT FARM MA

Syntax: STATE contains character-string values. Therefore, each
specified value must be enclosed within apostrophes.

Logic: NOT IN complements IN. This WHERE-clause selects data from
just those PRESERVE rows that were not selected in the previous
sample query.

Two alternative WHERE-clauses are:

 WHERE NOT STATE = 'AZ' AND NOT STATE = 'MT'

 WHERE STATE <> 'AZ' AND STATE <> 'MT'

Exercises:

5B. Display all information about the following nature preserves:

DANCING PRAIRIE, MULESHOE RANCH, MCELWAIN-OLSEN, and TATKON.

5C. Display all information about all nature preserves except:
DANCING PRAIRIE, MULESHOE RANCH, MCELWAIN-OLSEN, and TATKON.

SELECT PNO, PNAME, STATE

FROM PRESERVE

WHERE STATE NOT IN ('AZ', 'MT')

Free SQL Book, Tim Martyn 132 Copyright Pending, 2022

BETWEEN

The following sample query specifies BETWEEN to select rows where
a specified column has a value within a given range of values.

Sample Query 5.3: Display the name and size of any nature preserve

where its size is between, or includes, 830 and 15,000 acres.

PNAME ACRES
 DAVID H. SMITH 830

COMERTOWN PRAIRIE 1130
PINE BUTTE SWAMP 15000
PAPAGONIA-SONOITA CREEK 1200

Syntax: WHERE column BETWEEN smaller-value AND larger-value

Note that the smaller value (830) is specified first, to the left
of AND. We will say more about this observation later in this
chapter.

Logic: BETWEEN means "between and including." Any row matching a
boundary ACRES value of 830 or 15000 is included in the result
table.

An alternative WHERE-clause is:

 WHERE ACRES >= 830 AND ACRES <= 15000

Exercise:

5D. Display all information about any nature preserve with a PNO

value between and including 3 and 10.

SELECT PNAME, ACRES

FROM PRESERVE

WHERE ACRES BETWEEN 830 AND 15000

Free SQL Book, Tim Martyn 133 Copyright Pending, 2022

NOT BETWEEN

NOT BETWEEN is used to select rows where a specified column value
falls outside a given range of values. The following sample query
selects just those rows that were not selected in the previous
sample query.

Sample Query 5.4: Display the name and the size of any nature

preserve where its size is not between 830 and 15,000 acres.

PNAME ACRES
 HASSAYAMPA RIVER 660

DANCING PRAIRIE 680
MULESHOE RANCH 49120
SOUTH FORK MADISON 121
MCELWAIN-OLSEN 66
TATKON 40

MIACOMET MOORS 4
MOUNT PLANTAIN 730
RAMSEY CANYON 380
HOFT FARM 90

Syntax: WHERE column NOT BETWEEN smaller-value AND larger-value.

Note that the smaller value (830) is specified first, to the left
of AND. We will say more about this observation later in this
chapter.

Logic: NOT BETWEEN complements BETWEEN. Any row with an ACRES

value of 830 or 15000 is not included in the above result.

An alternative WHERE-clause is:

 WHERE ACRES < 830 OR ACRES > 15000

Exercise:

5E. Display all information about any nature preserve having a

PNO value that is less than 3 or greater than 10.

SELECT PNAME, ACRES

FROM PRESERVE

WHERE ACRES NOT BETWEEN 830 AND 15000

Free SQL Book, Tim Martyn 134 Copyright Pending, 2022

BETWEEN with Character-String Values

BETWEEN and NOT BETWEEN conditions can reference character-string
values.

Sample Query 5.5: Display the name of all nature preserves having

a name that, based upon an alphabetical (collating) sequence,
lies between and including the strings 'M' and 'MZZZ'.

PNAME
MULESHOE RANCH

 MCELWAIN-OLSEN
MIACOMET MOORS
MOUNT PLANTAIN

Syntax: Nothing new.

Logic: Note that, within an alphabetical sequence, 'M' is the
smaller value and 'MZZZ' is the larger value. Because we can
reasonably assume that no PNAME value that begins with the letter
'M' will ever be larger than 'MZZZ', we can restate the query
objective as:

 Display the name of all nature preserves with a name that

begins with the letter M.

The following Chapter 6 introduces the keyword LIKE which will
offer a more direct way to satisfy this query objective.

SELECT PNAME

FROM PRESERVE

WHERE PNAME BETWEEN 'M' AND 'MZZZ'

Free SQL Book, Tim Martyn 135 Copyright Pending, 2022

Logic: IN and NOT IN

Implied-OR: The logic of IN is straightforward. Note that when you
specify IN before a set of values, each comma effectively
represents an “implied-OR”. Therefore, the following WHERE-clauses
are equivalent.

 WHERE COLA IN (v1, v2, v3, v4)

 WHERE COLA = v1
 OR COLA = v2

 OR COLA = v3
 OR COLA = v4

Implied-AND: The logic of NOT IN is slightly more complex. When
you specify NOT IN before a set of values, each comma represents
an “implied-AND”. Therefore, the following WHERE-clauses are
equivalent.

 WHERE COLA NOT IN (v1, v2, v3, v4)

 WHERE NOT COLA = v1
 AND NOT COLA = v2

 AND NOT COLA = v3
 AND NOT COLA = v4

To summarize:

 When coding IN, a comma is an implied-OR.

 When coding NOT IN, a comma is an implied-AND.

Observation: The specification of redundant values is meaningless.

 The system interprets: WHERE COLA IN (2, 2, 3, 2, 3, 3, 2)

 As: WHERE COLA IN (2, 3)

Why bother to make this observation? Without explanation, this
observation will become relevant in Chapter 23 which introduces
Sub-SELECTs.

Free SQL Book, Tim Martyn 136 Copyright Pending, 2022

Logic: BETWEEN and NOT BETWEEN

Although the logic of BETWEEN and NOT BETWEEN is straightforward,
we emphasize that you should specify the smaller-value first.

BETWEEN: WHERE COLA BETWEEN V1 AND V2

 is equivalent to:

 WHERE COLA >= V1 AND COLA <= V2

Intentional Error – Specify the larger-value first.

 WHERE ACRES BETWEEN 15000 AND 830

The system would interpret this WHERE-clause as:

 WHERE ACRES >= 15000 AND ACRES <= 830

This condition will always produce a "no rows returned" result
because no value can be both greater than or equal to 15000 and
less than or equal to 830.

NOT BETWEEN: WHERE COLA NOT BETWEEN V1 AND V2

 is equivalent to:

 WHERE COLA < V1 OR COLA > V2

Intentional Error – Specify the larger-value first.

 WHERE ACRES NOT BETWEEN 15000 AND 830

The system would interpret this WHERE-clause as:

 WHERE ACRES < 15000 OR ACRES > 830

Every ACRES value must match this condition because any arbitrary
value must be less than 15000 or greater than 830. Hence all rows
would be returned.

Free SQL Book, Tim Martyn 137 Copyright Pending, 2022

For tutorial purposes, the following sample query presents a more
complex query objective.

Sample Query 5.6: Display the PNAME, STATE, ACRES and FEE

values for all nature preserves that are located in Montana
or Arizona and have a size greater than or equal to 660 acres
and less than or equal to 10000 acres, or any other preserve
having an admission fee of $0.00. Sort the result by the
PNAME column in ascending sequence.

PNAME STATE ACRES FEE
COMERTOWN PRAIRIE MT 1130 0.00

 DANCING PRAIRIE MT 680 0.00

 DAVID H. SMITH MA 830 0.00
 HASSAYAMPA RIVER AZ 660 3.00
 HOFT FARM MA 90 0.00
 MCELWAIN-OLSEN MA 66 0.00
 MIACOMET MOORS MA 4 0.00
 MOUNT PLANTAIN MA 730 0.00
 MULESHOE RANCH AZ 49120 0.00
 PINE BUTTE SWAMP MT 15000 0.00
 SOUTH FORK MADISON MT 121 0.00

TATKON MA 40 0.00

Syntax & Logic: Nothing new.

Exercise:

5F. Display the state, preserve number, and size of any nature

preserve that is not in Montana and not in Arizona and is
less than 50 acres or greater than 800 acres. Sort the result
by preserve number in descending sequence.

SELECT PNAME, STATE, ACRES, FEE

FROM PRESERVE

WHERE (STATE IN ('MT', 'AZ') AND ACRES BETWEEN 660 AND 1000)

OR FEE = 0.00

ORDER BY PNAME

Free SQL Book, Tim Martyn 138 Copyright Pending, 2022

Summary

This chapter introduced the IN and BETWEEN keywords. Both keywords
can be preceded by NOT. In some circumstances, these keywords can
help you code more compact and readable conditions.

 WHERE COLX IN (value1, value2, value3,...):

 A row is selected if its COLX value equals any value in the

specified list of values.

 WHERE COLX NOT IN (value1, value2, value3,...):

 A row is selected if its COLX value is not equal to any value

in the specified list of values.

 WHERE COLX BETWEEN value1 AND value2:

 A row is selected if its COLX value is greater than or equal

to value1 and less than or equal to value2.

 WHERE COLX NOT BETWEEN value1 AND value2:

 A row is selected if its COLX value falls outside the range
specified by value1 and value2.

Summary Exercises

The following exercises pertain to the EMPLOYEE table. Specify the
IN and BETWEEN keywords in the SELECT statements for the following
exercises.

5G. Display all information about any employee who works in a

department with a DNO value in the following list: {10, 40}.

5H. Display all information about any employee who works in a

department with a DNO value that is not in the following
list: {10, 40}.

5I. Display all information about any employee whose salary is

greater than or equal to $500.00 and less than or equal to
$2,000.00.

5J. Display all information about any employee whose salary is

less than $500.00 or greater than $2,000.00.

There are no Appendices for this chapter.

Free SQL Book, Tim Martyn 139 Copyright Pending, 2022

 Chapter

 6

 Pattern Matching: LIKE

This chapter is organized into three sections.

Section-A - CHAR versus VARCHAR: We have not yet presented the

major difference between the CHAR and VARCHAR data-types. This
short (1-page), but very important section, will describe this
difference to set the stage for our introduction to the LIKE

keyword.

Section-B – LIKE Keyword: This section illustrates the LIKE

keyword that provides a method to select rows where a
character-string value matches some string-pattern. Below we
preview a simple example.

 Objective: Reference the PRESERVE table. Display all PNAME

values beginning with the letter M.

 SELECT PNAME
 FROM PRESERVE

 WHERE PNAME LIKE 'M%'

 PNAME

MULESHOE RANCH
 MCELWAIN-OLSEN
 MIACOMET MOORS
 MOUNT PLANTAIN

 Here, the LIKE-pattern ('M%') is a character-string enclosed

within apostrophes. This pattern contains a wildcard symbol, the
percent sign (%), which represents any string of any length.

Section-C - DB2, SQL Server, and ORACLE: This section describes
the string comparison logic used by DB2, SQL Server, and
ORACLE. It also presents potential problems associated with
the differences between the CHAR and VARCHAR data-types.

Free SQL Book, Tim Martyn 140 Copyright Pending, 2022

A. CHAR versus VARCHAR

To distinguish a CHAR value from a VARCHAR value, we must go
under the hood to look at the internal representation of
character-string values. We do this by examining the DEMO1 table
which is illustrated in the following two figures.

Figure 6.1 shows the user’s outside view of the DEMO1 table.
This table has two columns, CHARNAME and VCHARNAME. The CHARNAME
column has a CHAR(10) data-type; and the VCHARNAME column has a
VARCHAR(10) data-type. Figure 6.1 shows these columns contain

the same values, whereas Figure 6.2 shows that these same values
have different internal representations.

CHARNAME Column: CHARNAME contains CHAR(10) values where all
values have exactly 10 characters. This means that some values
may have trailing blanks. In Figure 6.2, the lower case “b”
represents a blank (space). Notice that every CHARNAME value,
except WASHINGTON, has one or more trailing blanks.

VCHARNAME Column: VCHARNAME contains VARCHAR(10) values. Here,
the 10 means that no VCHARNAME value can exceed 10 characters.
Examination of Figure 6.2 shows that the length (LEN) of each
VCHARNAME value is stored along with its data value. Important:
Observe that no VCHARNAME value has any trailing blanks. (In an
atypical circumstance, trailing blanks may appear at the end of
a VARCHAR value. Such a circumstance will be described in Sample
Query 6.11.)

Design Comment: Unlike the short VARCHAR columns in our FREESQL
sample tables, your DBA might specify a VARCHAR column to save
disk storge used by trailing blanks. For example, a

CONTRACT_NARRATIVE column may contain many short character-
string values with lengths that are less than 150 characters.
However, this column might be defined as VARCHAR (20000) to
accommodate a few very long character-strings.

Figure 6.2: Inside View of DEMO1

Table

CHARNAME
DAVIDbbbbb
SOLOMONbbb
MATTHEWbbb
MARKbbbbbb
LUKEbbbbbb
JOHNbbbbbb
EUCLIDbbbb
WASHINGTON

ADAMSbbbbb
JEFFERSONb
MADISONbbb

LEN

 5
 7
 7
 4
 4
 4
 6
10

 5
 9
 7

 VCHARNAME
 DAVID
 SOLOMON
 MATTHEW
 MARK
 LUKE
 JOHN
 EUCLID
 WASHINGTON

 ADAMS
 JEFFERSON
 MADISON

Figure 6.1: Outside View of DEMO1

 CHARNAME
 DAVID
 SOLOMON
 MATTHEW
 MARK
 LUKE
 JOHN
 EUCLID
 WASHINGTON

 ADAMS
 JEFFERSON
 MADISON

 VCHARNAME
 DAVID
 SOLOMON
 MATTHEW
 MARK
 LUKE
 JOHN
 EUCLID
 WASHINGTON

 ADAMS
 JEFFERSON
 MADISON

Free SQL Book, Tim Martyn 141 Copyright Pending, 2022

B. LIKE Keyword: Search for Pattern at Beginning of Character-String

The following sample queries search for two characters located at
the beginning of a character-string.

Sample Query 6.1a: Reference the CHARNAME column in DEMO1. Display

all values that begin with MA.

CHARNAME
MATTHEW

 MARK
MADISON

Sample Query 6.1b: Reference the VCHARNAME column in DEMO1.

Display all values that begin with MA.

VCHARNAME
MATTHEW

 MARK
MADISON

Syntax: WHERE character-column LIKE 'pattern'

Both SELECT statements specify 'MA%' as the LIKE-pattern. The
percent sign (%) is a “wildcard” symbol that represents any string
of any length. Note: LIKE-patterns are case sensitive.

Logic: Because the first two characters in the pattern are MA,
every selected value must begin with MA. The percent sign (%)
indicates that the following characters can be any string of any
length, including an “empty string” with a length of zero.

Important Observation: The above sample queries illustrate that,
when searching for a LIKE-pattern at the beginning of a character-
string, CHAR and VARCHAR columns behave in the same manner. Sample
Queries 6.3a and 6.3b will show this observation does not apply
when searching for a LIKE-pattern at the end of a character-
string.

SELECT CHARNAME DB2, ORACLE, & SQL Server
FROM DEMO1
WHERE CHARNAME LIKE 'MA%'

SELECT VCHARNAME DB2, ORACLE, & SQL Server
FROM DEMO1
WHERE VCHARNAME LIKE 'MA%'

Free SQL Book, Tim Martyn 142 Copyright Pending, 2022

Search for a Pattern “Anywhere” in a Character-String

The following sample queries illustrate the use of multiple
percent sign symbols to match on a LIKE-pattern located anywhere
at the beginning, “middle,” or end of a character-string.

Sample Query 6.2a: Reference the CHARNAME column in DEMO1.

Display every CHARNAME value that has an E anywhere.

 CHARNAME
 MATTHEW
 LUKE
 EUCLID
 JEFFERSON

Sample Query 6.2b: Reference the VCHARNAME column in DEMO1.

Display every VCHARNAME value that has an E anywhere.

 VCHARNAME
 MATTHEW
 LUKE

EUCLID
 JEFFERSON

Syntax: A LIKE-pattern may specify multiple wildcard symbols.

Logic: Recall that the percent sign can represent an empty string.
Here, '%E%' matched on EUCLID with an E at the beginning of the
string; E matched on LUKE with an E at the end of the string; and
E appeared “somewhere in the middle” of the MATTHEW and JEFFERSON
strings.

Important Observation: When searching for a pattern that can
appear anywhere in the string, CHAR and VARCHAR columns behave the
same manner.

Exercises:

6A. Reference the PRESERVE table. Display the PNAME value of all

nature preserves with a name that begins with the letter D.

6B. Reference the PRESERVE table. Display the name of any nature

preserve with TOWN anywhere in its name.

SELECT CHARNAME DB2, ORACLE, & SQL Server
FROM DEMO1

WHERE CHARNAME LIKE '%E%'

SELECT VCHARNAME DB2, ORACLE, & SQL Server

FROM DEMO1
WHERE VCHARNAME LIKE '%E%'

Free SQL Book, Tim Martyn 143 Copyright Pending, 2022

Search for a Pattern at End of a VARCHAR Character-String

Unlike the previous two sample queries, when searching for a
string-pattern at the end of a character-string you must be aware
of the differences between the CHAR and VARCHAR data-types.

The following sample query searches for a LIKE-pattern located at
the end of a VARCHAR character-string. Recall that, within the
VCHARNAME column, no value has trailing blanks.

Sample Query 6.3a: Reference the VCHARNAME column in DEMO1.
Display every VCHARNAME value that ends with the letters ON.

 VCHARNAME
 SOLOMON

WASHINGTON

 JEFFERSON
 MADISON

Syntax: Nothing new.

Logic: This LIKE-clause is straightforward because we know that
VCHARNAME values do not have trailing blanks. (Again, this is
typical.)

Exercise:

6C. Reference the PRESERVE table. Display the PNAME value of all

nature preserves with a name that ends with PRAIRIE.

SELECT VCHARNAME DB2, ORACLE, & SQL Server

FROM DEMO1

WHERE VCHARNAME LIKE '%ON'

Free SQL Book, Tim Martyn 144 Copyright Pending, 2022

Search for a Pattern at End of a CHAR Character-String (Careful!)

Sometimes, different systems produce different results for the
same SELECT statement! Ouch! This is the first chapter where we
must (unfortunately) consider some differences between DB2,
ORACLE, and SQL Server.

The next sample query searches for a pattern located at the end of
a fixed-length (CHAR) character-string. Recall that CHAR values
frequently have trailing blanks.

*** Important: When performing a LIKE-comparison, some systems
(e.g., DB2 and ORACLE) are sensitive to trailing blanks, but
other systems (e.g., SQL Server) ignore trailing blanks.

Sample Query 6.3b: Reference the CHARNAME column in DEMO1.

Display all CHARNAME values that end with the letters ON.

SQL Server: Correct Result CHARNAME
 SOLOMON

WASHINGTON
 JEFFERSON
 MADISON

SQL Server satisfies the query objective because it ignores
trailing blanks. Three CHARNAME values (SOLOMON, JEFFERSON, and
MADISON) end with ON followed by trailing blanks. However, because
these trailing blanks are ignored, SOLOMON, JEFFERSON, and

MADISON appear along with WASHINGTON in the result table.

DB2 & ORACLE: Incorrect Result CHARNAME
 WASHINGTON

DB2 and ORACLE do not satisfy this query objective because these
systems do not ignore trailing blanks, and SOLOMON, JEFFERSON,
and MADISON are stored with trailing blanks. Hence these values do
not appear in the result table.

Sample Query 6.13 will utilize the RTRIM function to remove

trailing blanks. For tutorial purposes, the following sample
queries do not utilize this function.

SELECT CHARNAME SQL Server

FROM DEMO1

WHERE CHARNAME LIKE '%ON'

Free SQL Book, Tim Martyn 145 Copyright Pending, 2022

Common Error

For tutorial purposes, the following examples specify some “almost
correct” (i.e., incorrect) LIKE-patterns.

Example-1: Same as Sample Query 6.3a.
 Display all VCHARNAME values that end with ON.

 VCHARNAME
 SOLOMON

WASHINGTON
 JEFFERSON
 MADISON

Example-2: Same as Sample Query 6.3b.

Display all CHARNAME values that end with ON.

 CHARNAME
 SOLOMON

WASHINGTON
 JEFFERSON
 MADISON

Logic: What’s wrong with '%ON%'? Both results happen to be correct
(by good luck) because, in both the CHARNAME and VCHARNAME
columns, ON only appears at the end of a character-string.

Assume you saved the above SELECT statements, and then, sometime
in the future, someone inserted a new row with CHARNAME and
VCHARNAME values of MADISONXX. Subsequent execution of these saved
SELECT statements would produce incorrect results because
MADISONXX would appear in the results. Your good luck is really
bad luck.

SELECT CHARNAME DB2, ORACLE, & SQL Server

FROM DEMO1 → Error
WHERE CHARNAME LIKE '%ON%' but “got lucky”

SELECT VCHARNAME DB2, ORACLE, & SQL Server

FROM DEMO1 → Error
WHERE VCHARNAME LIKE '%ON%' but “got lucky”

Free SQL Book, Tim Martyn 146 Copyright Pending, 2022

Exercises

Reference the PRESERVE table for Exercises 6D-6H.

The PNAME column is a VARCHAR data-type where trailing blanks
cannot occur.

6D. Display the name of any nature preserve where the name

begins with MULE.

6E. Display the name of any nature preserve having the string ING

anywhere in its name.

6F. Display the name of any nature preserve where the name ends

with the letter E.

6G. Display the name of any nature preserve that has the letter E

immediately after the letter M anywhere in its name.

6H. Display the name of any nature preserve that has the letter E

anywhere after the letter M in its name.

Reference the DEMO1 table for the following exercise.

6I. Display all CHARNAME values in the DEMO1 table where the

CHARNAME value ends with D.

(a) SQL Server users can solve this exercise.

 (b) Optionally, DB2 and ORACLE users can solve this exercise
if they to jump ahead to Sample Query 6.13 to learn
about the RTRIM function.

Free SQL Book, Tim Martyn 147 Copyright Pending, 2022

Another Wildcard: Underscore (_) Symbol

The following two sample queries introduce another wildcard
symbol, the underscore (_) that represents exactly one character
in a character-string.

Sample Query 6.4a: Reference the CHARNAME column in DEMO1.

Display every CHARNAME value that has the letter S in the fifth
character position.

Sample Query 6.4b: Reference the VCHARNAME column in DEMO1.

Display every VCHARNAME value that has the letter S in the fifth
character position.

Both statements produce the same correct result.

CHARNAME
ADAMS
MADISON

Logic: The underscore symbol represents exactly one character

position, and that position must be present in the string. In
these examples, the CHARNAME and VCHARNAME values match if:

• There is a first character, but we don’t care what it is.

• There is a second character, but we don’t care what it is.

• There is a third character, but we don’t care what it is.

• There is a fourth character, but we don’t care what it is.

• There is a fifth character, and it must be S.

There may or may not be more characters after the fifth character.
If there are other characters, % implies that we don’t care what

these characters are.

SELECT CHARNAME DB2, ORACLE, & SQL Server

FROM DEMO1

WHERE CHARNAME LIKE '_ _ _ _ S%'

SELECT VCHARNAME DB2, ORACLE, & SQL Server

FROM DEMO1

WHERE VCHARNAME LIKE '_ _ _ _ S%'

Free SQL Book, Tim Martyn 148 Copyright Pending, 2022

Underscore Symbol with CHAR Values

Sample Query 6.5: Reference CHARNAME in DEMO1. Display each

CHARNAME value with the letters ON in the sixth and seventh
positions.

 CHARNAME
 SOLOMON
 MADISON

Syntax & Logic: Nothing New.

The following LIKE-pattern specifies a string length of 10 which
is the length of the CHARNAME column. While correct, this LIKE-
pattern is discouraged because it is awkward, requiring the user
to account for exactly 10 characters.

SELECT CHARNAME

FROM DEMO1
WHERE CHARNAME LIKE '_ _ _ _ _ ON _ _ _'

SELECT CHARNAME DB2, ORACLE, & SQL Server

FROM DEMO1

WHERE CHARNAME LIKE '_ _ _ _ _ ON%'

Free SQL Book, Tim Martyn 149 Copyright Pending, 2022

Underscore Symbol with VARCHAR Values

Sample Query 6.6: Reference VCHARNAME in DEMO1. Display each

VCHARNAME value with the letters ON in the sixth and seventh
positions.

 VCHARNAME

SOLOMON
MADISON

Logic: Nothing new.

Note that the following LIKE-pattern would fail.

 VCHARNAME LIKE '_ _ _ _ _ ON _ _ _'

This pattern fails to select any rows because it specifies a
string length of l0, and all VCHARNAME values with ON in sixth and
seventh position have shorter lengths.

SELECT VCHARNAME DB2, ORACLE & SQL Server

FROM DEMO1

WHERE VCHARNAME LIKE '_ _ _ _ _ ON%'

Free SQL Book, Tim Martyn 150 Copyright Pending, 2022

WHERE-Clause Specifies Multiple LIKE-Patterns

Sometimes you want to search for a string pattern that cannot be
expressed by a single LIKE-pattern. Consider the following query
objective.

Sample Query 6.7: Reference CHARNAME in DEMO1. Display any

CHARNAME value that has ID in the fourth and fifth positions or
has ID in the fifth and sixth positions.

 CHARNAME
 DAVID
 EUCLID

Syntax & Logic: Nothing new. Note that DAVID has D in the fifth
position, and EUCLID has I in this same position. Hence, a single
LIKE-pattern cannot match both values. (An exception for SQL
Server is presented on the following page.)

The result would be the same if this statement referenced the
VCHARNAME column.

Exercises:

6J. Reference the PRESERVE table. Display the name of any nature
preserve that has the letter A in the second character
position.

6K. Reference the PRESERVE table. Display the name of any nature

preserve that has a blank anywhere in its name.

6L. Reference the PRESERVE table. Display the name of any nature

preserve having FARM or SWAMP or PRAIRIE anywhere in its
name.

6M. Reference the PRESERVE table. Display the name of any nature

preserve with a period or a hyphen anywhere in its name.

6N. Reference the PRESERVE table. Display the name of any nature

preserve that has the letter R in the fifth position and ends
with PRAIRIE.

SELECT CHARNAME DB2, ORACLE & SQL Server

FROM DEMO1

WHERE CHARNAME LIKE '_ _ _ ID%'

OR CHARNAME LIKE '_ _ _ _ ID%'

Free SQL Book, Tim Martyn 151 Copyright Pending, 2022

Grammar Query

Sample Query 6.8: Display every CHARNAME value that has a vowel

in the second position.

CHARNAME
 DAVID
 SOLOMON
 MATTHEW

MARK
 LUKE
 JOHN
 EUCLID
 WASHINGTON
 JEFFERSON

 MADISON

Syntax & Logic: The underscore implies that any character can
appear in the first position. Each LIKE-pattern specifies a
different vowel in the second position. The remaining positions of
the character-string may be any value of any length as indicated
by the percent sign. With the exception of ADAMS, all CHARNAME
values appear in this result.

The result would be the same if this statement referenced the
VCHARNAME column.

SQL Server: Without explanation, we note that SQL Server, but
not DB2 and ORACLE, could satisfy this query objective by coding
the following LIKE-clause.

 LIKE '_[AEIOU]%'

Regular Expressions: If you frequently have to code multiple LIKE-
patterns, you may prefer to specify a “regular expression.”
Regular expressions (not covered in this book) offer string-
processing facilities that transcend the relatively simple LIKE-
patterns described in this chapter. Most relational database
systems support regular expressions.

SELECT CHARNAME DB2, ORACLE & SQL Server
FROM DEMO1
WHERE CHARNAME LIKE '_A%'
OR CHARNAME LIKE '_E%'
OR CHARNAME LIKE '_I%'
OR CHARNAME LIKE '_O%'

OR CHARNAME LIKE '_U%'

Free SQL Book, Tim Martyn 152 Copyright Pending, 2022

NOT LIKE

Recall that IN can be complemented by NOT IN, and BETWEEN can be
complemented by NOT BETWEEN. In a similar manner LIKE can be
complemented by NOT LIKE.

The next sample query illustrates NOT LIKE. As you would expect,
NOT LIKE is used to select rows with character-string values that
do not match a specified LIKE-pattern.

Sample Query 6.9: Display all CHARNAME values that do not begin

with MA. (This example retrieves rows not selected in Sample
Query 6.1.)

CHARNAME
DAVID

 SOLOMON
 LUKE
 JOHN
 EUCLID
 WASHINGTON
 ADAMS

JEFFERSON

Syntax & Logic: Nothing new.

Logical Equivalency: An equivalent WHERE-clause is:

 WHERE NOT CHARNAME LIKE 'MA%'

Exercise:

6O. Reference the PRESERVE table. Display the preserve name of

any nature preserve that does not end with an E.

SELECT CHARNAME DB2, ORACLE & SQL Server

FROM DEMO1

WHERE CHARNAME NOT LIKE 'MA%'

Free SQL Book, Tim Martyn 153 Copyright Pending, 2022

Sample Query 6.10: Display every CHARNAME value that does not
have a vowel in its second position. Code three logically
equivalent statements that satisfy this query objective. The
result should look like:

CHARNAME

 ADAMS

 Syntax & Logic: Nothing new. The above WHERE-clause simply AND-

connects multiple NOT LIKE patterns.

Syntax & Logic: Nothing new. This WHERE-clause moves the NOT
before the column-name.

Syntax & Logic: Nothing new. This WHERE-clause applies De Morgan’s
Law to the first WHERE-clause.

Exercise:

6P. Reference the PRESERVE table. Display the preserve name of

any nature preserve that does not end with an E and does not
end with an N.

SELECT CHARNAME DB2, ORACLE & SQL Server

FROM DEMO1
WHERE NOT (CHARNAME LIKE '_A%'
 OR CHARNAME LIKE '_E%'
 OR CHARNAME LIKE '_I%'
 OR CHARNAME LIKE '_O%'
 OR CHARNAME LIKE '_U%')

SELECT CHARNAME DB2, ORACLE & SQL Server
FROM DEMO1
WHERE CHARNAME NOT LIKE '_A%'

 AND CHARNAME NOT LIKE '_E%'
 AND CHARNAME NOT LIKE '_I%'
 AND CHARNAME NOT LIKE '_O%'
 AND CHARNAME NOT LIKE '_U%'

SELECT CHARNAME DB2, ORACLE & SQL Server

FROM DEMO1

WHERE NOT CHARNAME LIKE '_A%'
 AND NOT CHARNAME LIKE '_E%'
 AND NOT CHARNAME LIKE '_I%'
 AND NOT CHARNAME LIKE '_O%'
 AND NOT CHARNAME LIKE '_U%'

Free SQL Book, Tim Martyn 154 Copyright Pending, 2022

Trailing Blanks in VARCHAR Values

In the DEMO1 table, trailing blanks appeared in the CHAR column,
but trailing blanks did not appear in the VARCHAR column. (Again,
this is typical of real-world data.)

Here, for the first time, we allow a VARCHAR column to contain
values with trailing blanks. The first two columns in the
following DEMO1A table are similar to the corresponding columns in
the DEMO1 table. The third column, UGLY, is a VARCHAR column where
the SOLOMON and MADSISON values have trailing blanks.

Sample Query 6.11: Reference the UGLY column in the DEMO1A table.

After ignoring trailing blanks, display every UGLY value that

ends with ON.

UGLY
SOLOMON
WASHINGTON
MADISON

Logic: Because SQL Server ignores trailing blanks, this statement

return returns the correct result.

DB2 & ORACLE: Because DB2 and ORACLE do not ignore trailing
blanks, this statement produces to following incorrect result.

UGLY
WASHINGTON

The following page presents a DB2 and ORACLE solution to this
sample query.

Figure 6.3: Inside View of DEMO1A Table

CHARNAME
SOLOMONbbb
WASHINGTON
MADISONXXb
MADISONbbb

VCHARNAME
SOLOMON
WASHINGTON
MADISONXX
MADISON

LEN
 7
 10
 9
 7

 UGLY
SOLOMONbbb
WASHINGTON
MADISONXX
MADISONb

LEN
 10
 10
 9
 8

SELECT UGLY SQL Server
FROM DEMO1A
WHERE UGLY LIKE '%ON'

Free SQL Book, Tim Martyn 155 Copyright Pending, 2022

Preview: RTRIM Function

Chapter 12 will introduce the individual functions. Without
detail explanation, we specify the RTRIM function that can
useful when dealing with trailing blanks.

The RTRIM function is used to ignore trailing blanks in CHAR and
VARCHAR values. We revisit a previous Sample Query 6.11 that was
problematic for DB2 and ORACLE users.

Sample Query 6.11 (Again): Reference the UGLY column in the DEMO1A

table. After ignoring trailing blanks, display every UGLY value
that ends with ON.

UGLY
SOLOMON

WASHINGTON
MADISON

Logic: Because we know that UGLY may contain trailing blanks, we
use the RTRIM function to effectively remove these trailing blanks
before the LIKE operation is applied.

SQL Server: Because SQL Server supports the RTRIM function, this
SELECT will execute and return the correct result.

SELECT UGLY DB2 & ORACLE

FROM DEMO1A

WHERE RTRIM (UGLY) LIKE '%ON'

Free SQL Book, Tim Martyn 156 Copyright Pending, 2022

Preview: “Length” Functions

Chapter 12 will also introduce two other individual functions,
the LENGTH function supported by DB2 and ORACLE, and the LEN
function supported by SQL Server. These functions can be used to
determine the length of a character-string.

Without detail explanation, the following sample query
illustrates these functions.

Sample Query 6.12: Reference the DEMO1A table. How long are the

VCHARNAME and UGLY values in the DEMO1A table? Also, which
of the UGLY values have trailing blanks?

DB2 & ORACLE: Specify the LENGTH function.

SQL Server: Specify the LEN function.

Both of these SELECT statements produce the same result.

VCHARNAME LENGTH(VCHARNAME) UGLY LENGTH(UGLY)

SOLOMON 7 SOLOMON 10
WASHINGTON 10 WASHINGTON 10
MADISONXX 9 MADISONXX 9

MADISON 7 MADISON 8

By comparing the length of each VCHARNAME value to its
corresponding UGLY value, you can deduce that:

• the SOLOMON value in UGLY has 3 (10-7) trailing blanks, and

• the MADISON value in UGLY has 1 (8-7) trailing blank.

SELECT VCHARNAME, LENGTH (VCHARNAME),
 UGLY, LENGTH (UGLY)

FROM DEMO1A

SELECT VCHARNAME, LEN (CHARNAME),
 UGLY, LEN (UGLY)

FROM DEMO1A

Free SQL Book, Tim Martyn 157 Copyright Pending, 2022

C. DB2, SQL Server, and ORACLE

This section examines 12 SELECT statements to illustrate the
differences in character-string comparison as implemented by
DB2, SQL Server, and ORACLE. (This section is especially
important for ORACLE users.) These statements reference the
DEMO1A table redisplayed below.

Optional Exercise: Before reading the following pages, you are
invited to predict the result for each statement. Based upon the
material presented in the previous Section B, DB2 and SQL Server
users should be able to make correct predictions. However, this
should be a challenge for ORACLE users.

Statements 1-3 reference the CHARNAME column which has a
CHAR(10) data-type. Notice that the CHARNAME value for SOLOMON
has three trailing blanks. Each statement’s objective is to
display the CHARNAME value for SOLOMON. Note that Statement-2
has a literal with one trailing blank, and Statement-3 has a
literal with six trailing blanks. Which statements satisfy the
query objective?

1. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON';

2. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON ';

 3. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON ';

Statements 4-6 reference the VCHARNAME column which has a
VARCHAR(10) data-type. Notice that no VCHARNAME has any trailing
blanks. Each statement’s objective is to display the VCHARNAME
value for SOLOMON. Note that Statement-5 has a literal with one
trailing blank, and Statement-6 has a literal with six trailing
blanks. Which statements satisfy the query objective?

 4. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON';

 5. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON ';

 6. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON ';

Figure 6.3: Inside View of DEMO1A Table

CHARNAME
SOLOMONbbb
WASHINGTON

MADISONXXb
MADISONbbb

VCHARNAME
SOLOMON
WASHINGTON

MADISONXX
MADISON

LEN
 7
 10

 9
 7

 UGLY
SOLOMONbbb
WASHINGTON

MADISONXX
MADISONb

LEN
 10
 10

 9
 8

Free SQL Book, Tim Martyn 158 Copyright Pending, 2022

Statements 7-9 reference the UGLY column which has a VARCHAR(10)
data-type. Notice that the UGLY value for SOLOMON has three
trailing blanks. Each statement’s objective is to display the
UGLY value for SOLOMON. Note that Statement-8 has a literal with
one trailing blank, and Statement-9 has a literal with six
trailing blanks. Which statements satisfy the query objective?

 7. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON';

 8. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON ';

 9. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON ';

Statements 10-12 specify WHERE-conditions that compare two
columns values in each row. Each statement’s objective is to
display a row if both columns have the same value after ignoring
trailing blanks.

 10. SELECT * FROM DEMO1A WHERE CHARNAME = VCHARNAME;

 11. SELECT * FROM DEMO1A WHERE CHARNAME = UGLY;

 12. SELECT * FROM DEMO1A WHERE VCHARNAME = UGLY;

Comment: Statements 10-12 are especially relevant for
application developers who code WHERE-clauses that reference a
host variable (e.g., :UGLY) passed from a host program that may
contain trailing blanks.

Free SQL Book, Tim Martyn 159 Copyright Pending, 2022

DB2 and SQL Server

Review important observations made in the previous Section B.

• DB2: When comparing two character-strings, DB2 pad-fills
the shorter string with trailing blanks so that it has the
same length of the longer string.

• SQL Server: When comparing two character-strings, SQL
Server ignores trailing blanks.

Although DB2 and SQL Server utilize different string comparison
methods, both systems satisfy the desired query objectives.

Statements 1-9 satisfy the query objectives by returning the same
1-row result (with different column headings).

1. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON';
2. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON ';
3. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON ';

 CHARNAME
 SOLOMON

4. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON';
5. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON ';
6. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON ';

 VCHARNAME
 SOLOMON

7. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON';
8. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON ';
9. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON ';

 UGLY

 SOLOMON

 Statements 10-12 produce the same 4-row result.

 10. SELECT * FROM DEMO1A WHERE CHARNAME = VCHARNAME;
 11. SELECT * FROM DEMO1A WHERE CHARNAME = UGLY;
 12. SELECT * FROM DEMO1A WHERE VCHARNAME = UGLY;

 CHARNAME VCHARNAME UGLY
 SOLOMON SOLOMON SOLOMON
 WASHINGTON WASHINGTON WASHINGTON
 MADISONXX MADISONXX MADISONXX

 MADISON MADISON MADISON

Free SQL Book, Tim Martyn 160 Copyright Pending, 2022

ORACLE

Preliminary Observation: VARCHAR versus VARCHAR2

Many CREATE TABLE statements in the CREATE-ALL-TABLES-ORACLE
script specify a VARCHAR (instead of a VARCHAR2) data-type to
define a variable-length character-string. However, after you
create these sample tables, examination of your Metadata Panel
will show that ORACLE automatically converts VARCHAR to
VARCHAR2. ORACLE documentation states:

Do not use the VARCHAR data type. Use the VARCHAR2 data
type instead. Although the VARCHAR data-type is currently
synonymous with VARCHAR2, the VARCHAR data-type is
scheduled to be redefined as a separate data type used for
variable-length character strings…

Despite this advice, to facilitate code portability, this author
specifies VARCHAR instead of VARCHAR2.

ORACLE Character-String Comparison

Depending on the data-types of the character-strings to be
compared, ORACLE uses either: (1) blank-padded comparison
semantics, or (2) nonpadded comparison semantics.

1. ORACLE uses blank-padded comparison semantics when it
compares two CHAR columns, or when it compares a CHAR column
to a text literal.

 This rule applies to Statements 1-3.

1. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON';

2. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON ';

3. SELECT CHARNAME FROM DEMO1A WHERE CHARNAME = 'SOLOMON ';

 Hence these statements return the following desired result.

 CHARNAME
 SOLOMON

Free SQL Book, Tim Martyn 161 Copyright Pending, 2022

2. ORACLE uses nonpadded comparison semantics when one or both
of the compared columns is a VARCHAR data-type. This applies
to Statements 4-12.

 This nonpadded comparison semantics behaves quite differently

than DB2 and SQL Server. Examination of results for Statements
4-12 will show that only one statement (Statement 4) satisfies
the query objective and produces the same result as DB2 and
SQL Server. We offer an observation about ORACLE’s character-
string comparison logic. (The precise description of this
logic is offered in Appendix 6B.)

 Observation: When comparing two character-strings where one or

both character-strings have a VARCHAR data-type, ORACLE judges
the strings to be equal if: (i) both strings have the same
length, and (ii) the corresponding characters match. For
example, 'JESSIE' is not equal to 'JESSIE ' because these
strings have different lengths.

 The following Statemnt-4 satisfies the query objective and

produces the desired result. Here, the compared character-
strings have the same length and the corresponding characters
match.

4. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON';

 VCHARNAME
 SOLOMON

 Statement-5 and Statement-6 do not satisfy the query objective
because the stored value for SOLOMON has a length of 7, and the
text literals have different lengths.

5. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON ';

6. SELECT VCHARNAME FROM DEMO1A WHERE VCHARNAME = 'SOLOMON ';

Result is: “No rows returned”

 Likewise, Statements 7-9 do not satisfy the query objective

because the stored value for SOLOMON has a length of 10, and the
text literals have different lengths.

7. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON';

8. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON ';

9. SELECT UGLY FROM DEMO1A WHERE UGLY = 'SOLOMON ';

Result is: “No rows returned”

Free SQL Book, Tim Martyn 162 Copyright Pending, 2022

Statements 10-12 compare two column values where at least one
column (VCHARNAME or UGLY) has a VARCHAR data-type. Hence ORACLE
applies the nonpadded comparison semantics.

10. SELECT * FROM DEMO1A WHERE CHARNAME = VCHARNAME;

 CHARNAME VCHARNAME UGLY
 WASHINGTON WASHINGTON WASHINGTON

11. SELECT * FROM DEMO1A WHERE CHARNAME = UGLY;

 CHARNAME VCHARNAME UGLY

 SOLOMON SOLOMON SOLOMON
 WASHINGTON WASHINGTON WASHINGTON

12. SELECT * FROM DEMO1A WHERE VCHARNAME = UGLY;

CHARNAME VCHARNAME UGLY
WASHINGTON WASHINGTON WASHINGTON

 MADISONXX MADISONXX MADISONXX

The above result tables do not satisfy the query objective. The
non-matching character-strings fail to match because the
character-strings have different lengths.

These exercises should motivate ORACLE users to utilize the
RTRIM function when referencing a VARCHAR column that may
contain values with trailing blanks. For example, Statement-12
should be rewritten as:

 SELECT * FROM DEMO1A WHERE VCHARNAME = RTRIM (UGLY);

Free SQL Book, Tim Martyn 163 Copyright Pending, 2022

Summary

The keyword LIKE is used to test for a pattern in a character-
string column. The general format is:

 WHERE character-column LIKE 'pattern'

The pattern must be enclosed in apostrophes and may contain
special wildcard characters. The percent sign (%) represents any
string of any length. The underscore (_) represents exactly one
character. Unfortunately, in some circumstances, the logic of a

LIKE-comparison may vary across different systems. Read your
reference manual for details.

Trailing Blanks: As we have seen, trailing blanks occur frequently
with CHAR values and rarely with VARCHAR values.

Sometimes, all values in a CHAR column will not have any trailing
blanks. This applies to the STATE column in the PRESERVE table.

Some VARCHAR values may have trailing blanks. This applies to the
UGLY column in DEMO1A. But this is a special case, and most DBAs
take some action to prohibit this special case.

Summary Exercises

The following exercises pertain to the EMPLOYEE table. The ENAME
column has a VARCHAR (25) data-type. ENAME values cannot have any
trailing blanks.

6Q. Display the name of any employee whose name of begins with
the letter S.

6R. Display the name of any employee whose has the consecutive

letters RR anywhere in his name.

6S. Display the name of any employee whose name of ends with the

letter Y.

6T. Display the name of any employee whose name has the letter O

in the second position.

Free SQL Book, Tim Martyn 164 Copyright Pending, 2022

Appendix 6A: Efficiency

Gaming the Optimizer: We describe an ancient history war story
that applied to a very popular database system. Assume that you
wanted to display every PNAME value that begins with the letter
M. Two valid WHERE-clauses are shown below.

Statement-1: SELECT PNAME FROM PRESERVE
WHERE PNAME BETWEEN 'M' AND 'MZZZ'

Statement-2: SELECT PNAME FROM PRESERVE
WHERE PNAME LIKE 'M%'

Someday you may be asked to change a very old (early 1980’s)
SELECT statement. You are surprised to see that the user coded
something like Statement-1. Why?

One possible reason is ignorance. Maybe the user did not know
about the LIKE keyword. However, there is another more interesting
reason indicating that the user was quite knowledgeable. The
choice of Statement-1 might have occurred within the following
scenario.

1. The user knew that PRESERVE is a very big table.

2. The user knew there was on index on PNAME.

3. The user estimated that 1/26 of the PNAME values begin with

the letter M.

4. Assuming this is good selectivity, the user concluded that

the optimizer should choose to use the index on PNAME.

5. However! The user also knew something about her system’s

imperfect optimizer. For some reason, this optimizer would
never use an index when searching on a LIKE-condition. Yet,
this optimizer would consider using an index when searching
on a BETWEEN-condition.

6. Hence, for efficiency reasons, in order to work around the

weakness of the old optimizer, the user specified a BETWEEN
clause.

Today, your optimizer will consider using an index for LIKE-
patterns. It should generate the optimal application plan for both
of the above SELECT statements.

Free SQL Book, Tim Martyn 165 Copyright Pending, 2022

Appendix 6B: ORACLE Documentation

The following narrative is extracted from ORACLE’s SQL reference
manual.

Nonpadded Character-String Comparison Semantics

With nonpadded semantics, Oracle compares two values character by character up to the first

character that differs. The value with the greater character in that position is considered greater. If

two values of different length are identical up to the end of the shorter one, then the longer value is

considered greater. If two values of equal length have no differing characters, then the values are

considered equal. Oracle uses nonpadded comparison semantics whenever one or both values in

the comparison have the datatype VARCHAR2 or NVARCHAR2.

The results of comparing two character values using different comparison semantics may vary. The

table that follows shows the results of comparing five pairs of character values using each

comparison semantic. Usually, the results of blank-padded and nonpadded comparisons are the

same. The last comparison in the table illustrates the differences between the blank-padded and

nonpadded comparison semantics.

Blank-Padded Nonpadded

'ac' > 'ab' 'ac' > 'ab'

'ab' > 'a ' 'ab' > 'a '

'ab' > 'a' 'ab' > 'a'

'ab' = 'ab' 'ab' = 'ab'

'a ' = 'a' 'a ' > 'a'

Free SQL Book, Tim Martyn 166 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 167 Copyright Pending, 2022

 Chapter

 7

 Arithmetic Expressions

Previous SELECT statements retrieved data from tables without
performing any calculations on the retrieved data. This chapter
introduces SELECT statements with arithmetic expressions that
perform basic calculations on the retrieved data. These calculated
results can be displayed in the result table.

We casually describe an arithmetic expression as a meaningful

combination of column names, constants, and arithmetic operators.
The arithmetic operators are addition (+), subtraction (-),
multiplication (*), and division (/). The formation of a
"meaningful" arithmetic expression conforms to the same rules you
learned in junior high school.

In addition to arithmetic expressions, SQL Aggregate Functions (to
be introduced in the Chapter 8) offer additional computational
capabilities. The following figures highlight the major difference
between an arithmetic expression and an aggregate function. Figure
7.1a illustrates an arithmetic expression (A+B) by drawing a
horizontal arrow indicating that an expression calculates “across

each row.” Figure 7.1b illustrates an aggregate function (SUM) by
drawing a downward vertical arrow indicating that the aggregate
function calculates “down a column.”

 Figure 7.1a: Arith. Expression Figure 7.1b: SUM Function

This chapter restricts its attention to arithmetic expressions.
Chapters 8, 9, and 9.5 will cover aggregate functions.

A B A+B

2 4 6

5 4 9

A B

2 4

5 4

7 8

Free SQL Book, Tim Martyn 168 Copyright Pending, 2022

Addition – Subtraction – Multiplication - Division

The following sample query illustrates arithmetic expressions that
perform addition, subtraction, multiplication, and division.

Sample Query 7.1: Suppose we are interested in the impact of

changing admission fees for nature preserves located in
Arizona. We want to perform four what-if calculations.

• What is the adjusted fee for each preserve if the current
fee were increased by $1.50?

• What is the adjusted fee for each preserve if the current
fee were decreased by $1.00?

• What is the adjusted fee for each preserve if the current
fee is multiplied by 2.05?

• What is the adjusted fee for each preserve if the current
fee were reduced by 50%?

 For each row in the PRESERVE table, display the preserve
number, the current fee, and the four adjusted fees.

PNO FEE FEE+1.50 FEE-1.00 FEE*2.05 FEE/2.0
 5 3.00 4.50 2.00 6.15 1.50
 7 0.00 1.50 -1.00 0.00 0.00
80 3.00 4.50 2.00 6.15 1.50
 6 3.00 4.50 2.00 6.15 1.50

Syntax & Logic: "FEE+1.50" is an arithmetic expression that
produces the third column in the above result table. Coding this
expression in the SELECT-clause asks the system to access the FEE
value, perform the addition, and display the calculated result.
The same process applies to the other three expressions.

Observe the row describing Preserve 80 with a FEE value of zero.

Subtracting $1.00 from this fee produces negative value.

These expressions show spaces between the arithmetic operator and
the operands. This spacing may improve readability, but it is not
required.

SELECT PNO, FEE,
 FEE + 1.50,
 FEE - 1.00,
 FEE * 2.05,
 FEE / 2.0

FROM PRESERVE

WHERE STATE = 'AZ'

Free SQL Book, Tim Martyn 169 Copyright Pending, 2022

Data-Type Considerations

Decimal Values: FEE is declared as a DECIMAL data-type. Notice
that we specified decimal constants (1.50, 1.00, 2.05, and 2.00)
in these expressions. As indicated in Chapter 1, this is a good
idea.

Integer Values: The ACRES column, to be referenced in Sample
Query 7.2, is an INTEGER data-type. Integer values can be
referenced in arithmetic expressions without problems with one
important exception. Sample Query 7.2 will demonstrate an

important special case involving division (/) where we must be
very sensitive to the data-types of the operands.

Display Format for Calculated Values: Most front-end tools allow
you to format a calculated column (e.g., display a dollar sign).
These tools will automatically round or truncate decimal values to
some default decimal accuracy. Chapter 10 will present the
rounding and truncation functions that provide specific
rounding/truncation of calculated values.

Column Headings for Calculated Columns: A column containing values
produced by an expression does not have any predefined column-

name. Therefore, the front-end tool will automatically generate
default column headings. Different front-end tools will generate
different column headings. You can change a heading by using the
reporting facilities of your front-end tool. You can also specify
a “column alias” to change a column heading. This will be
illustrated in Sample Query 7.3.

Exercise:

7A. What would be the new adjusted size (acreage) of each nature

preserve if its current size were doubled? Display the

preserve name, current acreage, and adjusted acreage.

Free SQL Book, Tim Martyn 170 Copyright Pending, 2022

Careful with Integer Division!

If an arithmetic computation involves two decimals, the result is
a decimal; and, if the computation involves two integers, the
result is an integer; and, if the computation involves a decimal
and an integer, the result is a decimal. With the exception of
one special case, this behavior does not cause any problems.

Special Case Division: On some systems (e.g., DB2 and SQL Server)
if you divide an integer by an integer, the result is an integer
where the decimal component is lost. The following sample query

illustrates this behavior. (Again, know-your-data.)

Sample Query 7.2: For each nature preserve that is located in

Montana, display the preserve’s PNAME and ACRES values
followed by the results of two calculations. (1) Divide the
ACRES value (an integer) by 2.0 (a decimal), and (2) divide
the ACRES value by 2 (an integer).

 PNAME ACRES ACRES/2.0 ACRES/2

 DANCING PRAIRIE 680 340.00 340

 SOUTH FORK MADISON 121 60.50 60
 COMERTOWN PRAIRIE 1130 565.00 565
 PINE BUTTE SWAMP 15000 7500.00 7500

Note the loss of decimal accuracy for the ACRES/2 calculation in
the second row of the result table (121/2 = 60). Using DB2 or SQL

Server, when an integer is divided by an integer, the result is an
integer. This loss of accuracy does not occur with some other
systems (e.g., ORACLE).

Workaround: Assume X and Y are INTEGER data-types, and you want to
calculate X/Y. Consider the following expressions.

 X / (Y + 0.0) or X / (Y * 1.0)

Adding 0.0 to Y, or multiplying Y by 1.0, indirectly converts Y to
a decimal value. Hence these expressions produce a decimal result.

Exercise:

7B. What would be the size of each nature preserve if its current

size were reduced to one third its current size? Display the
preserve name, current acreage, and adjusted acreage.

SELECT PNAME, ACRES,
ACRES/2.0,
ACRES/2

FROM PRESERVE

WHERE STATE = 'MT'

Free SQL Book, Tim Martyn 171 Copyright Pending, 2022

Column Alias

This book does not focus on report formatting. However, we present
the following formatting technique because it is simple, and it
has another application to be described later in this book.

A “column alias” can be used to temporarily rename a column.

Sample Query 7.3: Display the PNAME and FEE values of preserves

located in Arizona. Also display the result of adding $1.50
to each FEE value, and display the result of subtracting

$1.00 from each FEE value. Specify a column alias to change
the default heading for the addition operation to INCREASED;
and specify another alias to change the default heading for
the subtraction operation to DECREASED.

PNAME FEE INCREASED DECREASED
HASSAYAMPA RIVER 3.00 4.50 2.00
MULESHOE RANCH 0.00 1.50 -1.00
RAMSEY CANYON 3.00 4.50 2.00
PAPAGONIA-SONOITA CREEK 3.00 4.50 2.00

Syntax: Within the SELECT-clause, the “FEE+1.00” expression is
followed by a column alias (INCREASED) with a space (not a comma)
between the expression and the alias. Likewise for the DECREASED
alias that follows the “FEE-1.00” expression.

Logic: Nothing new. The alias effectively becomes the name of the
column in the result table. In this example we used aliases to
produce different column headings for the expressions. We could
have used the same technique to change the headings for the PNAME
and FEE columns.

Column Alias is allowed in an ORDER BY Clause: Later in this
chapter, we will see that a column alias can be specified in an
ORDER BY clause (e.g., ORDER BY DECREASED).

Column Alias is not allowed in a WHERE-Clause: Referencing a
column alias in a WHERE-clause will cause an error.

SELECT ENO, ENAME, SALARY + 10.00 NEWSALARY

 FROM EMPLOYEE

 WHERE NEWSALARY > 2000.00 Error

 SELECT PNAME, FEE,
FEE+1.50 INCREASED,
FEE-1.00 DECREASED

 FROM PRESERVE
 WHERE STATE = 'AZ'

Free SQL Book, Tim Martyn 172 Copyright Pending, 2022

Previous arithmetic expressions specified constant values. This is
not required. Consider the following sample query.

Sample Query 7.4: For each nature preserve located in Arizona,

display its name followed by the result of dividing its ACRES
value by its FEE value. Exclude any row that has a FEE value
of zero.

PNAME ACRES/FEE
HASSAYAMPA RIVER 220.00000
RAMSEY CANYON 126.66666
PAPAGONIA-SONOITA CREEK 400.00000

Logic: For each Arizona row with a non-zero FEE value, ACRES is
divided by FEE.

Divide-by-Zero: The statement specifies a WHERE-clause to exclude
those Arizona rows with a FEE is zero. This avoids the divide-by-
zero problem (another know-your-data consideration).

What happens if you do not exclude rows where FEE equals zero?
Some systems will attempt to divide by zero and return an error
message. Other systems will return a null value for each zero-
divide operation. Null values will be discussed in Chapter 11.

Accuracy of Displayed Decimal Results: The ACRES column contains
integer values, and the FEE column contains decimal values.

Therefore, ACRES/FEE will produce decimal results.

Some calculations produce repeating digits in the decimal part
of the result (e.g., 126.6666...). The number of displayed
digits will vary for each system. Your reporting tool can adjust
this number. Also, SQL rounding and truncation functions will be
presented in Chapter 10.

SELECT PNAME, ACRES/FEE

FROM PRESERVE

WHERE STATE = 'AZ'

AND FEE <> 0

Free SQL Book, Tim Martyn 173 Copyright Pending, 2022

Order of Execution for Arithmetic Operations

The SQL hierarchy of arithmetic operators is the same hierarchy
you learned in junior high school. For tutorial purposes we
review this hierarchy.

Hierarchy of Arithmetic Operators:

1. Multiplication and division operations are evaluated first in
a left-to-right scan of the expression.

2. Then addition and subtraction operations are evaluated in a

left-to-right scan of the expression.

3. Using parentheses can change the order of evaluation.
Expressions within parentheses are evaluated first.

Examples:

 10 / 5 * 2 evaluates to 4

 10 + 5 * 2 evaluates to 20

 10 / (5 * 2) evaluates to 1

 (10 + 5) * 2 evaluates to 30

 10 + 5 * 10 + 2 evaluates to 62

 (10 + 5) * (10 + 2) evaluates to 180

 (10 + 5 * 10) + 2 evaluates to 62

 (10 + 5) * 10 + 2 evaluates to 152

Strong Recommendation: When coding arithmetic expressions, specify
parentheses to avoid relying on the default hierarchy of
operations.

Free SQL Book, Tim Martyn 174 Copyright Pending, 2022

Parentheses in Arithmetic Expressions

Sample Query 7.5: For each nature preserve located in Arizona,

display its name followed by the result of adding 1000 to its
ACRES value and then dividing the result by its FEE value.
Exclude any row that has a FEE value of zero.

 PNAME (ACRES+1000)/FEE
 HASSAYAMPA RIVER 553.33333

RAMSEY CANYON 460.00000
PAPAGONIA-SONOITA CREEK 733.33333

Logic: This query objective requires the addition of 1000 to
ACRES before the division by FEE. For this reason, the addition
operation was enclosed within parentheses. Observe what happens
if you fail to specify the parentheses as shown below.

SELECT PNAME, ACRES+1000/FEE
FROM PRESERVE

 WHERE FEE <> 0 AND STATE = 'AZ'

The incorrect result would be:

 PNAME ACRES+1000/FEE
 HASSAYAMPA RIVER 993.33333

RAMSEY CANYON 713.33333
PAPAGONIA-SONOITA CREEK 1,533.33333

Removing parentheses from the expression means that division is
performed first. This calculated result does not conform to the
query objective.

Exercise:

7C. For all nature preserves, display the preserve name and its

current admission fee. Also display an adjusted fee that is
calculated by adding $50.00 to the current fee and then
dividing by 2.

SELECT PNAME, (ACRES+1000)/FEE

FROM PRESERVE

WHERE FEE <> 0 AND STATE = 'AZ'

Free SQL Book, Tim Martyn 175 Copyright Pending, 2022

ORDER BY an Arithmetic-Expression

An ORDER BY clause can reference an arithmetic expression or the
column alias for an expression.

For example, consider the following SELECT-clause that specifies
an arithmetic expression as the fourth column in a result table.
MYCALC is specified as a column alias for this column.

 SELECT COLA, COLB, COLC, (COLA+COLB)*COLC MYCALC

The following three ORDER BY clauses are valid.

ORDER BY 4 (Sort by column number)

ORDER BY (COLA+COLB)*COLC (Sort by expression)

ORDER BY MYCALC (Sort by column alias)

Examples:

The following three statements extend Sample Query 7.3. Each
statement includes an ORDER BY clause that sorts the result

table by the FEE+1.50 expression.

SELECT PNAME, FEE,
 FEE+1.50 INCREASED,

FEE-1.00 DECREASED
FROM PRESERVE
WHERE STATE = 'AZ'

ORDER BY 2

SELECT PNAME, FEE,
 FEE+1.50 INCREASED,

FEE-1.00 DECREASED
FROM PRESERVE
WHERE STATE = 'AZ'

ORDER BY INCREASED

SELECT PNAME, FEE,
 FEE+1.50 INCREASED,

FEE-1.00 DECREASED
FROM PRESERVE
WHERE STATE = 'AZ'

ORDER BY FEE+1.50

Free SQL Book, Tim Martyn 176 Copyright Pending, 2022

Calculated Conditions: Expressions in WHERE-Clauses

Previous examples specified arithmetic expressions in SELECT-
clauses. An arithmetic expression can also be specified in a
WHERE-clause. A row is selected if the calculated result produces
a match on the WHERE-condition.

Sample Query 7.6: Assume the acreage of each nature preserve is

tripled. Display a preserve’s name and acreage if the size of
its adjusted acreage exceeds 100,000 acres.

 PNAME ACRES
 MULESHOE RANCH 49120

Logic: The condition (ACRES * 3) > 100000 contains an arithmetic
expression (ACRES * 3) which is evaluated for each row. If the

result is greater than 100,000, the row is selected.

Logical Equivalency: This WHERE-clause could be rewritten as:

 WHERE ACRES > 100000/3.0

 WHERE ACRES > 33333.33

Appendix 7A offers some insight into why calculated conditions may
enhance efficiency.

SELECT PNAME, ACRES

FROM PRESERVE

WHERE (ACRES * 3) > 100000

Free SQL Book, Tim Martyn 177 Copyright Pending, 2022

Potential Problem: Divide-by-Zero in Calculated Conditions

There is no problem with the following WHERE-clause because the
expression divides by a non-zero value (5.00):

 SELECT PNAME, ACRES/5.00

FROM PRESERVE
 WHERE ACRES/5.00 > 200.00

However, a divide-by-zero problem will occur with the following
WHERE-clause because the expression divides by FEE where some FEE

values are zero.

 SELECT PNAME, ACRES/FEE

FROM PRESERVE
 WHERE ACRES/FEE > 200.00

Problematic Workarounds: Consider and then reject both of the
following two statements.

Statement-1: SELECT PNAME, ACRES/FEE
 FROM PRESERVE
 WHERE FEE <> 0 AND ACRES/FEE > 200.00

This (apparently reasonable) compound-condition may or may not
identify and avoid a divide-by-zero event. Here, by initially
specifying the FEE <> 0 condition, the user intends to initially
filter out FEE values of zero before executing the ACRES/FEE
expression. Conceptually, this is a very good idea. And, it might
work on your system. But, don’t do it.

Author Comment: In writing this book, I executed the above
Statement-1 on a very popular database system where it failed and
returned a divide-by-zero error. I was initially surprised. Then,
in an exploratory mindset, I executed the following Statement-2,

and (surprise) it worked!

Statement-2: SELECT PNAME, ACRES/FEE

 FROM PRESERVE
WHERE ACRES/FEE > 200.00 AND FEE <> 0

Statement-1 failed, and Statement-2 worked as desired! But the
opposite can happen on your system.

Workarounds: An explanation of this potential problem and
effective workarounds will be presented in Sample Query 22.11 and
Exercises 26P and 27P.

Optional Theory Question: Within one highly regarded database
system, the previous Statement-1 failed while Statement-2 worked.
What’s going on here? Appendix 7B will address this question.

Free SQL Book, Tim Martyn 178 Copyright Pending, 2022

System Response to Divide-by-Zero Event: Your system will respond
to a divide-by-zero event in one of two ways.

1. Some systems (e.g., DB2 and SQL Server) terminate execution

and return a divide-by-zero error message.

2. Other systems (e.g., ORACLE) take a different approach which
is described in the following scenario. Assume PRESERVE has
14 million rows, and the system has already processed 13
million rows without a divide-by-zero event. Then such an
error occurs. If the system terminates with a divide-by-zero

error message, then, after you (somehow) fix this problem,
you have to start all over and process all 14 million rows.
To avoid this situation, ORACLE returns a “null value”
whenever it encounters a divide-by-zero event. Then it
continues to process the SELECT statement. (Null values will
be described in Chapter 11. For the moment we note that a
WHERE-clause will not select a row if its condition evaluates
to null.)

Optional Theory Question: We have described two ways a system can
respond to a divide-by-zero event. Which is the better of the two
ways? Appendix 7B will address this question.

Free SQL Book, Tim Martyn 179 Copyright Pending, 2022

Summary

This chapter introduced arithmetic expressions to perform basic
calculations. Sample queries illustrated that arithmetic
expressions can be specified in either a SELECT-clause or a WHERE-
clause. The next three chapters will expand upon the theme of
computational SQL by introducing mathematical built-in functions.

Summary Exercises

The following exercises reference the EMPLOYEE table. Use aliases
for calculated columns.

7D. Assume each employee’s salary is increased by 10%. Display

the employee’s number, name, old salary, and new salary. The
result table should have four columns named, ENO, ENAME,
OLDSALARY, and NEWSALARY. Sort the result by the new salary.

7E. Modify the previous Exercise 7D. Only display rows for those

employees whose new salary exceeds $2,000.00.

7F: Optional Exercise: Commentary for Sample Query 7.3 noted
that you cannot reference a column alias in a WHERE-clause.
The following WHERE-clause causes an error.

SELECT ENO, ENAME, SALARY + 10.00 NEWSALARY
 FROM EMPLOYEE

 WHERE NEWSALARY > 2000.00 Error

 Can you speculate why the system does not allow a WHERE-

clause to reference a column alias?

Free SQL Book, Tim Martyn 180 Copyright Pending, 2022

Summary Advice for Mathematical Computations

“Do it in SQL”

A desired calculation must be implemented within some software
component. Within a database environment, we consider two major
components: (1) The front-end tool (or application program), and
(2) the database engine. An arithmetic expression can be executed
within either component, as illustrated by the following Figure
7.2.

Excluding a few special case scenarios, we recommend executing

computations in the database engine by coding SQL arithmetic
expressions (or built-in functions to be described in Part II of
the book).

Advantages of Computational SQL

Efficiency: See Appendix 7A.

Standardization: There is great variety among front-end tools and

programming languages, and an organization may use multiple such
tools and languages. This inhibits standardization. However,

because SQL is (pretty much) standardized, coding arithmetic
expressions in SQL allows for some degree of standardization.

Productivity (Do it Once - Correctly): Don’t “reinvent the wheel.”

Consider a large complex arithmetic expression, maybe for a
sophisticated financial or scientific calculation, that will be
specified in multiple SQL statements. Productivity is increased
if such an expression is correctly coded once and reused by
multiple users. Business users might save such an expression in
a simple text file. An applications developer can save an
expression for reuse by embedding the expression within a stored
procedure/function.

Tool/Program Database Engine

+
-
*
/

+
-
*
/

Figure 7.2: Computations within Database Environment

Free SQL Book, Tim Martyn 181 Copyright Pending, 2022

Perform Calculations in a Front-End Tool: Execute a SELECT
statement without an arithmetic expression and return the raw data
to your front-end tool. Then use the tool to perform a desired
calculation. There is a conceptual tidiness to this approach. The
database system only retrieves data, and the tool does all the
calculations. We describe two circumstances where this is approach
is reasonable.

• You are in query analysis mode where your computational
objectives are fuzzy. You can execute a SELECT-statement
that returns data to your front-end tool so that you can

“play around” with different computations. After your
computational objectives have been finalized, consider
implementing these computations within SQL.

• Your front-end tool may be able to perform computations that
transcend SQL’s computational capabilities. For example,
spreadsheets and data mining tools may perform computations
that cannot be done in SQL.

Free SQL Book, Tim Martyn 182 Copyright Pending, 2022

Appendix 7A: Efficiency

A SQL arithmetic expression is executed within the database
engine. This may improve efficiency. We consider two examples.

1. Expression in the SELECT-clause

 Reconsider Sample Query 7.3 which specified two expressions

in the SELECT-clause.

SELECT PNAME, FEE,

 FEE+1.50 INCREASED,
 FEE-1.00 DECREASE

 FROM . . .

 In general, efficiency may not be significantly better or worse
if the tool/program executed these expressions.

2. Expression in the WHERE-clause (Calculated Condition)

 Assume your front-end tool is running on a local computer

that is connected to a remote database server via a
communications network.

 Reconsider Sample Query 7.6 which specified an expression in

the WHERE-clause.

SELECT . . .
FROM . . .
WHERE (ACRES * 3) > 100000

 This statement returned just one of the 14 rows (7%) in the

PRESERVE table. If the remote database server could not
execute the calculation condition, all rows would have to be
passed from the database server to the tool/program. This

would be very expensive if the PRESERVE table contained 14
million rows, especially within a slow communications
environment. Specifying an expression in a WHERE-clause
reduces the number of returned rows, thereby reducing
communication costs.

Query Rewrite: Reconsider the (ACRES*3) > 100000 calculated
condition. Assume there is a useful index on the ACRES column. On
some systems, specifying a column within an expression (ACRES*3)
would disable use of the index. Therefore, you might want to
rewrite the condition such that ACRES is isolated on one side of
the comparison operation (ACRES > 100000/3). A smart optimizer

should automatically perform this rewrite operation.

Free SQL Book, Tim Martyn 183 Copyright Pending, 2022

Appendix 7B: Theory

Data versus Process: Codd’s original Relational Model focused on
data. His database languages, the relational calculus and the
relational algebra, could retrieve data, but these languages did
not process the data after it was retrieved.

There was a fundamental split between data and processing. The
database system retrieves data and returns the data to a program
or front-end tool. The program/tool processes the data. This

system architecture is reflected in the ancient history term “data
processing.” Non-relational first-generation database systems
(e.g., DL/I and IDMS) could not do arithmetic. They could only
retrieve data and return it an application program (usually
written on COBOL) for subsequent processing.

This chapter illustrates that designers of SQL made a pragmatic
decision to have their systems to perform some computational
processing. This enhances the functionality of the language and
enhances efficiency (as described in preceding Appendix 7A).

Recognizing the significant advantages of supporting computational

functionality within a database language, some members of the
database research community have proposed computational extensions
to Codd’s relational calculus and algebra. Others have proposed
object-oriented database systems. A discussion of these topics is
beyond the scope of this book.

Theory Questions: This chapter asked two optional theory
questions.

1. Consider the following two compound-conditions.

 FEE <> 0 AND ACRES/FEE > 200.00

ACRES/FEE > 200.00 AND FEE <> 0

 Within one highly regarded database system, the first

compound-condition failed by terminating the statement and
returning a divide-by-zero error message. However, the second
condition worked as intended by excluding FEE values of zero
from the division operation. What’s going on here?

The user wants to specify the following IF-THEN logic.

IF FEE <> 0 is true, THEN evaluate ACRES/FEE > 200.00

 But IF-THEN logic is not the meaning of AND logic.

 [CASE Expressions, to be introduced in Chapter 22, will show

how to specify IF-THEN logic within a SQL statement.]

Free SQL Book, Tim Martyn 184 Copyright Pending, 2022

2. We have described two ways a system can respond to a divide-
by-zero event. Which is the better of the two ways?

 Some systems (e.g., DB2 and SQL Server) terminate the

statement and return a divide-by-zero error message.

 Other systems (e.g., ORACLE) return a “null value” whenever
it encounters a divide-by-zero problem. It does not terminate
the SELECT statement. Instead, it continues to process the
statement. (Null values will be described in Chapter 11.
Here, we note that a WHERE-clause will not select a row if

its condition evaluates to null.)

 This author contends that terminating the statement and

returning an error-message is a better approach. Why? The
mathematical definition of division explicitly excludes
division by zero. Just don’t do it; if you do, it’s an error.
Hence, to be consistent with the mathematics, the system
should return an error message when it occurs.

 Furthermore, regarding null values, Chapter 11 will show that

null values introduce many potential problems that you would
like to avoid. Finally, although the null value approach may

be more efficient, we remind you that correctness trumps
efficiency.

Free SQL Book, Tim Martyn 185 Copyright Pending, 2022

 PART II

Built-in Functions & NULL Values

A function is a program that can be referenced within a SELECT
statement. A “built-in” function is a function that is provided
as part of the SQL language. Many built-in functions are simple
and have names that indicate their purpose. For example, all
database systems support the SUM function. An example of
specifying this function is shown below.

 SELECT SUM (ACRES)
FROM PRESERVE

It is not difficult to guess what the SUM function does. (You
are invited to preview Sample Query 8.1.) All database systems
provide a large number of built-in functions, but most users
only need to learn details about a few functions. Your SQL
reference manual contains a description of all your system’s
built-in functions.

Many built-in functions are standardized in the sense that they
have the same names and functionality across almost all database

systems. All database systems also support a variety of system-
specific functions that may be very useful, but inhibit
portability of SQL code across different systems.

Categories of Built-in Functions

This book presents two general categories of built-in functions:

(1) Aggregate Functions, and

(2) Individual Functions.

A possible future version of this book will present a third
category of built-in functions, the OLAP Functions.

Free SQL Book, Tim Martyn 186 Copyright Pending, 2022

Aggregate Functions: Most aggregate functions “summarize”
multiple values from a designated column. For example, SUM
(ACRES) will return the sum of selected values from the ACRES
column, and AVG (FEE) will return the average of selected values
from the FEE column. Most aggregate functions are simple and
easy to use. The most popular aggregate functions are presented
in Chapter 8. In Chapters 9 and 9.5, these same aggregate
functions will be used in conjunction with the GROUP BY and
HAVING clauses.

Terminology: The documentation for your database system might

not use the term “Aggregate” to identify this category of
functions. Aggregate functions are sometimes called “Grouping”
functions because they can work in conjunction with the GROUP BY
clause. Alternatively, they may be called the “Column” functions
because they operate on values from a column.

Individual Functions: An individual function works on a single
value and returns a single value. (It does not “summarize”
multiple values.) For example, ABS (FEE) returns the absolute
value of a FEE value, and LOWER (PNAME) returns a PNAME value in
lowercase letters.

Terminology: This book uses the term “Individual” function as a
generic term. DB2 and SQL Server use the term Scalar function,
and ORACLE uses the term Single-Row function.

All database systems support many individual functions. Your SQL
reference manual will organize its individual functions into
(sub-)categories. In this book, the individual functions are
categorized as:

• Arithmetic Functions

• Character-String Functions

• Data-Type Conversion Functions

• Date-Time Functions

Again, we note there is considerable variation among the built-
in functions across different database systems. This is
especially true for the individual functions. Sample queries
will comment on some of these differences.

NULL Values

Chapter 11 introduces null values and describes some of the

potentially confusing issues associated with processing null
values.

Free SQL Book, Tim Martyn 187 Copyright Pending, 2022

Chapter
8

Aggregate Functions

Aggregate Functions are used to “summarize” selected values from
a designated column. This chapter presents the following popular
aggregate functions. (All systems support other aggregate
functions that are described in your SQL reference manual.)

▪ SUM

▪ AVG

▪ MAX

▪ MIN

▪ COUNT

An aggregate function operates on a group of column values and
returns a single value for each group. In this chapter, we treat
the entire PRESERVE table as a single group. Sample queries and
exercises will return just one row containing summary values for
this group.

The following chapter will introduce the GROUP BY clause which
allows you to form multiple groups of column values and
calculate a result for each group.

Free SQL Book, Tim Martyn 188 Copyright Pending, 2022

SUM and AVG

Sample Query 8.1: Display the sum of all ACRES values in the

PRESERVE table.

 SUM (ACRES)
 70051

Syntax: SUM (numeric-column)

Logic: This statement does not contain a WHERE-clause.
Therefore, all rows are selected, and all ACRES values are used
to calculate the summary total. Although the SUM function
summarizes ACRES values over 14 rows, only one row with the
summary total (70051) appears in the result.

Column Headings and Formatting: An aggregate function has no
predefined column-name. As with arithmetic expressions, different
front-end tools will display different column headings and have

different defaults for decimal accuracy.

Sample Query 8.2: Display the average acreage of the

Massachusetts preserves.

 AVG (ACRES)

 293.33

Syntax: AVG (numeric-column)

ORACLE: The six Massachusetts rows are retrieved, and the
average of their ACRES values is calculated with decimal
accuracy.

DB2 and SQL Server: Because ACRES is an INTEGER data-type, DB2
and SQL Server will produce an integer result. Hence, the above
statement will return 293. To obtain decimal accuracy you can
execute:

 SELECT AVG (ACRES*1.0)
 FROM PRESERVE
 WHERE STATE = 'MA'

SELECT SUM (ACRES)

FROM PRESERVE

SELECT AVG (ACRES)

FROM PRESERVE

WHERE STATE = 'MA'

Free SQL Book, Tim Martyn 189 Copyright Pending, 2022

MIN and MAX

The following sample query illustrates that the MIN and MAX
functions can accept either a numeric or a character-string
argument.

Sample Query 8.3: Display the smallest and largest admission

fees in the PRESERVE table. Also, display the smallest and
largest PNAME values according to alphabetical (collating)
sequence.

MIN(FEE) MAX(FEE) MIN(PNAME) MAX(PNAME)
 0.00 3.00 COMERTOWN PRAIRIE TATKON

Syntax: MIN (column) and MAX (column)

Logic: MIN (FEE) returns the smallest FEE value.

 MAX (FEE) returns the largest FEE value.

 MIN (PNAME) returns the smallest PNAME value within

alphabetical (collating) sequence.

MAX (PNAME) returns the largest PNAME value within
alphabetical (collating) sequence.

Common Error: You cannot specify an aggregate function in a
WHERE-clause. For example, assume you want to display just those
rows with an admission fee that exceeds the average fee. You

might be tempted to execute the following incorrect statement:

 SELECT *
 FROM PRESERVE

 WHERE FEE > AVG(FEE) → Error

Although this WHERE-clause appears to be reasonable, it generates
an error because an aggregate function, unlike an arithmetic
expression, cannot be referenced in a WHERE-clause. (Chapter 23
will resolve this limitation on the WHERE-clause.)

SELECT MIN(FEE), MAX(FEE), MIN(PNAME), MAX(PNAME)

FROM PRESERVE

Free SQL Book, Tim Martyn 190 Copyright Pending, 2022

COUNT Functions

We present two of the three variations of the COUNT function.
(The third variation is only relevant when a column contains
null values. Sample Query 11.6 will present this variation of
COUNT.)

1. COUNT (*) Counts selected rows

2. COUNT (DISTINCT column) Counts the number of distinct
values in the specified column

Sample Query 8.4.1: Display the number of rows in the PRESERVE

table. Specify CTPRESERVE as a column heading for this
result.

 CTPRESERVE
 14

Logic: The system counts the number of retrieved rows.

Sometimes you want to count the number of rows in a subset of
rows. For example, you can count the number of nature preserves
in Montana by executing:

 SELECT COUNT (*)
 FROM PRESERVE
 WHERE STATE = 'MT'

Sample Query 8.4.2: How many different states have nature

preserves described in the PRESERVE table? Specify CTSTATE
as a column heading for this result.

 CTSTATE
 3

Logic: COUNT (DISTINCT STATE) examines the STATE column to
return the number of unique values in that column.

SELECT COUNT (*) CTPRESERVE

FROM PRESERVE

SELECT COUNT (DISTINCT STATE) CTSTATE

FROM PRESERVE

Free SQL Book, Tim Martyn 191 Copyright Pending, 2022

DISTINCT with SUM and AVG

The following example illustrates that DISTINCT can be specified
with the SUM and AVG functions.

Sample Query 8.5: Calculate the sum and the average of all

distinct values in the FEE column.

 SUM (DISTINCT FEE) AVG (DISTINCT FEE)
 3.00 1.50

Logic: The FEE column contains 14 values, but only two distinct
values, 0.00 and 3.00. The system used these two values to
calculate the above sum and average values.

Exercises:

8A. Display the average, maximum, and minimum ACRES value of

all nature preserves located in Arizona.

8B. Display the first preserve name that appears in alphabetic

sequence.

8C. Do not consider zero admission fees. How many distinct fees

are present in the PRESERVE?

8D. Write a SELECT statement to demonstrate that PNAME does not

currently contain any duplicate values.

SELECT SUM (DISTINCT FEE), AVG (DISTINCT FEE)

FROM PRESERVE

Suggestion: Take a five-minute detour. We have just
introduced five popular built-in functions: SUM,
MAX, MIN, AVG, and COUNT. Your system supports many
other built-in functions. You can get some idea of
just how many functions by searching the web. For
example, if you are using ORACLE, search for:

ORACLE built-in functions

Likewise for other database systems. Don’t bother
with details. Simply scan the documentation

describing your system’s built-in functions.

Free SQL Book, Tim Martyn 192 Copyright Pending, 2022

Statistical Functions

Most systems support more sophisticated statistical functions
such as those presented in a college course on probability and
statistics.

The next sample query illustrates the VARIANCE (variance) and
STDDEV (standard deviation) functions that are supported by DB2
and ORACLE. While statisticians will appreciate these functions,
many other users will never use them. We illustrate these
functions without explaining their statistical significance or

underlying computations. Your reference manual will present
these details.

Sample Query 8.6: Display the variance and standard deviation of

all ACRES values in the PRESERVE table.

VARIANCE(ACRES) STDDEV(ACRES)

 163733859 12795

DB2: Decimal accuracy may be gained by coding:

 SELECT VARIANCE (ACRES*1.00), STDDEV (ACRES*1.00)

 Also, DB2 will return values in scientific notation.

SQL Server: Substitute VARP for VARIANCE, and STDEVP for STDDEV.

SELECT VARP (ACRES), STDEVP (ACRES)

 FROM PRESERVE

Many systems support other statistical functions such as
COVARIANCE, CORRELATION, and functions related to regression
analysis. Consult your SQL reference manual for details.

SELECT VARIANCE (ACRES), STDDEV (ACRES) DB2 & ORACLE

FROM PRESERVE

Free SQL Book, Tim Martyn 193 Copyright Pending, 2022

Combining Aggregate Functions & Arithmetic Expressions

Aggregate functions can be combined with arithmetic expressions
to perform more complex calculations. A function may be applied
to an intermediate-result produced by executing an expression;
and, an expression can specify an aggregate function as an
operand.

Sample Query 8.7: Calculate and display two summary totals.

The first total is the sum of all admission fees assuming

that each fee has been increased by $5.00.

The second total is the result of adding $5.00 to the sum
of all admission fees.

 SUM(FEE + 5.00) SUM(FEE) + 5.00
 79.00 14.00

Syntax: Nothing new.

 SUM (FEE + 5.00) specifies an aggregate function (SUM) that

has an expression (FEE + 5.00) as an argument.

 SUM (FEE) + 5.00 specifies an arithmetic expression that

has the SUM function as an operand.

Logic: The placement of parentheses impacts the sequence of
operations that produces different results.

 SUM (FEE + 5.00): The system will first evaluate the

expression (FEE + 5.00) for each selected row. Then apply
the SUM function to these values.

 SUM (FEE) + 5.00: SUM (FEE) is evaluated first to produce

9.00 which is incremented by 5.00 to produce the final
result of 14.00.

Exercise:

8E. Assume that you intend to establish a new policy for

calculating admission fees. Each nature preserve will
charge a fee equal to $0.02 per acre. What will be the
average admission fee for the Arizona preserves?

SELECT SUM (FEE + 5.00), SUM (FEE) + 5.00

FROM PRESERVE

Free SQL Book, Tim Martyn 194 Copyright Pending, 2022

Displaying Detail-Lines with a Summary Total

An aggregate function only returns a summary total. It does not
return the raw data used to calculate this total. What if you want
to display both the raw data along with the summary total? Good
idea, but not yet, because you do not know enough SQL to satisfy
this query objective. Consider the following example.

Example: Produce a report where each “detail row” displays the PNO
and ACRES values for a Montana preserve, followed by a “summary
row” that displays the total acreage of all the Montana preserves.

The result should look like:

 MTPNO ACRES
 1 1130 (detail row)
 2 15000 (detail row)
 3 680 (detail row)

 40 121 (detail row)
 16931 (summary row)

We consider four possible solutions.

Sol-4 Use the ROLLUP option for the GROUP BY clause
to be previewed at the end of Chapter 9.5.

Sol-3 Use the ALL option for the UNION operation to

be presented in Chapter 21.

Sol-1 Display the detail rows by executing.

SELECT PNO MTPNO, ACRES
FROM PRESERVE
WHERE STATE = 'MT'

Use your front-end tool’s computational
capabilities to produce the summary row.

Sol-2 Execute the following two statements.

SELECT PNO MTPNO, ACRES

FROM PRESERVE
WHERE STATE = 'MT';

SELECT SUM (ACRES)
FROM PRESERVE
WHERE STATE = 'MT';

Do some manual labor. Cut-and-paste the two
result tables to produce the desired report.

Free SQL Book, Tim Martyn 195 Copyright Pending, 2022

Sol-1 is a popular (but not the best) solution. Here, the
database gets the data, and the tool does the arithmetic. But,
(i) you must learn your tool’s computational facilities, and
(ii) you will sacrifice the previously described advantages
associated with “doing everything in one SQL statement.”

Sol-2 is bad. Cut-and-past is ugly. Also, you will sacrifice the
previously described advantages associated with “doing
everything in one SQL statement.” This solution only has one
advantage; you already know enough SQL to do it now.

SOL-3 is an acceptable (but not the best) solution. However, it
will generate the desired result by executing one SELECT
statement. Chapter 21 will present this solution.

SQL-4 is the best solution. Sample Query 9.21 in Chapter 9.5
will present this solution.

Summary

This chapter introduced the most popular aggregate functions:

SUM, AVG, MAX, MIN, and COUNT. These functions operate over a
group of values from a column. In this chapter we restricted our
attention to a single group corresponding to the entire table.
The next chapter will introduce the GROUP BY clause that can be
used to form multiple groups such that an aggregate function can
be applied to each group.

Summary Exercises

The following exercises pertain to the EMPLOYEE table.

8F. Display the sum, average, maximum, and minimum of all
SALARY values.

8G. How many employees work in Department 20?

8H. How many departments have employees?

Free SQL Book, Tim Martyn 196 Copyright Pending, 2022

Appendix 8A: Efficiency

Computational Benefits: Appendix 7A identified the advantages of
arithmetic expressions. The basic idea is that it is usually more
efficient to perform calculations within the database engine
versus the front-end tool/program. This same idea is especially
relevant for aggregate functions.

Every sample query in this chapter returned just one row. (The
query objectives presumed the users only wanted the summarized

results; they did not need to see the detail data from the
individual rows.) There is significant performance advantage to
having the database execute aggregate calculations and send just
one row back to the tool/program. If this were not possible, the
system would have to send all the required data to the
tool/program. Consider the following statement.

 SELECT SUM (ACRES)
 FROM PRESERVE

Assume your front-end tool is remotely located from the database
engine. What if PRESERVE contained 14 million rows? If the

database engine could not perform the SUM calculation, it would
have to send 14 million ACRES values down the communications
network to your front-end tool.

Multiple SELECT Statements: The section “Displaying Detail-Lines
with a Summary Total” commented on the situation where a user
wants to display both the raw data and the summary totals.
Solution Sol-2 executed two SELECT statements. From an efficiency
perspective, this approach is not desirable. Two independent
statements require two trips to the database engine, involving
two scans of PRESERVE. This is obviously redundant, and it would
be very inefficient if PRESERVE were a very large table.

Query Optimization - Index-Only Search: Consider the following two
statements.

• SELECT COUNT (*) FROM PRESERVE
WHERE STATE = 'MT'

 The optimizer can satisfy this statement by only accessing

the INDSTATE index. (See Figure A1.1.)

• SELECT COUNT (*), COUNT (DISTINCT PNO),
 MIN (PNO), MAX (PNO)

FROM PRESERVE

 The optimizer can satisfy this statement by only accessing

the XPNO index. (See Figure A2.1).

Free SQL Book, Tim Martyn 197 Copyright Pending, 2022

Chapter

9

 GROUP BY Clause:

 Grouping by a Single Column

This chapter introduces the GROUP BY clause that is used to form
groups of rows such that an aggregate function can be applied to
each group. For example, you might wish to select all PRESERVE
rows, group these rows by STATE values, and then apply SUM
(ACRES) to each group to produce a result table that looks like:

STATE SUM(ACRES)
AZ 51360
MA 1760
MT 16931

This chapter’s sample queries will specify a GROUP BY clause in

conjunction with an aggregate function to:

1. Organize selected rows into groups, and

2. Apply the aggregate function to each group

Author Advice: When using this book to teach SQL, students
rarely have trouble with the first eight chapters. They do most
of the exercises in a very short time, and most errors are
caused by simple typos. Things usually change when we get to
this chapter. Students take more time with the exercises, and

more errors are conceptual. Therefore, I suggest that you
proceed at a slower pace.

Free SQL Book, Tim Martyn 198 Copyright Pending, 2022

GROUP BY Clause

The following sample query illustrates the formation of groups
based upon STATE values.

Sample Query 9.1: For each state referenced in the PRESERVE

table, display the total acres of all preserves within the
state.

 STATE SUM(ACRES)
AZ 51360
MA 1760
MT 16931

Syntax: SELECT grouping-column, aggregate-function
 FROM table-name
 WHERE condition

 GROUP BY grouping-column

Logic: The GROUP BY clause places selected rows into groups such
that all rows with the same grouping value are placed into the
same group. Here, because there are three distinct STATE values
(AZ, MA, and MT), three groups are formed to produce an
intermediate-result table that conceptually looks like:

Then the SUM function is applied to each group, and summary
totals are displayed.

Exercise:

9A. For each state referenced in the PRESERVE table, display

the ACRES value of the smallest nature preserve within the
state.

SELECT STATE, SUM (ACRES)

FROM PRESERVE

GROUP BY STATE

STATE ACRES
AZ 660
AZ 49120
AZ 380
AZ 1200
- - - - - -

MA 66
MA 40
MA 830
MA 4
MA 730
MA 90
- - - - - -
MT 680
MT 121
MT 1130
MT 15000

Free SQL Book, Tim Martyn 199 Copyright Pending, 2022

WHERE with GROUP BY

The WHERE-clause can be used to include or exclude specified
rows prior to the formation of groups. The following sample
query illustrates this behavior.

Sample Query 9.2: Modify the preceding sample query such that

only rows with PNO values less than 12 are selected for
consideration.

STATE SUM(ACRES)
AZ 50980
MA 924
MT 16810

Logic: The WHERE-clause initially selects rows with PNO values
less than 12. This filtering of rows occurs before the formation
of the groups. Then, using the STATE and ACRES values from the
selected rows, groups are formed for each STATE value as
illustrated below.

Then the SUM function is applied to each group, and summary
totals are displayed.

Exercise:

9B. Do not consider any nature preserve that has more than

10,000 acres. For each state referenced in the PRESERVE

table, display the ACRES value of the largest nature
preserve within the state.

SELECT STATE, SUM (ACRES)

FROM PRESERVE

WHERE PNO < 12

GROUP BY STATE

STATE ACRES
AZ 660
AZ 49120
AZ 1200
- - - - - -
MA 830
MA 4

MA 90
- - - - - -
MT 680
MT 1130
MT 15000

Free SQL Book, Tim Martyn 200 Copyright Pending, 2022

Sorting by Group Totals

A result table can be displayed in sequence by group totals.

Sample Query 9.3: Display the result table from the preceding

sample query. Sort this result in ascending sequence by the
summary totals.

STATE SUM(ACRES)
MA 924
MT 16810
AZ 50980

Syntax: On most systems, the above ORDER BY clause can be
changed to explicitly reference an aggregate function as
illustrated below.

 SELECT STATE, SUM (ACRES)
 FROM PRESERVE
 WHERE PNO < 12
 GROUP BY STATE
 ORDER BY SUM (ACRES)

Also, on most systems, the ORDER BY clause can reference a

column-alias as illustrated below.

 SELECT STATE, SUM (ACRES) TOTAL_ACRES
 FROM PRESERVE
 WHERE PNO < 12
 GROUP BY STATE
 ORDER BY TOTAL_ACRES

Incidental Sort: If you omit the ORDER BY clause, your result
table may show an incidental sort by the grouping column, as
illustrated by the previous two sample queries. (Appendix 9A
comments on this behavior.)

Exercise:

9C. Same as preceding Exercise 9B. Sort the result by the

maximum values in descending sequence.

SELECT STATE, SUM (ACRES)

FROM PRESERVE

WHERE PNO < 12

GROUP BY STATE

ORDER BY 2

Free SQL Book, Tim Martyn 201 Copyright Pending, 2022

Groups with One Row

Sometimes a particular group happens to contain just one row.
You may want to be aware of this circumstance.

Sample Query 9.4: Modify Sample Query 9.2. Here, we are only

interested in rows where PNO values are less than 10. Also,
display a count of the number of rows in each group.

STATE SUM (ACRES) COUNT(*)
AZ 50980 3

MA 830 1
MT 16810 3

Logic: The MA group has just one row. Note that its ACRES value is
830. This observation could help an unethical user violate the
following confidentiality rule.

Violate Confidentiality: Assume that, for reasons of
confidentiality, you have been told not to display any PNO value
along with its corresponding ACRES value. (Within the EMPLOYEE
table, this is similar to displaying an ENO value along with the
corresponding SALARY value which is confidential data).

After examining the above result table, an unethical user could
execute the following statement that does not violate this
confidentially rule.

 SELECT PNO FROM PRESERVE
 WHERE STATE = 'MA' AND ACRES = 830

Result shows: PNO
 9

This user can now deduce that Preserve 9 has 830 acres. This is
a simple example of a more general database problem whereby a
user may be able to deduce confidential data by displaying
statistical summaries.

SELECT STATE, SUM (ACRES), COUNT (*)

FROM PRESERVE

WHERE PNO < 10

GROUP BY STATE

Free SQL Book, Tim Martyn 202 Copyright Pending, 2022

Potential Groups with No Rows

We have shown that a group can contain just one row. What about
a group with no rows? We refer to this circumstance as a
“potential group” (another unofficial term). The following
sample query specifies a WHERE-clause that eliminates all rows
from a potential group.

Sample Query 9.5: Display the state code and average admission

fee for any state with a nature preserve that is larger
than 1,000 acres.

 STATE AVG(FEE)
AZ 1.50

MT 0.00

Logic: This result table does not contain a row for the MA
group. It just so happens that the WHERE-clause eliminates
(perhaps unintentionally) all the Massachusetts rows. Hence,
this potential group is not formed and does not appear in the
result table.

You might prefer to display a result that looks something like:

 STATE AVG(FEE)
AZ 1.50

 MT 0.00
 MA no-rows-selected

You must wait until Chapter 21 to learn how to do this.

SELECT STATE, AVG (FEE)

FROM PRESERVE

WHERE ACRES > 1000

GROUP BY STATE

Free SQL Book, Tim Martyn 203 Copyright Pending, 2022

HAVING-Clause

In the following sample query, we want to select all rows, form
groups, perform summary calculations for each group, and then
display a group’s summary total only if this total matches some
condition. The HAVING-clause is used for this purpose. This
clause examines each group’s summary total and displays this
total if it matches a specified condition.

Sample Query 9.6: For each state referenced in the PRESERVE

table, calculate the total acreage for all its preserves.

Then display each STATE and its total acreage only if that
total exceeds 15,000 acres.

STATE SUM(ACRES)
AZ 51360

MT 16931

Syntax: HAVING condition

When specified, the HAVING-clause must immediately follow a
GROUP BY clause. The condition must reference some column in the
intermediate-result table produced by the GROUP BY clause.

Logic: The first three clauses in this SELECT statement are
identical to the SELECT statement shown in Sample Query 9.1.

SELECT STATE, SUM (ACRES)

FROM PRESERVE
GROUP BY STATE

This statement produces the following result.

STATE SUM(ACRES)
AZ 51360
MA 1760

 MT 16931

Here, this result constitutes an intermediate-result table. The
HAVING-condition, SUM (ACRES) > 15000, selects just the AZ and

MT groups for display in the final result. Observe that the MA
group was formed and the sum of its acres was calculated.
However, this group was not displayed because its total acreage
(1760) did not exceed 15000.

SELECT STATE, SUM (ACRES)

FROM PRESERVE

GROUP BY STATE

HAVING SUM (ACRES) > 15000

Free SQL Book, Tim Martyn 204 Copyright Pending, 2022

WHERE & HAVING

The following sample query highlights the difference between the
WHERE and HAVING clauses. Again, the WHERE-clause initially
selects rows for inclusion into groups, and the HAVING-clause
subsequently selects just certain groups for display.

Sample Query 9.7: Do not consider Montana preserves. Display

each state and its total acreage if that total acreage
exceeds 15,000 acres.

STATE SUM(ACRES)
AZ 51360

Logic: The system executes the following sequence of operations.

The WHERE-clause excludes Montana preserves (even though
Montana’s total acreage happens to exceed 15,000 acres).

Two groups are formed for the Arizona and Massachusetts
preserves, and the SUM (ACRES) is calculated for each
group.

Finally, the HAVING-clause only returns the Arizona group
because, unlike the Massachusetts group, its total exceeds

15,000.

Observation: Although the above SELECT statement is only five
lines of code, there is “a whole lot of action going on” in this
code. This motivates the author’s advice on the first page of
this chapter. For some SQL rookies, it takes a little more
effort to internalize within the mind’s eye the sequence of
processing operations associated with the above SELECT
statement.

Summary Outline: Figure 9.1 (following page) outlines the
sequence of operations that are specified by this SELECT

statement.

SELECT STATE, SUM (ACRES)

FROM PRESERVE

WHERE STATE <> 'MT'

GROUP BY STATE

HAVING SUM (ACRES) > 15000

Free SQL Book, Tim Martyn 205 Copyright Pending, 2022

Figure 9.1: Sample Query 9.7

Sequence of Operations

PRESERVE Table

WHERE STATE <> 'MT'

Intermediate Result

STATE ACRES
AZ 660
AZ 49120
MA 66

MA 40
MA 830
MA 4
MA 730
AZ 380
MA 90
AZ 1200

GROUP BY STATE

SELECT STATE, SUM (ACRES)

Intermediate Result

STATE SUM(ACRES)
AZ 51360
MA 1760

HAVING SUM (ACRES) > 15000

Final Result

STATE SUM(ACRES)
AZ 51360

Intermediate Result

STATE ACRES
AZ 660
AZ 49120
AZ 380
AZ 1200
- - - - - -
MA 66
MA 40
MA 830
MA 4
MA 730
MA 90

Free SQL Book, Tim Martyn 206 Copyright Pending, 2022

Potential Confusion: HAVING versus WHERE

Sometimes, SQL rookies become confused over the difference
between the HAVING-clause versus the WHERE-clause. Both of these
clauses specify conditions, but they serve very different
purposes.

Figure 9.1 shows that the WHERE-clause specifies a condition for
row selection that is executed before the GROUP BY and HAVING
clauses. Any row that is not selected by the WHERE-clause will
not be placed into a group. The HAVING-clause comes into play

after the groups have been formed and after the aggregate
function has been executed. The HAVING-clause determines which
groups are to be selected for display.

Common Error: In the previous Sample Query 9.7, the HAVING-
clause correctly references the SUM function.

 HAVING SUM (ACRES) > 15000

However, sometimes a SQL rookie fails to specify the function-
name (SUM) and codes something like:

 HAVING ACRES > 15000 → Error

An error occurs because group totals do not contain individual
ACRES values.

Exercises:

9D. Display the size of the largest ACRES value protected by a

nature preserve within each state if that value is less
than 25,000 acres.

9E. For each state referenced in the PRESERVE table, display
the number of acres in the state’s smallest preserve if
that number is less than 100.

9F. Only consider nature preserves that have more than 1,000

acres. For each state, display its name and the size of the
largest ACRES value for a nature preserve within each state
if that value is less than 25,000 acres.

Free SQL Book, Tim Martyn 207 Copyright Pending, 2022

Common Error: Grouping by Unique Column

Sometimes a careless user groups by a unique column (or a unique
combination of columns). Consider the following example.

 PNO SUM(ACRES)
 1 1130
 2 15000
 3 680
 5 660
 6 1200
 7 49120
 9 830
 10 90

 11 4
 12 730
 13 40
 14 66
 40 121
 80 380

Because the syntax is valid, the statement executes and produces
a result table. However, the result is not very useful because
it does not display any new information.

Recall the PNO column is unique within the PRESERVE table, and

recall that PRESEVE has 14 rows. Therefore, the above statement
forms 14 groups where each group has one row, and the SUM
function only summarizes over one ACRES value in each group.
Such grouping is not reasonable.

The following statement produces the same result without
grouping and summarizing.

SELECT PNO, ACRES
 FROM PRESERVE

ORDER BY PNO

SELECT PNO, SUM (ACRES)

FROM PRESERVE

GROUP BY PNO

ORDER BY PNO

Free SQL Book, Tim Martyn 208 Copyright Pending, 2022

HAVING-Clause with Boolean Connectors

Chapter 4 introduced more complex WHERE-clauses that specified
Boolean connectors (AND, OR, NOT). In a similar manner, a
HAVING-clause can also specify Boolean connectors.

Sample Query 9.8: Display the minimum and maximum acreage values

for nature preserves located in each state if the minimum
ACRES value is greater than 10 acres and the maximum ACRES
value is less than 20,000 acres. Display the state code
along with its minimum and maximum acreage values.

STATE MIN (ACRES) MAX (ACRES)
MT 121 15000

Syntax & Logic: The same rules of logic apply to both the HAVING
and WHERE-clauses.

In the above statement, if we ignore the HAVING-clause, the
first three clauses produce the following intermediate-result
table.

STATE MIN(ACRES) MAX(ACRES)
AZ 380 49120
MA 4 830
MT 121 15000

When the system applies the HAVING-clause, only the Montana (MT)
row matches both of its conditions.

Exercise:

9G. Display the state and total size of the preserves located

in the state if the total size is greater than or equal to
10,000 acres and less than or equal to 50,000 acres.

SELECT STATE, MIN (ACRES), MAX (ACRES)

FROM PRESERVE

GROUP BY STATE

HAVING MIN (ACRES) > 10 AND MAX (ACRES) < 20000

Free SQL Book, Tim Martyn 209 Copyright Pending, 2022

Nesting Aggregate Functions

The following sample query nests an aggregate function (SUM)
within another aggregate function (MIN). Some systems (e.g.,
ORACLE) allow this kind of nesting. Other systems do not allow
this kind of nesting.

Sample Query 9.9: Determine the total acreage for each state,

and then display the smallest of these totals.

 MIN (SUM (ACRES))
 1760

Logic: Consider executing the above statement without the MIN
function as shown below.

SELECT SUM (ACRES)
FROM PRESERVE
GROUP BY STATE

The result would look like:

 SUM (ACRES)

51360
 1760
16931

This result becomes an intermediate-result table that is

processed by the MIN function.

Other Systems: If your system does not allow the nesting of
aggregate functions, Chapters 26 and 27 will present alternative
methods to satisfy this query objective. (Exercises 26G and 27G
will solve a similar query objective.)

Exercise:

9H. If your system allows the nesting of aggregate functions,

then determine the average number of preserve acres for
each state and display the largest of these averages.

SELECT MIN (SUM (ACRES)) ORACLE

FROM PRESERVE

GROUP BY STATE

Free SQL Book, Tim Martyn 210 Copyright Pending, 2022

Subtotals & Final Total

Revisit Sample Query 9.1 and its result shown below.

The totals produced by the SUM function can be interpreted as
subtotals of a final grand total. Users frequently ask, “How can

I display the final total along with the subtotals?” These users
want a result table that looks like:

STATE SUM(ACRES)
AZ 51360
MA 1760
MT 16931

 70051

We cannot (yet) present a single SELECT statement that satisfies
this query objective. This objective is similar the “Displaying
Detail-Lines with a Summary Total” topic that was described in

Chapter 8. There we presented four general solutions that are
also applicable here.

The two good solutions, SOL-3 and SOL-4, must be postponed until
later in this book.

Solution SOL-3 will specify the ALL option with the UNION
keyword. See Chapter 21.

 Solution SOL-4 (the best solution) will specify the ROLLUP

clause within the GROUP BY clause. See Chapter 9.5.

Given your current lack of knowledge about UNION and ROLLUP, the
following imperfect solutions, SOL-1 and SOL-2, can serve as
workarounds.

Solution SOL-1: Execute the above statement the get the
subtotal rows. Then use your front-end tool’s computational
facilities to produce the final summary row.

Solution SOL-2: Execute two independent SELECT statements.
Then cut-and-paste to merge the results.

The same advantages/disadvantages for each solution that were

described in Chapter 8 apply here.

SELECT STATE, SUM (ACRES)
FROM PRESERVE
GROUP BY STATE

STATE SUM(ACRES)
AZ 51360
MA 1760
MT 16931

Free SQL Book, Tim Martyn 211 Copyright Pending, 2022

Summary

Thus far, we have presented the following clauses within our
generic SELECT statement. All clauses are optional except the
SELECT-clause and FROM-clause. These clauses must be specified
in the top-down order shown below.

 SELECT [DISTINCT] column, aggregate-function
 FROM table

 [WHERE condition (s)]
 [GROUP BY grouping-column]

 [HAVING condition (s)]
 [ORDER BY column(s)]

GROUP BY Clause: The GROUP BY clause forms groups of rows based
upon values from a specified column. (The following Chapter 9.5
will show that a GROUP BY clause can reference multiple
columns.) This clause is specified when you want to apply an
aggregate function to each group.

HAVING-Clause: When specified, a HAVING-clause must immediately
follow a GROUP BY clause. The HAVING-clause selects specific
groups for display. The HAVING-clause may also include Boolean

connectors. If the HAVING-clause is not present, all groups are
selected for display.

Recommendation:

1. Review the above generic SELECT statement.

2. Review Figure 9.1 that illustrated the sequence of
operations for Sample Query 9.7.

3. Examine Figure 9.2 (on the following page) that generalizes

Figure 9.1

Free SQL Book, Tim Martyn 212 Copyright Pending, 2022

Summary: Sequence of Operations

The following Figure 9.2 is important. It describes the sequence
of operations associated with each clause in a SELECT statement
(as presented thus far in this book).

Figure 9.2

Sequence of Operations

Table

WHERE ________

Intermediate Result

GROUP BY ______

SELECT ____, _______

HAVING _______

Intermediate Result

Intermediate Result

Final Result

Free SQL Book, Tim Martyn 213 Copyright Pending, 2022

Author Suggestion: Careful! Read at your own Risk

I thought twice about including the following observations in
this book.

When working with SQL rookies who were experiencing some
difficulty with this chapter, I resorted to making the following
observations. Sometimes, the “light went on,” and there was an
“ah ha” moment. Sometimes, I only added to the confusion.

The preceding Figure 9.2 outlines the way I think when designing

(not coding) a SELECT statement that involves grouping and
summarizing data.

Similar to Figure 9.2, I think in the following sequence.

Finally, I code the above clauses in the required sequence.

 SELECT group-col, agg-function

 FROM table

 WHERE condition

 GROUP BY group-col

 HAVING condition

FROM table → specify desired table

WHERE condition(s) → select desired rows

GROUP BY group-col → form groups with selected rows

SELECT group-col, agg-fn → calculate group summary totals

HAVING condition → select desired groups

Free SQL Book, Tim Martyn 214 Copyright Pending, 2022

Summary Exercises

The following exercises pertain to the EMPLOYEE table.

9I. For all department DNO values found in the EMPLOYEE table,

display the DNO value followed by the average SALARY for
that department.

9J. For all department DNO values found in the EMPLOYEE table,

display the DNO value followed by the sum, maximum, and
minimum of SALARY values for that department.

9K. Consider all departments except for Department 40. For

these departments, display their DNO value followed by the
number of employees who work in that department.

9L. For each department, determine the total number of

employees who work in that department. Assume the SALARY
column contains confidential data, and that someone could
deduce this confidential data by examining the total of
each department’s salaries. Therefore, you decide to
display only those departments where the employee count
exceeds two.

9M. Outline a poor man’s cut-and-paste solution that can be

used to produce the following result. (A much better
solution will be described later in thus book.)

STATE SUM(ACRES)
AZ 51360
MA 1760
MT 16931

 TOTAL 70051

Free SQL Book, Tim Martyn 215 Copyright Pending, 2022

Appendix 9A: Efficiency

Reduced Communication Costs: In Appendix 8A we emphasized the
performance advantages of having the database engine perform
calculations and send the result to the front-end tool or program.
Similar efficiency advantages apply the GROUP BY and HAVING
clauses used in conjunction with the aggregate functions.

For example, if an average group contains 20 rows, then, after
grouping and summarizing, the result table is 5% (1/20) of the

size of the table. Returning a result that is only 5% the size of
the table is far more efficient than returning all rows so that
the grouping and summarizing are done by a front-end tool/program.

Potential Sort Costs: Appendix 2A described sorting costs
associated the ORDER BY clause; and, Appendix 3A noted that
DISTINCT might produce an internal sort to detect duplicate rows.
Similar observations also apply to the GROUP BY clause which might
utilize an internal sort to form groups.

Incidental Sort: With the exception of Sample Query 9.3, all
examples in this chapter did not include an ORDER BY clause.

However, you may have observed that result tables were
incidentally sorted by the grouping-column. This may occur if
the optimizer decides to sort selected rows to facilitate the
formation of groups. Hence, GROUP BY may incur incidental sort
costs. (Internal sorting for the purpose of grouping does not
always happen. Therefore, you should always specify an ORDER BY
clause if you want rows displayed in some desired row sequence.)

Application Program Efficiency & Simplicity: Unfortunately, some
application programmers who write embedded SQL fail to capitalize
on the advantages provided by the GROUP BY and HAVING clauses.

Assume that the PRESERVE table has 14 million rows. Consider two
programs written in some programming language (e.g., JAVA, COBOL)
with embedded SELECT statements. Both programs want to satisfy the
query objective for Sample Query 9.7.

Program-1 (Figure 9.A1 on next page) is coded by a programmer who
never learned, or forgot about, the GROUP BY and HAVING clauses.
Therefore, Program-1 satisfies the query objective by coding an
embedded SELECT statement that does not capitalize on GROUP BY and
HAVING.

Program-2 (Figure 9.A2 on next page) has the same SELECT statement
shown in Sample Query 9.7. This statement specifies a GROUP BY and

HAVING clause to perform the grouping operations, summary
calculations, and group selection.

Free SQL Book, Tim Martyn 216 Copyright Pending, 2022

Program-2 is smaller and simpler. Hence, it is less prone to
errors. Program-1 has a greater chance of error because the
programmer’s logic for grouping, summarizing, and group selection

could be faulty.

Program-2 is faster. When Program-2 finishes, no more than 49 rows
(for all states except Montana) have been returned to the program.
Program-1 is very inefficient. The SELECT statement would return
approximately 98% (49/50) of the 14 million rows! (The cursor in
Program-1 iterates millions of times, while the cursor in Program-
2 only iterates 49 times.)

Conclusion:

Greater Efficiency

Small powerful
SELECT Statements

Fewer Errors

Figure 9.A1: Program-1

(Larger & more complex)

Do-it-yourself code
to implement GROUP BY

and HAVING logic.

SELECT STATE, ACRES
FROM PRESERVE
WHERE STATE <> ‘MT’

Figure 9.A2: Program-2

(Smaller and simpler)

SELECT STATE, SUM (ACRES)

FROM PRESERVE
WHERE STATE <> ‘MT’
GROUP BY STATE
HAVING SUM (ACRES) > 15000

Free SQL Book, Tim Martyn 217 Copyright Pending, 2022

Chapter

9.5

Grouping by Multiple Columns

GROUP BY Clause:

This optional chapter, which goes deeper into the GROUP BY
clause, is a continuation of the preceding Chapter 9. (This

chapter starts with Sample Query 9.10.) Specifically, this
chapter presents grouping and summarizing by multiple columns
where the GROUP BY clauses look like:

 GROUP BY COLX, COLY

 GROUP BY COLZ, COLY, COLX

Many users simply retrieve data and only “look at it.”
Occasionally, these users do just a “little bit of arithmetic”
using the SQL facilities already presented in Chapters 7-9.
These users can safely skip this chapter without any loss of

continuity. You should read this chapter if your grouping and
summarizing objectives are more complex than the sample queries
presented in the previous chapter.

“Simple” Tables: Thus far, most sample queries and exercises
have referenced the PRESERVE and EMPLOYEE tables. Because these
tables are easy to understand, we have been able to focus our
attention on SELECT statements without having to spend much
effort trying to understand the data in these tables. Also, one
simplifying feature is that each table has a unique column. For
example, PNO is unique within the PRESERVE table, and ENO is
unique within the EMPLOYEE table.

A More “Complex” Table – The PURCHASE Table: In this chapter,
all sample queries will reference the PURCHASE table. This table
is more complex because no single column will necessarily
contain unique values. The following pages describe this table.

Free SQL Book, Tim Martyn 218 Copyright Pending, 2022

PURCHASE: A More Complex Table

Simply “eyeball” the following PURCHASE table. (Its rows are
sorted for easier reading.) Observe that no single column
contains unique values. The semantics of this table are
described on the following page.

Figure 9.2: PURCHASE Table

PNO SNO ENO PJNO PURDAY COST DISCOUNT
P1 S1 E1 PJ1 1 200 0

P1 S1 E1 PJ1 17 250 50
P1 S1 E1 PJ1 80 300 0

P1 S1 E1 PJ3 5 200 0

P1 S1 E1 PJ3 6 200 0
P1 S2 E2 PJ3 85 300 100
P2 S1 E1 PJ2 1 1000 0

P2 S1 E2 PJ2 2 1000 0
P2 S1 E2 PJ2 85 1200 0
P3 S1 E1 PJ1 10 500 100

P3 S1 E1 PJ1 11 500 100
P3 S1 E1 PJ1 70 550 200
P3 S3 E3 PJ1 7 1200 1100

P3 S3 E3 PJ2 14 1200 1000
P3 S4 E4 PJ1 10 1100 0
P3 S4 E4 PJ2 21 1100 50

P4 S1 E1 PJ3 11 300 75

P4 S1 E1 PJ3 22 300 75
P4 S1 E2 PJ2 11 300 0

P4 S2 E2 PJ2 10 300 0
P4 S2 E2 PJ2 70 400 50
P4 S2 E2 PJ3 33 300 0

P4 S3 E3 PJ1 8 1200 9000
P4 S3 E3 PJ2 15 1200 1000
P4 S4 E4 PJ1 15 1200 0

P4 S4 E4 PJ1 70 1200 0
P5 S1 E1 PJ1 11 1200 0
P5 S1 E1 PJ1 22 1200 0

P5 S1 E1 PJ1 33 1500 25
P5 S3 E3 PJ1 9 1500 1400
P5 S3 E3 PJ2 16 1500 1300

P5 S4 E4 PJ2 20 1500 50

P6 S2 E2 PJ2 11 200 0
P6 S2 E2 PJ2 33 100 0

P6 S4 E4 PJ2 71 1500 0
P7 S3 E1 PJ1 11 1000 0
P7 S3 E1 PJ1 33 1000 0

P7 S4 E1 PJ1 22 1000 0
P7 S4 E2 PJ2 61 1200 0
P7 S4 E2 PJ2 72 1200 200

P8 S1 E1 PJ1 61 100 0
P8 S1 E1 PJ1 72 100 0
P8 S1 E1 PJ1 73 100 0

P8 S1 E1 PJ2 43 100 100
P8 S1 E2 PJ2 41 100 50
P8 S2 E1 PJ2 42 100 75

Free SQL Book, Tim Martyn 219 Copyright Pending, 2022

Semantics of the PURCHASE Table

Each row in the PURCHASE table contains information about the
purchase of a part from a supplier by an employee for use in a
project. We note that:

• Each part is identified by a part number (PNO)

• Each supplier is identified by a supplier number (SNO)

• Each employee is identified by an employee number (ENO)

• Each project is identified by a project number (PJNO)
These four columns contain character-string data.

The other three columns contain integer values. These are:

• PURDAY: Date of purchase. Here, 1 represents the first day
of the current year, 2 represents the second day of the
current year, etc.

• COST: Dollar cost of the part.

• DISCOUNT: Discount amount which can range from zero to the
full COST of the part.

Important: Any part may be purchased from any supplier by any
employee for use in any project. Also, on different days, the

same part can be purchased from the same supplier by the same
employee for use in the same project. (For example, examine the
first three rows in Figure 9.2.) However, this kind of purchase
cannot happen multiple times during the same day. Therefore, any
combination of (PNO, SNO, ENO, PJNO, PURDAY) values must be
unique.

Verify the above observations by examining the PNO, SNO, ENO,
PJNO, and PURDAY columns in the PURCHASE table. Note that:

• Every column contains some duplicate values.

• Every pair of columns contains some duplicate values. For
example, the first five rows which shows the same (PNO,

SNO) values.

• Every triplet of columns contains some duplicate values.
For example, the first five rows show the same (PNO, SNO,
ENO) values.

• Every quadruple of columns contains some duplicate values.
For example, the first three rows show the same (PNO, SNO,
ENO, PJNO) values.

• However, every quintuple of (PNO, SNO, ENO, PJNO, PURDAY)
values is unique.

Free SQL Book, Tim Martyn 220 Copyright Pending, 2022

Review: Grouping by One Column

The following sample query references the PURCHASE table and
groups rows by a single column.

Sample Query 9.10: Reference the PURCHASE table. For each

project, display its project number (PJNO) followed by the
total cost of all parts purchased for the project. Sort the
result by PJNO values.

PJNO TOTCOST
PJ1 16900
PJ2 15200
PJ3 1600

Syntax & Logic: Nothing new.

ORDER BY Clause: Sorting a result table by the grouping-column
(PJNO), as illustrated in this example, makes it easier to
understand. Therefore, all of this chapter’s examples will
specify an ORDER BY clause. (Here, if you did not specify an
ORDER BY clause, there is a good chance that you might observe
an incidentally sorted result.)

Sample Query 9.11: Reference the PURCHASE table. For each

supplier, display its supplier number (SNO) followed by the
total cost of all parts purchased from the supplier.

PJNO TOTCOST
S1 11200

 S2 1700
 S3 9800

S4 11000

Syntax & Logic: Nothing new.

SELECT PJNO, SUM (COST) TOTCOST

FROM PURCHASE
GROUP BY PJNO
ORDER BY PJNO

SELECT SNO, SUM (COST) TOTCOST

FROM PURCHASE
GROUP BY SNO
ORDER BY SNO

Free SQL Book, Tim Martyn 221 Copyright Pending, 2022

Exercises

The following exercises group by one column of the PURCHASE
table.

9N. Reference the PURCHASE table. For each part, display its

part number (PNO) followed by the total cost of all its
parts. The result should look like:

 PNO TOTCOST
 P1 1450

 P2 3200
 P3 6150
 P4 6700
 P5 8400
 P6 1800
 P7 5400
 P8 600

9O. Reference the PURCHASE table. For each employee who

purchased a part, display his employee number (ENO)
followed by the total cost of all parts purchased by the

employee. The result should look like:

 ENO TOTCOST
 E1 11700
 E2 6600
 E3 7800
 E4 7600

Free SQL Book, Tim Martyn 222 Copyright Pending, 2022

Grouping by Two Columns

The following sample query specifies a GROUP BY clause that
references two columns.

Sample Query 9.12: Reference the PURCHASE table. For each

project that used parts supplied by some supplier, display
the project’s PJNO value, followed by the supplier’s SNO
value, followed by the total cost of the project’s parts
purchased from the supplier. Sort the result by SNO within
PJNO.

PJNO SNO TOTCOST
PJ1 S1 6500
PJ1 S3 5900
PJ1 S4 4500
PJ2 S1 3700
PJ2 S2 1100

PJ2 S3 3900
PJ2 S4 6500
PJ3 S1 1000

 PJ3 S2 600

Syntax: GROUP BY (Column1, Column2)

Logic: Group by pairs of (PJNO, SNO) values, and then summarize
the COST values for each group.

Important Observation-1: You must know that duplicate pairs of
(PJNO, SNO) values can possibly appear in some rows. Otherwise,

there is no need to summarize over unique pairs of values.

Important Observation-2: Make a simple modification to the above
SELECT statement. “Swap” the two columns specified in the GROUP
BY clause such that the revised statement now looks like:

SELECT PJNO, SNO, SUM (COST) TOTCOST
FROM PURCHASE

GROUP BY SNO, PJNO
ORDER BY PJNO, SNO

Execute this revised statement. Observe the same result. We will

elaborate on this observation after Sample Query 9.17.

SELECT PJNO, SNO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY PJNO, SNO
ORDER BY PJNO, SNO

Free SQL Book, Tim Martyn 223 Copyright Pending, 2022

Different Query Objective: Same Result Table (Almost)

The query objective of the previous Sample Query 9.12 focused on
projects. Note that PJNO was specified as the first (leftmost)
column in the result table. Consider the following query
objective that focuses on suppliers where SNO is specified as
the first column in the result table.

Sample Query 9.13: For each supplier who sold at least one part

for use in some project, display the supplier’s SNO value,
followed by the project’s PJNO value, followed by the total

cost of the parts that the supplied sold for the project.
Sort the result by PJNO within SNO.

SNO PJNO TOTCOST
S1 PJ1 6500
S1 PJ2 3700
S1 PJ3 1000

S2 PJ2 1100
S2 PJ3 600
S3 PJ1 5900
S3 PJ2 3900
S4 PJ1 4500

 S4 PJ2 6500

Syntax and Logic: Nothing new.

Important Observation: This result table displays the same data
as the previous result table. The only differences pertain to
the left-to-right column sequence and the top-to-bottom row

sequence. From a practical viewpoint, most business users will
consider the revised left-to-right/top-to-bottom sequences to be
significant and contend that this result table differs from the
previous result table. (A few theoretically minded users might
disagree. From a theory viewpoint, Sample Queries 9.11 and 9.12
return the same result set. Review Appendix 2B.)

Again, an Important Observation: Reorder the GROUP BY columns
such that it looks like:

 GROUP BY PJNO, SNO

Execute the revised statement. Observe the same result. We will
elaborate on this observation after Sample Query 9.17.

SELECT SNO, PJNO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY SNO, PJNO
ORDER BY SNO, PJNO

ORDER BY TOTPRICE DESC

Free SQL Book, Tim Martyn 224 Copyright Pending, 2022

Sample Query 9.14: Reference the PURCHASE table. For each
employee who purchased parts from a supplier, display the
employee’s ENO value, followed by the supplier’s SNO value,
followed by the total cost of parts the employee purchased
from the supplier.

 ENO SNO TOTCOST
 E1 S1 8600
 E1 S2 100
 E1 S3 2000
 E1 S4 1000
 E2 S1 2600
 E2 S2 1600
 E2 S4 2400
 E3 S3 7800
 E4 S4 7600

Syntax & Logic: Nothing new.

Observation: This result shows that Employee E4 only purchased
parts from one supplier (S4). There may be a good reason for
this. (Or, maybe Employee E4 plays a lot of golf with Supplier
S4.) A similar observation applies to Employee E3.

Again, an Important Observation: Reorder the GROUP BY columns
such that it looks like:

 GROUP BY SNO, ENO

Execute the revised statement. Observe the same result. We will

elaborate on this observation after Sample Query 9.17.

SELECT ENO, SNO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY ENO, SNO
ORDER BY ENO, SNO

Free SQL Book, Tim Martyn 225 Copyright Pending, 2022

Different Query Objective: Same Result Table (Almost)

The previous Sample Query 9.14 focused on employees where ENO
was specified first in the SELECT-clause. Consider the following
query objective that focuses on suppliers where SNO is specified
first in the SELECT-clause.

Sample Query 9.15: Reference the PURCHASE table. For each

supplier who sold parts to an employee, display the
supplier’s SNO value, followed by the employee’s ENO value,
followed by the total cost of parts the supplier sold to

the employee.

 SNO ENO TOTCOST
 S1 E1 8600
 S1 E2 2600
 S2 E1 100
 S2 E2 1600

 S3 E1 2000
 S3 E3 7800
 S4 E1 1000
 S4 E2 2400
 S4 E4 7600

Syntax & Logic: Nothing new.

Observation: This result table displays the same data as the
previous result table for Sample Query 9.14. The only
differences pertain to the left-to-right column sequence and the
top-to-bottom row sequence.

Again – Reorder GROUP BY Columns: Reorder the GROUP BY columns
such that it looks like:

 GROUP BY ENO, SNO

Execute the revised statement. Observe the same result. We will
elaborate on this observation after Sample Query 9.17.

Front-End Tool Reorders Columns/Rows: Many front-end tools allow
you to “reorganize” the preceding result table (for Sample Query
9.14) into the above result table. Such tools provide a simple

way to (i) alter the left-to-right column sequence, and (ii)
sort a result table into a different row sequence. This can be
very useful for ad hoc modification of a report’s format.

SELECT SNO, ENO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY SNO, ENO
ORDER BY SNO, ENO

Free SQL Book, Tim Martyn 226 Copyright Pending, 2022

Grouping by Three Columns

The following sample query specifies a GROUP BY clause that
references three columns.

Sample Query 9.16: Access the PURCHASE table. For each project

where an employee purchased a part from a supplier for use
in the project, display the corresponding PJNO, ENO, and
SNO values followed by the total cost of parts purchased by
the employee from the supplier for the project. Sort the
result by SNO within ENO within PJNO.

PJNO ENO SNO TOTCOST
PJ1 E1 S1 6500

 PJ1 E1 S3 2000
 PJ1 E1 S4 1000
 PJ1 E3 S3 3900
 PJ1 E4 S4 3500

 PJ2 E1 S1 1100
 PJ2 E1 S2 100
 PJ2 E2 S1 2600
 PJ2 E2 S2 1000
 PJ2 E2 S4 2400
 PJ2 E3 S3 3900
 PJ2 E4 S4 4100
 PJ3 E1 S1 1000

PJ3 E2 S2 600

Again – Reorder GROUP BY Columns: The following GROUP BY clauses
are equivalent to each other.

GROUP BY PJNO, ENO, SNO
GROUP BY PJNO, SNO, ENO
GROUP BY ENO, PJNO, SNO
GROUP BY ENO, SNO, PJNO
GROUP BY SNO, ENO, PJNO
GROUP BY SNO, PJNO, SNO

Again, we explain after Sample Query 9.17.

SELECT PJNO, ENO, SNO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY PJNO, ENO, SNO
ORDER BY PJNO, ENO, SNO

Free SQL Book, Tim Martyn 227 Copyright Pending, 2022

Different Query Objective: Same Result Table (Almost)

The query objective of the previous Sample Query 9.16 focused on
projects. Notice that PJNO was specified as the first column in
the result table. Consider the following query objective that
focuses on suppliers where SNO is specified as the first column
in the result table.

Sample Query 9.17: For each supplier who sold a part to an

employee for use in a project, display the corresponding
SNO, PJNO, and ENO values followed by the total cost of

parts purchased from the supplier by the employee for use
in the project. Sort the result by ENO within PJNO within
SNO.

SNO PJNO ENO TOTCOST
 S1 PJ1 E1 6500
 S1 PJ2 E1 1100

 S1 PJ2 E2 2600
 S1 PJ3 E1 1000
 S2 PJ2 E1 100
 S2 PJ2 E2 1000
 S2 PJ3 E2 600
 S3 PJ1 E1 2000
 S3 PJ1 E3 3900
 S3 PJ2 E3 3900
 S4 PJ1 E1 1000
 S4 PJ1 E4 3500
 S4 PJ2 E2 2400
 S4 PJ2 E4 4100

Syntax & Logic: Nothing new.

Observation: This result table displays the same data as the
previous result for Sample Query 9.16. The only differences
pertain to the left-to-right column sequence and the top-to-
bottom row sequence.

Again, Reorder GROUP BY Columns: The following GROUP BY clauses
are equivalent to each other.

GROUP BY SNO, PJNO, ENO

GROUP BY SNO, ENO, PJNO
GROUP BY PJNO, ENO, SNO
GROUP BY PJNO, SNO, ENO
GROUP BY ENO, PJNO, SNO
GROUP BY ENO, SNO, PJNO

SELECT SNO, PJNO, ENO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY SNO, PJNO, ENO
ORDER BY SNO, PJNO, ENO

Free SQL Book, Tim Martyn 228 Copyright Pending, 2022

GROUP BY a “Combination” of Columns

The “Reorder GROUP BY Columns” commentary in the previous sample
queries should have (hopefully) encouraged you to conclude that
you can specify the GROUP BY columns in any sequence. This
observation leads into a little mathematics.

Given a set of values: {10, 30, 20}

Each of the following triplets represent the same “combination”
of values.

 (10, 20, 30)
 (10, 30, 20)
 (20, 10, 30)
 (20, 30, 10)
 (30, 10, 20)
 (30, 20, 10)

Key point: The GROUP BY clause specifies a combination of
columns.

Example: Given three columns, COL1, COL2, and COL3, the

following GROUP BY clauses are equivalent.

 GROUP BY COL1, COL2, COL3
 GROUP BY COL1, COL3, COL2
 GROUP BY COL2, COL1, COL3
 GROUP BY COL2, COL3, COL1
 GROUP BY COL3, COL1, COL2
 GROUP BY COL3, COL2, COL1

Articulation of Query Objectives: Assuming the user understands
the meaning of “combination,” you could re-articulate the query
objective for Sample Query 9.16 as:

For each combination of (PJNO, ENO, SNO) values, display the
PJNO, ENO, SNO values in left-to-right column sequence,
followed by the total cost for each combination of these
values. Sort the result . . .

Again, writing a precise, concise, and unambiguous query
objective in some human language may not be easy.

Free SQL Book, Tim Martyn 229 Copyright Pending, 2022

Exercises

The following exercises group by two columns.

9P. Access the PURCHASE table. Calculate the total of COST for

each combination of (PJNO, ENO) of values. Display these
columns in the (PJNO, ENO) left-to-right column sequence
followed by the total cost. Sort the result in ascending
sequence by (PJNO, ENO). The result should look like:

 PJNO ENO TOTCOST

 PJ1 E1 9500
 PJ1 E3 3900
 PJ1 E4 3500
 PJ2 E1 1200
 PJ2 E2 6000
 PJ2 E3 3900
 PJ2 E4 4100
 PJ3 E1 1000

PJ3 E2 600

9Q. Access the PURCHASE table. Calculate the total of COST for

each combination of (PNO, SNO) of values. Display these
columns in the (PNO, SNO) left-to-right column sequence
followed by the total cost. Sort the result in ascending
sequence by (PNO, SNO). The result should look like:

 PNO SNO TOTCOST
 P1 S1 1150
 P1 S2 300
 P2 S1 3200
 P3 S1 1550
 P3 S3 2400
 P3 S4 2200

 P4 S1 900
 P4 S2 1000
 P4 S3 2400
 P4 S4 2400
 P5 S1 3900
 P5 S3 3000
 P5 S4 1500
 P6 S2 300
 P6 S4 1500
 P7 S3 2000
 P7 S4 3400
 P8 S1 500

 P8 S2 100

Free SQL Book, Tim Martyn 230 Copyright Pending, 2022

The following exercises group by three columns.

9R. Access the PURCHASE table. Calculate the total of COST for

each combination of (PJNO, ENO, SNO) values. Display these
columns in the (PJNO, ENO, SNO) left-to-right column
sequence followed by the total cost. Sort the result in
ascending sequence by (PJNO, ENO, SNO). The result should
look like:

 PJNO ENO SNO TOTCOST

 PJ1 E1 S1 6500
 PJ1 E1 S3 2000

 PJ1 E1 S4 1000
 PJ1 E3 S3 3900
 PJ1 E4 S4 3500
 PJ2 E1 S1 1100
 PJ2 E1 S2 100
 PJ2 E2 S1 2600
 PJ2 E2 S2 1000
 PJ2 E2 S4 2400
 PJ2 E3 S3 3900
 PJ2 E4 S4 4100
 PJ3 E1 S1 1000
 PJ3 E2 S2 600

9S. Access the PURCHASE table. Calculate the total of COST for
each combination of (PNO, SNO, ENO) values. Display these
columns in the (PNO, SNO, ENO) left-to-right column
sequence followed by the total cost. Sort the result in
ascending sequence by (PNO, SNO, ENO). The result should
look like:

 PNO SNO ENO TOTCOST

 P1 S1 E1 1150
 P1 S2 E2 300
 P2 S1 E1 1000
 P2 S1 E2 2200

 P3 S1 E1 1550
 P3 S3 E3 2400
 P3 S4 E4 2200
 P4 S1 E1 600
 P4 S1 E2 300
 P4 S2 E2 1000
 P4 S3 E3 2400
 P4 S4 E4 2400
 P5 S1 E1 3900
 P5 S3 E3 3000
 P5 S4 E4 1500
 P6 S2 E2 300
 P6 S4 E4 1500

 P7 S3 E1 2000
 P7 S4 E1 1000
 P7 S4 E2 2400
 P8 S1 E1 400
 P8 S1 E2 100
 P8 S2 E1 100

Free SQL Book, Tim Martyn 231 Copyright Pending, 2022

Grouping by Four Columns

The following sample query specifies a GROUP BY clause that
references four columns.

Sample Query 9.18: Access the PURCHASE table. Extend Sample

Query 9.16 with another level of detail by including PNO
values. For each project where an employee purchased a part
from a supplier for use in the project, display the
corresponding PJNO, ENO, SNO and PNO values followed by the
total cost of each part purchased by the employee from the

supplier for the project. Sort the result by PNO within SNO
within ENO within PJNO.

Alternatively, for each combination of (PJNO, ENO, SNO, PNO)
values, display the PJNO, ENO, SNO, PNO columns in left-to-
right column sequence, followed by the total cost for each
combination of values. Sort by . . .

PJNO ENO SNO PNO TOTCOST

 PJ1 E1 S1 P1 750
 PJ1 E1 S1 P3 1550
 PJ1 E1 S1 P5 3900
 PJ1 E1 S1 P8 300
 PJ1 E1 S3 P7 2000
 PJ1 E1 S4 P7 1000
 PJ1 E3 S3 P3 1200
 PJ1 E3 S3 P4 1200
 PJ1 E3 S3 P5 1500
 PJ1 E4 S4 P3 1100

 PJ1 E4 S4 P4 2400
 .. total of 30 rows,
 .. includes rows for Projects PJ2, PJ3, and PJ4

Syntax & Logic: Nothing new. The GROUP BY clause specified four
columns.

Reorder GROUP BY Columns: Given 4 columns, there are a total of
4! = 24 equivalent GROUP BY clauses.

SELECT PJNO, ENO, SNO, PNO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY PJNO, ENO, SNO, PNO
ORDER BY PJNO, ENO, SNO, PNO

Free SQL Book, Tim Martyn 232 Copyright Pending, 2022

Important Syntax Rule

We could have introduced the following syntax rule earlier in
this chapter. However, our sample queries were simple enough to
allow us to delay presenting this slightly complex rule.

Author Comment: When I help a student debug an erroneous SELECT
statement that includes a GROUP BY clause, the first thing I do
is determine if the statement obeys the following syntax rule.
Frequently, failure to obey this rule is the source of the
problem. This is especially true if the system returns some kind

of “GROUP BY” error message.

The following examples obey this syntax rule:

Example-1: Sample Query 9.1 specified the following SELECT and
GROUP BY clauses which obey this rule.

SELECT STATE, SUM (ACRES)
FROM PRESERVE

 GROUP BY STATE
 ORDER BY STATE

The second column in this SELECT-clause specifies an aggregate
function (SUM). However, the first column, STATE, does not
specify an aggregate function. Therefore, STATE must be
specified in the GROUP BY clause (as shown).

Example-2: The following SELECT and GROUP BY clauses obey this
rule.

SELECT SNO, PNO, AVG (COST)
FROM PURCHASE
GROUP BY SNO, PNO
ORDER BY SNO, PNO

The third column in this SELECT-clause specifies an aggregate
function (AVG). The first (SNO) and second (PNO) columns do not
specify an aggregate function. Therefore, both the SNO and PNO

must be specified in the GROUP BY clause (as shown).

GROUP BY Syntax Rule: Whenever a SELECT-clause specifies
one or more aggregate functions, if this SELECT-clause
also specifies a column without an aggregate function,
this column must be specified within a GROUP BY clause.

Free SQL Book, Tim Martyn 233 Copyright Pending, 2022

Examples that violate the GROUP BY syntax rule:

Example-3: SELECT STATE, SUM (ACRES)

 FROM PRESERVE → Error

The second column in the SELECT-clause specifies an aggregate
function, and the STATE column does not specify aggregate
function. Hence, STATE must be specified in a GROUP BY clause.
But there is no GROUP BY clause.

Example-4: SELECT STATE, FEE, SUM (ACRES)

 FROM PRESERVE

 GROUP BY STATE → Error

The third column in this SELECT-clause specifies an aggregate
function, and the STATE and FEE columns do not specify aggregate
functions. Hence, both the STATE and FEE columns must be
specified in the GROUP BY clause. However, this GROUP BY clause
fails to specify the FEE column.

Example-5: SELECT PNO, STATE, AVG (FEE), SUM (ACRES), FEE

 FROM PRESERVE

 GROUP BY STATE, FEE → Error

The third and fourth columns in this SELECT-clause specify
aggregate functions, and none of the other three columns specify
an aggregate function. Hence, these other columns (PNO, STATE
and FEE) must be specified in the GROUP BY clause. However, this
GROUP BY clause fails to specify the PNO column.

Example-6: SELECT PJNO, SNO, PNO, MAX (COST)
 FROM PURCHASE

 GROUP BY PONO, PNO → Error

The fourth column in this SELECT-clause specifies an aggregate
function, and the other columns (PONO, SNO, and PNO) do not
specify an aggregate function. Hence, PONO, SNO, and PNO must be
specified in the GROUP BY clause. However, this GROUP BY clause
fails to specify the SNO column.

Free SQL Book, Tim Martyn 234 Copyright Pending, 2022

Another Common Error: Grouping by Unique Combination of Columns

Review: The previous chapter noted that the following statement
produces a useless result table because the GROUP BY clause
referenced a unique column.

SELECT PNO, SUM (ACRES)
FROM PRESERVE

GROUP BY PNO
ORDER BY PNO

This kind of error extends to any unique combination of columns.
Consider the following example which groups by five columns.
Grouping by five, or any number of columns, is fine, if we know
that the combination of columns is always non-unique. However,
this does not apply to the following grouping of the (SNO, PNO,
ENO, PJNO, PURDAY) columns.

 SNO PNO ENO PJNO PURDAY TOTCOST
 S1 P1 E1 PJ1 1 200
 S1 P1 E1 PJ1 17 250
 S1 P1 E1 PJ1 80 300
 S1 P1 E1 PJ3 5 200
 S1 P1 E1 PJ3 6 200
 S1 P2 E1 PJ2 1 1000
 S1 P2 E2 PJ2 2 1000
 S1 P2 E2 PJ2 85 1200
 S1 P3 E1 PJ1 10 500
 S1 P3 E1 PJ1 11 500

 total of 46 rows . . .

Logic: Recall the business rule that on different days, the same
part can be purchased from the same supplier by the same
employee for use in the same project. However, this kind of
purchase cannot happen multiple times during the same day. Hence
the combination of (SNO, PNO, ENO, PJNO, PURDAY) values is
unique.

Because the syntax is valid, the statement executes and produces
the above result table. However, this result is not useful
because it does not present any new information. The above
result has 46 rows, the same number of rows in the PURCHASE

table. The above GROUP BY clause forms 46 groups where each
group contains just one row, and the SUM function only
summarizes over the one COST value in each group. Such grouping
is not reasonable.

SELECT SNO, PNO, ENO, PJNO, PURDAY, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY SNO, PNO, ENO, PJNO, PURDAY
ORDER BY SNO, PNO, ENO, PJNO, PURDAY

Free SQL Book, Tim Martyn 235 Copyright Pending, 2022

Basic Grouping Pattern

Previous query objectives and corresponding SELECT statements
fit a basic pattern. Consider the SELECT statement for Sample
Query 9.17.

SELECT SNO, PJNO, ENO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY SNO, PJNO, ENO
ORDER BY SNO, PJNO, ENO

SELECT-Clause: The combination of grouping-columns (SNO, PJNO,
ENO) is not unique. Also, the grouping-columns appear to the
left of the aggregate functions. This is common, but not
required.

GROUP BY Clause: This clause specifies the grouping-columns and
must be in sync with the SELECT-clause (as described in previous
Important Syntax Rule). Also, grouping-columns are usually
specified in the same left-to-right column sequence as grouping
columns in SELECT-clause. This is common, but not required.

ORDER BY Clause: This clause frequently specifies the grouping-

columns specified in the same left-to-right column sequence as
the grouping-columns in the SELECT and GROUP BY clauses. This is
common, but not required.

Generic Skeleton-Code: The above observations imply that the

following skeleton-code represents many SELECT statements
that group by multiple columns.

SELECT COLX, COLA, COLB, agg-fn1, agg-fn2, . . .

FROM ______

WHERE ______

GROUP BY COLX, COLA, COLB

HAVING ______

ORDER BY COLX, COLA, COLB

Free SQL Book, Tim Martyn 236 Copyright Pending, 2022

The following sample query requires additional code that does
not change the basic query pattern described on the previous
page. This SELECT statement includes a WHERE-clause.

Sample Query 9.19: Access the PURCHASE table. Only consider

purchases by Employee E1. For each supplier that Employee
E1 purchased a part from, display the corresponding ENO and
SNO values, followed by the total cost, maximum cost, and
minimum cost of Employee E1’s purchases from each supplier.

ENO SNO TOTCOST MINCOST MAXCOST
E1 S1 8600 100 1500
E1 S2 100 100 100
E1 S3 2000 1000 1000

E1 S4 1000 1000 1000

Syntax & Logic: Nothing new.

SELECT ENO, SNO, SUM (COST) TOTCOST,
 MIN (COST) MINCOST,
 MAX (COST) MAXCOST

FROM PURCHASE
WHERE ENO = 'E1'
GROUP BY ENO, SNO
ORDER BY ENO, SNO

Free SQL Book, Tim Martyn 237 Copyright Pending, 2022

The following query objective is a little more complex. It
requires specifying a WHERE-clause and a HAVING-clause. It also
sorts the result table by a calculated total.

Sample Query 9.20: Does the PURCHASE table show that some

supplier has sold the same part at different prices? I.e.,
does every purchase which references the same combination
of (SNO, PNO) values have the same COST value? For any
supplier who has charged different prices for the same
part, display the following information.

• The corresponding SNO and PNO values

• The minimum COST (MINCOST) for each pair of (SNO, PNO)
values

• The maximum COST (MAXCOST) for each pair of (SNO, PNO)
values

• The difference (COSTDIFF) between these maximum and
minimum costs

• Only display rows where the maximum and minimum costs
are different.

• Display this information in the following column
sequence: SNO, PNO, MAXCOST, MINCOST, COSTDIFF

• Sort the result in descending sequence by COSTDIFF.

Within duplicate COSTDIFF values, sort by PNO
(ascending) within SNO (ascending).

 SNO PNO MINCOST MAXCOST COSTDIFF
 S1 P5 1200 1500 300
 S1 P2 1000 1200 200
 S4 P7 1000 1200 200
 S1 P1 200 300 100
 S2 P4 300 400 100
 S2 P6 100 200 100
 S1 P3 500 550 50

Syntax & Logic: Nothing new. But, “putting the pieces together”
requires a little more thought.

SELECT SNO, PNO,
 MIN (COST) MINCOST,
 MAX (COST) MAXCOST,
 MAX (COST) - MIN (COST) COSTDIFF
FROM PURCHASE
GROUP BY SNO, PNO
HAVING MAX (COST) > MIN (COST)
ORDER BY COSTDIFF DESC, SNO, PNO

Free SQL Book, Tim Martyn 238 Copyright Pending, 2022

Exercises

9T. Access the PURCHASE table. Exclude from consideration all

rows associated with Project PJ2. Display the total of COST
for each combination of (PJNO, ENO, SNO) of values
(excluding Project PJ2). The result should look like:

 PJNO ENO SNO TOTCOST

PJ1 E1 S1 6500
PJ1 E1 S3 2000
PJ1 E1 S4 1000

PJ1 E3 S3 3900
PJ1 E4 S4 3500
PJ3 E1 S1 1000
PJ3 E2 S2 600

9U. Access the PURCHASE table. Display the total COST for each

combination of (PNO, SNO, ENO) values if that total is
greater than or equal to 2000. The result should look like:

 PNO SNO ENO TOTCOST
 P2 S1 E2 2200

 P3 S3 E3 2400
 P3 S4 E4 2200
 P4 S3 E3 2400
 P4 S4 E4 2400
 P5 S1 E1 3900
 P5 S3 E3 3000
 P7 S3 E1 2000

 P7 S4 E2 2400

Free SQL Book, Tim Martyn 239 Copyright Pending, 2022

Preview: ROLLUP (Column-1)

This chapter concludes with a brief preview of the ROLLUP and
CUBE options for the GROUP BY clause.

[There is much more that can be said about ROLLUP and CUBE. If
all goes well, these topics will be included in a future edition
of this book.]

Sample Query 9.21: For each project, display its PJNO value

followed by the total cost of all parts purchased for the

project. Also, display a grand total cost for all projects.

PJNO TOTCOST
PJ1 16900
PJ2 15200
PJ3 1600

- 33700

Syntax: GROUP BY ROLLUP (grouping-expression-list)

In this example, the grouping-expression-list contains a single
grouping-expression consisting of a single column (PJNO). The
following sample query will specify multiple columns within the
grouping-expression-list.

Logic: ROLLUP tells the system to generate a COST (sub)total for
each group, plus the overall grand total of all COST values.

SELECT PJNO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY ROLLUP (PJNO)
ORDER BY PJNO

Free SQL Book, Tim Martyn 240 Copyright Pending, 2022

Preview: ROLLUP (Column-1, Column-2)

Sample Query 9.22: Access the PURCHASE table to display three

summary totals:

• Subtotal cost for each combination of (PJNO, SNO) values

• Subtotal cost for each PJNO value

• Grand total of all costs

PJNO SNO TOTCOST
PJ1 S1 6500
PJ1 S3 5900
PJ1 S4 4500
PJ1 - 16900
PJ2 S1 3700
PJ2 S2 1100
PJ2 S3 3900

PJ2 S4 6500
PJ2 - 15200
PJ3 S1 1000
PJ3 S2 600
PJ3 - 1600
- - 33700

Syntax: GROUP BY ROLLUP (column-1, column-2,...)

Logic: ROLLUP (PJNO, SNO) asks the system to generate a subtotal
for each combination of (PJNO, SNO) values, a subtotal for each
PJNO value, and a grand total.

Important: While the left-to-right column sequence is not
significant within the basic GROUP BY clause, it becomes
significant when you specify ROLLUP.

ROLLUP (C1, C2) and ROLLUP (C2, C1) produce different results.

Optional Exercise: Change the above ROLLUP clause to:

ROLLUP (PJNO, SNO)

 Observe a different result.

SELECT PJNO, SNO, SUM (COST) TOTCOST
FROM PURCHASE

GROUP BY ROLLUP (PJNO, SNO)
ORDER BY PJNO, SNO

Free SQL Book, Tim Martyn 241 Copyright Pending, 2022

Preview: CUBE (Column-1, Column-2)

The next sample query introduces the CUBE keyword which
generates summary totals for all possible subsets of the
specified columns.

Sample Query 9.23: Access the PURCHASE table to display four

summary totals:

• Subtotal cost for each combination of (PJNO, SNO) values

• Subtotal cost for each PJNO value

• Subtotal cost for each SNO value

• Grand total of all costs

PJNO SNO TOTCOST
PJ1 S1 6500
PJ1 S3 5900
PJ1 S4 4500

PJ1 - 16900
PJ2 S1 3700
PJ2 S2 1100
PJ2 S3 3900
PJ2 S4 6500
PJ2 - 15200
PJ3 S1 1000
PJ3 S2 600
PJ3 - 1600
- S1 11200
- S2 1700
- S3 9800

- S4 11000
- - 33700

Syntax: CUBE (grouping-expression-list)

Logic-Important: While the left-to-right column sequence is
significant with ROLLUP, it is not significant in CUBE.

CUBE (PJNO, SNO) and CUBE (SNO, PJNO) produce same result. You
can observe this fact by changing the above CUBE-clause to CUBE
(SNO, PJNO) and executing the statement.

SELECT PJNO, SNO, SUM (COST) TOTCOST
FROM PURCHASE
GROUP BY CUBE (PJNO, SNO)
ORDER BY PJNO, SNO

Free SQL Book, Tim Martyn 242 Copyright Pending, 2022

Summary

Our generic SELECT statement is expanded to include extensions
to the GROUP BY clause.

 SELECT [DISTINCT] column(s)

 FROM table
 [WHERE condition (s)]
 [GROUP BY [ROLLUP | CUBE] group-col1, group-col2, . . .]
 [HAVING condition (s)]
 [ORDER BY column(s)]

Summary Exercise

9V. Reconsider Exercise 9S [Access the PURCHASE table. Calculate

the total of COST for each combination of (PNO, SNO, ENO)
values. Display these columns in the (PNO, SNO, ENO) left-
to-right column sequence followed by the total cost. Sort
the result in ascending sequence by (PNO, SNO, ENO)].

This final result table contained 23 rows. Some of these
rows corresponded to groups that summarized over just one
or two individual PURCHASE rows. To reduce the number rows
in the final result, exclude any summary row from the final
result if that summary represents a total of just one or
two rows. The result should look like:

 PNO SNO ENO TOTCOST GPCT
 P1 S1 E1 1150 5
 P3 S1 E1 1550 3
 P4 S2 E2 1000 3
 P5 S1 E1 3900 3

 P8 S1 E1 400 4

 The GPCT column contains the number of rows in the group.

Free SQL Book, Tim Martyn 243 Copyright Pending, 2022

 Chapter

10
Individual Functions

This chapter presents a brief introduction to the individual
functions. (Instead of the term “individual,” DB2 and SQL Server
use the term Scalar Function, and ORACLE uses the term Single-
Row Function.) We begin by describing the fundamental
distinction between an aggregate function and an individual
function.

Aggregate Functions: Recall that an aggregate function operates on
a group of values from multiple rows and returns a single value.

For example, the following statement selects the four FEE values
from the four Arizona rows. These values are 3.0, 0.0, 3.0, and
3.0. The aggregate function SUM operates on these values and
returns a single value of 9.00.

SELECT SUM (FEE) FROM PRESERVE WHERE STATE = 'AZ'

SUM (FEE)
 9.00

Individual Functions: An individual function operates on a value
from a single row and returns a single value. We illustrate this

behavior by previewing the SQRT function to display the square
root of each ACRES values in the Arizona preserves.

SELECT SQRT (ACRES) FROM PRESERVE WHERE STATE = 'AZ'

SQRT (ACRES)
 25.69

 221.63
 19.49

 34.64

The SQRT function examines the ACRES value in each selected row

and returns the square root of each value. Unlike an aggregate
function, the SQRT function does not “summarize” values from
multiple rows into a single value.

Free SQL Book, Tim Martyn 244 Copyright Pending, 2022

The primary difference between an aggregate function and an
individual function is straightforward. This chapter will also
illustrate two other differences between individual functions and
aggregate functions. These are:

1. Unlike an aggregate function, an individual function can be
referenced in a WHERE-clause. (See Sample Query 10.6.)

2. Unlike an aggregate function, an individual function can
always be nested within another individual function. (See
Sample Query 10.2.)

Categories of Individual (Scalar, Single-Row) Functions: Your SQL
reference manual will present the individual functions organized
within categories. This chapter and the following chapter present
examples of individual functions organized within four categories.

Arithmetic Functions: Sample Queries 10.1-10.2

 Character-String Functions: Sample Queries 10.3-10.8

Data-Type Conversion Functions: Sample Query 10.9

 Date-Time Functions: Chapter 10.5

Most systems also support other more specialized categories of
functions (e.g., XML functions, regular-expression functions),
plus some miscellaneous functions.

System Incompatibility: Unfortunately, there is considerable
variation among the individual functions supported by different
database systems. Therefore, this chapter only presents a few
examples that were executed on DB2, ORACLE, and SQL Server.
These examples provide a conceptual framework to help you

explore your SQL reference manual for a description of all
individual functions provided by your database system.

No Exercises: Given the great variation among individual
functions supported by different database systems, this chapter
only offers one summary exercise which is optional.

Free SQL Book, Tim Martyn 245 Copyright Pending, 2022

DEMO2 Table

This chapter’s sample queries will reference the DEMO2 table shown
below.

The data-type of each column is:

▪ I1 - integer values [INTEGER]

▪ D1 - decimal values: [DECIMAL (5,2)]

▪ V1 - variable-length character-strings [VARCHAR (15)]

▪ F1 - fixed-length character-strings [CHAR (5)]

In case you are interested, the following Figure 10.1b presents
the CREATE TABLE statement used to create DEMO2.

This CREATE TABLE statement is presented to focus your attention

to the data-type of each column.

 I1 D1 V1 F1
-10 -8.82 Julie Martyn Hello
 -5 -5.28 JESSIE MARTYN GOOD
 0 0.00 Janet Martyn By
 2 6.42 Frank BYE
 9 9.98 Wally HYY

Figure 10.1a: DEMO2 Table

CREATE TABLE DEMO2
(I1 INTEGER,
 D1 DECIMAL (5, 2),
 V1 VARCHAR (15),
 F1 CHAR (5));

 Figure 10.1b: CREATE TABLE for DEMO2 Table

Free SQL Book, Tim Martyn 246 Copyright Pending, 2022

A. Arithmetic Functions

Sample Queries 10.1 and 10.2 demonstrate the following arithmetic
functions. N represents the name of a numeric column. M is an
integer value.

▪ ROUND(N,M) - Round N to M decimal places

▪ TRUNC(N,M) - Truncate N to M decimal places

▪ ABS(N) - Absolute value of N

▪ SIGN(N) - +1 if N > 0, 0 if N = 0, -1 if N < 0

▪ MOD(N,M) - Remainder of division: N/M

▪ POWER(N,M) - N raised to Mth power

▪ SQRT(N) - Square root of N

Sample Query 10.1: Reference Column D1 (a decimal column) in the

DEMO2 table to display:

▪ Column D1

▪ D1 rounded to the nearest integer

▪ D1 rounded to the tenths position

▪ D1 truncated to the integer position

▪ D1 truncated to the tenths position

 D1 ROUND0 ROUND1 TRUNC0 TRUNC1
-8.82 -9.00 -8.80 -8.00 -8.80

-5.28 -5.00 -5.30 -5.00 -5.20
 0.00 0.00 0.00 0.00 0.00
 6.42 6.00 6.40 6.00 6.40
 9.98 10.00 10.00 9.00 9.90

SQL Server: SQL Server does not understand TRUNC. You must use a
variation of the ROUND function to implement truncation. Recode
the above statement as:

SELECT D1,
 ROUND (D1, 0) ROUND0,

 ROUND (D1, 1) ROUND1,

 ROUND (D1, 0, -1) TRUNC0,

 ROUND (D1, 1, -1) TRUNC1
FROM DEMO2;

SELECT D1, DB2 & ORACLE

ROUND (D1,0) ROUND0,
ROUND (D1,1) ROUND1,
TRUNC (D1,0) TRUNC0,
TRUNC (D1,1) TRUNC1

FROM DEMO2

Free SQL Book, Tim Martyn 247 Copyright Pending, 2022

Sample Query 10.2: Reference Column I1 (an INTEGER column) in the
DEMO2 table to display:

▪ Column I1

▪ The absolute value of I1

▪ The sign of I1

▪ The remainder of dividing I1 by 4

▪ I1 raised to the third power

▪ The square root of the absolute value of I1

 I1 ABSI1 SIGNI1 MOD4I1 CUBEI1 SQRTI1
 -10 10 -1 -2 -1000 3.162
 -5 5 -1 -1 -125 2.236
 0 0 0 0 0 0.000

 2 2 1 2 8 1.414
 9 9 1 1 729 3.000

These functions reference I1, an integer column. The same
functions work if they reference D1, a decimal column.

SQL Server: SQL Server does not understand MOD.
Replace MOD (I1, 4) with I1 % 4

Nesting Individual Functions: Consider the above specification
of SQRT (ABS (I1)). Executing SQRT (I1) would fail because some
of the I1 values are negative. Therefore, the ABS function is

nested inside the SQRT function. Note that both the SQRT and ABS
functions are individual functions.

Nesting An Aggregate and Individual Function: Recall that some
systems do not allow the nesting of two aggregate functions.
However, all systems allow you to nest an aggregate function
within an individual function, and vice versa.

 Nest ABS (individual function) within SUM (aggregate function).

 Example: SELECT SUM (ABS (D1)) FROM DEMO2

 Nest SUM (aggregate function) within ABS (individual function).

 Example: SELECT ABS (SUM (D1)) FROM DEMO2

SELECT I1, DB2 & ORACLE

 ABS (I1) ABSI1,
 SIGN (I1) SIGNI1,
 MOD (I1, 4) MOD4I1,

POWER (I1, 3) CUBEI1,
SQRT (ABS (I1)) SQRTI1

FROM DEMO2

Free SQL Book, Tim Martyn 248 Copyright Pending, 2022

B. Character-String Functions

Sample Queries 10.3-10.8 demonstrate the following character-
string functions that are supported by most systems.

 C represents a column containing a fixed-length or variable-

length character-string.

 LENGTH(C) - return the length of C

 UPPER(C) - return C in uppercase characters

 LOWER(C) - return C in lowercase characters

 LTRIM(C) – return C after trimming any leading blanks
 RTRIM(C) - return C after trimming any training blanks

 SUBSTR(C,I,L) – return a substring of C: start at the Ith
character for length of L positions

 CONCAT (C1, C2) – return a concatenation of columns C1 and C2

Sample Query 10.3: Reference Column V1, a variable-length

character-string, in the DEMO2 table. Return:

• V1

• The length of V1

• V1 in lower-case characters

• V1 in upper-case characters

V1 LENV1 LOWERV1 UPPERV1
Julie Martyn 12 julie martyn JULIE MARTYN
JESSIE MARTYN 13 jessie martyn JESSIE MARTYN
Janet Martyn 12 janet martyn JANET MARTYN
Frank 5 frank FRANK
Wally 5 wally WALLY

These functions will also work if they reference F1, a fixed-
length character-string.

SQL Server: Specify LEN instead of LENGTH in this statement. LEN
will not include trailing blanks in its count.

SELECT V1, DB2 & ORACLE
 LENGTH (V1) LENV1,
 LOWER (V1) LOWERV1,
 UPPER (V1) UPPERV1
FROM DEMO2

Free SQL Book, Tim Martyn 249 Copyright Pending, 2022

Sample Query 10.4: Reference Column F1, a fixed-length character-
string, in the DEMO2 table. Return:

▪ F1

▪ The length of F1

▪ F1 after trimming trailing blanks

▪ The length of F1 after trimming trailing blanks

F1 LEN RTRIM LENRTRIM
Hello 5 Hello 5
GOOD 5 GOOD 4
By 5 By 2
BYE 5 BYE 3
HYY 5 HYY 3

LENGTH (RTRIM (F1)): In this result table, columns F1 and RTRIM
appear to be identical because the training blanks in F1 are not
visible. To illustrate that trailing blanks are present, we

specified LENGTH (RTRIM (F1)) to display the length of F1 values
after trailing blanks have been removed. Again, note that we have
nested an individual function (RTRIM) within another individual
function (LENGTH).

SQL Server: Remember to replace LENGTH with LEN.

F1 SSLEN RTRIM LENRTRIM
Hello 5 Hello 5
GOOD 4 GOOD 4
By 2 By 2
BYE 3 BYE 3
HYY 3 HYY 3

Important: Observe the SSLEN column in the above result table. You
do not see all 5s as in the DB2 and ORACLE result table. Recall

that SQL Server ignores trailing blanks as previously described
back in Chapter 6 (Sample Query 6.3b).

SELECT F1, DB2 & ORACLE
 LENGTH (F1) LEN,
 RTRIM (F1) RTRIM,
 LENGTH (RTRIM (F1)) LENRTRIM

FROM DEMO2

SELECT F1, SQL Server
 LEN (F1) SSLEN,
 RTRIM (F1) RTRIM,
 LEN (RTRIM (F1)) LENRTRIM

FROM DEMO2

Free SQL Book, Tim Martyn 250 Copyright Pending, 2022

Sample Query 10.5: Reference Column V1, a VARCHAR character-

string, in the DEMO2 table. Return:

▪ V1

▪ The 3rd and 4th characters in V1

▪ The 2nd, 3rd, 4th, and 5th characters in V1

▪ The 4th character and all following characters in V1

V1 SUB34 SUB25 SUB4END
Julie Martyn li ulie ie Martyn
JESSIE MARTYN SS ESSI SIE MARTYN
Janet Martyn ne anet et Martyn
Frank an rank nk
Wally ll ally ly

The SUBSTR function references V1, a variable-length character-
string. SUBSTR also works if it references a fixed-length

character-string.

SQL Server: Specify SUBSTRING instead of SUBSTR. Also, SUBSTRING
must have three arguments. Recode the above statement as:

SELECT V1,
 SUBSTRING (V1, 3, 2) SUB34,
 SUBSTRING (V1, 2, 4) SUB25,
 SUBSTRING (V1, 4, (LEN (V1)-3)) SUB4END
FROM DEMO2

SELECT V1, DB2 & ORACLE
SUBSTR (V1, 3, 2) SUB34,

 SUBSTR (V1, 2, 4) SUB25,

 SUBSTR (V1, 4) SUB4END
FROM DEMO2

Suggestion: Most database systems support a wide variety of
individual built-in functions. Take a five-minute detour to
observe an overview of these functions. Depending upon your
particular database system, search the web for:

ORACLE single-row built-in functions, or

DB2 scalar built-in functions, or

SQL Server scalar built-in functions

Don’t bother with details. Simply scan the documentation.

Free SQL Book, Tim Martyn 251 Copyright Pending, 2022

Individual Function in a WHERE-Clause

Unlike aggregate functions, individual functions can be specified
in a WHERE-clause. This feature can be very useful.

Sample Query 10.6: Reference the DEMO2 table. Note that the V1
column values are stored in uppercase, lowercase, or mixed
case. Display all V1 values that end with “Martyn” coded in
any mixture of uppercase and lowercase characters.

 V1
Julie Martyn
JESSIE MARTYN
Janet Martyn

Sample Query 10.7: Reference the DEMO2 table. Display F1 values
that end with a “Y” (uppercase) or “y” (lowercase). Recall
that F1 is a fixed-length character-string and may contain
trailing blanks.

F1

By
HYY

SELECT V1 DB2, ORACLE & SQL Server

FROM DEMO2

WHERE UPPER (V1) LIKE '%MARTYN'

SELECT F1 DB2, ORACLE & SQL Server

FROM DEMO2

WHERE UPPER (RTRIM (F1)) LIKE '%Y'

Free SQL Book, Tim Martyn 252 Copyright Pending, 2022

Concatenation: CONCAT Function and Operator

Character-string concatenation, informally called “string
addition,” is implemented using the CONCAT function. Most systems
also support a concatenation operator (|| or +).

Sample Query 10.8: Reference the DEMO2 table. Display two columns

in the result table. The first column should display a
concatenation of V1 characters followed by the F1 characters.
The second column should display a concatenation of F1
characters followed by the V1 characters.

CONCAT (V1,F1) CONCAT (F1,V1)
Julie MartynHello HelloJulie Martyn
JESSIE MARTYNGOOD GOOD JESSIE MARTYN
Janet MartynBy By Janet Martyn
FrankBYE BYE Frank
WallyHYY HYY Wally

Observation: Four of the five character-strings in the second
column of the result table show embedded blanks corresponding to
the training blanks in F1. For example, in the third row,
observe the three spaces after “By”.

Alternative Solutions: Specify a concatenate operator.

DB2 & ORACLE: Specify the || symbol.

SQL Server: Specify the + symbol.

SELECT V1||F1, F1||V1 DB2 & ORACLE

FROM DEMO2

SELECT CONCAT (V1,F1), CONCAT (F1,V1) DB2, ORACLE & SQL Server

FROM DEMO2

SELECT V1+F1, F1+V1 SQL Server

FROM DEMO2

Free SQL Book, Tim Martyn 253 Copyright Pending, 2022

C. Data-Type Conversion Function: CAST

All database systems provide functions that convert a data-type
value into another data-type value. The CAST function is
supported by most systems.

Sample Query 10.9a: Reference DEMO2. Display column I1 as an

integer and as a decimal. Also, display column D1 as a
decimal and as an integer.

 I1 I1ASDEC D1 D1ASINT
-10 -10.0 -8.82 -8
 -5 -5.0 -5.28 -5
 0 0.0 0.00 0
 2 2.0 6.42 6
 9 9.0 9.98 9

This statement illustrates data-type conversions using numeric
data-types. CAST also supports data-type conversions using non-

numeric data-types.

The following sample query applies a LIKE-comparison to the
numeric values in column D1 after CAST has converted these
values into 5-character character-strings.

Sample Query 10.9b: Reference DEMO2. Display column D1 values

that begin with a minus sign, have a decimal point in the
third position, and the digit 2 in the fourth position.

D1

 -5.28

DB2: DB2 supports additional data-type conversion functions such
as DECIMAL and INTEGER. Execution of the following statement
will produce the same result shown above for Sample Query 10.9a.

SELECT I1, DECIMAL (I1, 5, 2) I1ASDEC,
 D1, INTEGER (D1) D1ASINT
FROM DEMO2

SELECT I1, CAST (I1 AS DECIMAL) I1ASDEC, DB2, ORACLE & SQL Server

 D1, CAST (D1 AS INTEGER) D1ASINT
FROM DEMO2

SELECT D1 DB2, ORACLE & SQL Server

FROM DEMO2
WHERE CAST (D1 AS CHAR (5)) LIKE '-_.2%'

Free SQL Book, Tim Martyn 254 Copyright Pending, 2022

Summary

All systems support many arithmetic, character-string, and data-
type conversion functions. This chapter only illustrated a few
popular DB2, ORACLE, and SQL Server functions in order to present
basic concepts. Again, you are encouraged to consult your SQL
reference manual for a description of all individual functions
provided by your system.

Optional Summary Exercise

VARCHAR columns rarely contain character-strings with leading or
trailing blanks. Assume you think that some character-strings
with leading or trailing blanks somehow found their way into the
V1 column in the DEMO2 table. You would like to discover these
potentially problematic rows.

Code a SELECT statement to display the V1 value and its length
if that value that has a blank in its first-character position
or a blank in its last-character position.

The current version of DEMO2 does not have any V1 values with
leading/trailing blanks. Therefore, to test your SELECT
statement, you can execute the following two INSERT statements
to insert two problematic rows. (Do not worry about details of
these INSERT statements. INSERT will be covered in Chapter 15.)

INSERT INTO DEMO2 VALUES (999, 999, ' JOSEPHINE', 'XXX');

INSERT INTO DEMO2 VALUES (888, 888, 'JACQUELINE ', 'XXX');

After you have tested your SELECT statement, delete the two
problematic rows by executing the following DELETE statement.

(Again, do not worry about details of this DELETE statement.
DELETE will be covered in Chapter 15.)

DELETE FROM DEMO2 WHERE I1 IN (999, 888);

Free SQL Book, Tim Martyn 255 Copyright Pending, 2022

Chapter

10.5

Processing DATE Values

This chapter continues our introduction to the individual
functions. This chapter’s functions fall into the category of
“date-time” functions.

Date-Time Data: Before discussing SQL’s date-time functions we
must say a few words about date-time data. All real-world
database systems contain information that represents dates,

times, or timestamps (combination of date and time). More
precisely, these systems provide special temporal data-types
(e.g., DATE, TIME, and TIMESTAMP) for date-time data.

This chapter will focus on temporal concepts. It will illustrate
these concepts via sample queries that access and manipulate a
column defined as a DATE. Similar concepts apply to columns
defined as TIME or TIMESTAMP. The last two sample queries in
this chapter will illustrate access and manipulation of
TIMESTAMP data.

Many SQL users merely “look at” DATE values and occasionally sort

a result table by these values. These users only have to read the
next four pages.

Alternatively, other users, especially applications developers,
work on applications that involve considerable comparing and
manipulation of DATE values. These users should read the entire
chapter.

Again, System Incompatibility: Unfortunately, date-time functions
show great variation across different database systems.

Free SQL Book, Tim Martyn 256 Copyright Pending, 2022

Introduction: DEMO3 Table

We begin with an apparently simple question.

What do DATE values look like?

Unfortunately, there is no single answer to this question. It
depends upon your particular database system because each system
has its own default date-format. For this reason, the following
Figure 10.2a displays two images of the DEMO3 table that display
different date-formats in the BDDATE columns.

The DEMO3 table was created by executing the same CREATE TABLE
statement (Figure 10.2b) on three different systems: DB2,
ORACLE, and SQL Server. On each system, the BDDATE column
contains the same DATE values. However, when displaying these
values, some systems display the BDDATE values using different
date-formats.

The above BDDATE columns illustrate that DB2 and SQL Server
display DATE values in the YYYY-MM-DD default format, whereas
ORACLE displays DATE values in the DD-MON-YY default format. (On
some systems, the DBA can optionally designate an alternative
default date-format.)

Optional Exercise: On your system, execute: SELECT * FROM DEMO3
The BDDATE column will illustrate your default date-format.

Figure 10.2a: DEMO3 Table

MNAME BDDATE BDCHAR1 BDCHAR2 BDCHAR3
EVAN 05-JUN-17 2017-06-05 06/05/2017 June 5, 2017
HANNAH 25-NOV-14 2014-11-25 11/25/2014 November 25, 2014
JACQUELINE 10-JAN-19 2019-01-10 01/10/2019 January 10, 2019
JESSIE 07-MAR-82 1982-03-07 03/07/1982 March 7, 1982
JONHHY 10-MAY-15 2015-05-10 05/10/2015 May 10, 2015
JOSEPHINE 13-JUN-17 2017-06-13 06/13/2017 June 13, 2017
JULIE 17-MAY-78 1978-05-17 05/17/1978 May 17, 1978

ORACLE

MNAME BDDATE BDCHAR1 BDCHAR2 BDCHAR3
EVAN 2017-06-05 2017-06-05 06/05/2017 June 5, 2017
HANNAH 2014-11-25 2014-11-25 11/25/2014 November 25, 2014
JACQUELINE 2019-01-10 2019-01-10 01/10/2019 January 10, 2019
JESSIE 1982-03-07 1982-03-07 03/07/1982 March 7, 1982
JONHHY 2015-05-10 2015-05-10 05/10/2015 May 10, 2015
JOSEPHINE 2017-06-13 2017-06-13 06/13/2017 June 13, 2017
JULIE 1978-05-17 1978-05-17 05/17/1978 May 17, 1978

DB2 & SQL Server

Free SQL Book, Tim Martyn 257 Copyright Pending, 2022

Other “Date-Columns” - BDCHAR1, BDCHAR2, and BDCHAR3: These
columns are not “real” DATEs. They are character-string columns
with values that happen to look like dates. Examining the
following CREATE TABLE statement that created the DEMO3 table
will clarify this distinction.

DATE Data-Type: The BDDATE column is interesting because it has
a DATE date-type; it contains “real” dates. The last three
columns (BDCHAR1, BDCHAR2, and BDCHAR3) contain character-
strings that look like dates.

When a column is defined as a DATE data-type, the database
system will use some internal (hidden) coding scheme to

represent DATE values. We do not care about this internal coding
scheme. When a SELECT statement displays a DATE-column, the
system automatically converts the internal date to the default
date-format.

Important Question: Other than default date-formats, what is the
difference between a DATE versus a character-string that looks
like date?

Answer: When processing DATE values, the system utilizes the
notion of chronological time. The following sample queries will
illustrate this feature.

CREATE TABLE DEMO3
(MNAME CHAR (10) NOT NULL UNIQUE,

 BDDATE DATE NOT NULL,
 BDCHAR1 CHAR (10) NOT NULL,
 BDCHAR2 CHAR (10) NOT NULL,

 BDCHAR3 CHAR (20) NOT NULL)

Figure 10.2b: Create DEMO3 Table

Free SQL Book, Tim Martyn 258 Copyright Pending, 2022

ORDER BY Column with DATE values

When an ORDER BY clause references a DATE column, the sort
sequence is a chronological sequence. Consider the following two
sample queries.

Sample Query 10.10a: Reference DEMO3. Display MNAME and BDCHAR2
values in all rows. Sort the result by the BDCHAR2 column.

Note: BDCHAR2 is not sorted within a chronological sequence. It

is sorted within an ascending alphanumeric (collating) sequence.

Sample Query 10.10b: Reference DEMO3. Display MNAME and BDDATE
values in all rows. Sort the result by the BDDATE column.

 DB2 & SQL Server Result ORACLE Result

The BDDATE columns in these result tables, despite different
date-formats, show an ascending chronological sequence. The older
BDDATE values appear before the more recent BDDATE values. The
preceding Sample Query 10.10a illustrates that chronological
sorting does not apply to character-string columns.

Also, as you would expect, specifying DESC would produce a
descending chronological sequence where the more recent dates
appear before the older dates.

SELECT MNAME, BDCHAR2
FROM DEMO3

ORDER BY BDCHAR2

SELECT MNAME, BDDATE
FROM DEMO3
ORDER BY BDDATE

 MNAME BDCHAR2
 JACQUELINE 01/10/2019
 JESSIE 03/07/1982
 JOHNNY 05/10/2015
 JULIE 05/17/1978
 EVAN 06/05/2017
 JOSEPINE 06/13/2017
 HANNAH 11/25/2014

MNAME BDDATE
JULIE 17-MAY-78
JESSIE 03-MAR-82
HANNAH 25-NOV-14
JOHNNY 10-MAY-15
EVAN 05-JUN-17
JOSEPHINE 13-JUN-17
JACQUELINE 01-JAN-19

MNAME BDDATE
JULIE 1978-05-17
JESSIE 1982-03-07
HANNAH 2014-11-25
JOHNNY 2015-05-10
EVAN 2017-06-05
JOSEPHINE 2017-06-13
JACQUELINE 2019-01-10

Free SQL Book, Tim Martyn 259 Copyright Pending, 2022

Jump to the Next Chapter?

After reading the previous pages, many users have learned
everything they need to know about DATE values. Such users can
bypass the remainder of this chapter. Other users will be
interested in the following temporal operations.

• Convert a DATE value to a character-string value. This is
useful if you do not like your default date-format.
(Sample Query 10.11)

• Convert a character-string value to a DATE value.
(Sample Query 10.12)

• Display Today’s Date.
(Sample Query 10.13)

• Extract components (day, month, year) from a DATE value.
(Sample Query 10.14)

• Display the weekday name (e.g., Tuesday) of a DATE value.
(Sample Query 10.15)

• Reference a DATE column in a WHERE-clause.
 (Sample Query 10.16)

After presenting the above topics, Sample Queries 10.17 and
10.18 will introduce DATE calculations involving the temporal
notion of an “interval” (e.g., 3 days).

Important Exercise:

10A. Consider the following two statements where the ORDER BY
clauses reference character-string columns. One of these
statements (somehow) produces a desired result where the
rows are sorted in chronological sequence. Which statement?
Execute the statements to verify your answer.

 [This is the only exercise in this chapter due to the great

variation among DATE-functions supported by different database

systems.]

SELECT MNAME, BDCHAR3
FROM DEMO3
ORDER BY BDCHAR3

SELECT MNAME, BDCHAR1
FROM DEMO3
ORDER BY BDCHAR1

Free SQL Book, Tim Martyn 260 Copyright Pending, 2022

Data-Type Conversion: DATE → Character-String

As already stated, there is great variation among date-time
functions across different database systems. The following
sample queries will illustrate this fact.

Figure 10.3 (on following page) illustrates some date-formats
that are supported within different database systems. Users
frequently want to display a DATE value as a character-string
using one of these date-formats. This is especially true if a
user does not like her default date-format. To realize this

objective:

• DB2 will use its CHAR function

• SQL Server will use its CONVERT function

• ORACLE will use its TO_CHAR function.

Sample Query 10.11: Display all BDDATE values using the

MM/DD/YYYY format.

DB2: The CHAR function specifies a code (e.g., USA) to identify
the desired date-format. The DB2 reference manual shows multiple

codes and associated date-formats.

SQL Server: The CONVERT function specifies a code (e.g., 101) to
identify the desired date-format. The SQL Server reference
manual shows multiple codes and associated date-formats.

Both the DB2 and SQL Server result tables look like:

SELECT BDDATE, DB2
 CHAR (BDDATE, USA) MYFMT

FROM DEMO3

SELECT BDDATE, SQL Server

 CONVERT (CHAR, BDDATE, 101) MYFMT
FROM DEMO3

BDDATE MYFMT
2017-06-05 06/05/2017
2014-11-25 11/25/2014
2019-01-10 01/10/2019
1982-03-07 03/07/1982
2015-05-10 05/10/2015
2017-06-13 06/13/2017

1978-05-17 05/17/1978

Free SQL Book, Tim Martyn 261 Copyright Pending, 2022

ORACLE: The TO_CHAR function can specify a date-format (e.g.,
MM/DD/YYYY). The ORACLE reference manual shows multiple date-
formats.

ORACLE Result Table

Conclusion: Learn you default date-format. If desired, you can
use some SQL function to display your DATE values in an
alternative format. See your SQL reference manual to learn

details about the date-time formats supported by your system.

SELECT BDDATE, ORACLE
 TO_CHAR (BDDATE, 'MM/DD/YYYY') MYFMT
FROM DEMO3

BDDATE MYFMT

05-JUN-17 06/05/2017
25-NOV-14 11/25/2014
10-JAN-19 01/10/2019
07-MAR-82 03/07/1982
10-MAY-15 05/10/2015
13-JUN-17 06/13/2017
17-MAY-78 05/17/1978

• YYYY-MM-DD (e.g., 2019-01-10) [DB2, SQL Server]

• YYYYMMDD (e.g., 20190110)

• MM/DD/YYYY (e.g., 01/10/2019)

• Month Day, Year (e.g., January 10, 2019

• DD-MON-YY (e.g., 10-JAN-19) [ORACLE]

• DD-Mon-YYYY (e.g., 10-Jan-2019) [ORACLE]

• DD/MM/YYYY (e.g., 10/01/2019) [British Format]

• DD.MM.YYYY (e.g., 10.01.2019) [European Format]

Figure 10.3: Common Date-Formats

Free SQL Book, Tim Martyn 262 Copyright Pending, 2022

Data-Type Conversion: Character-String → DATE

Users frequently want to convert a character-string to a DATE.
Some systems, but not all systems, use the CAST function to
realize this objective. (Recall that Sample Query 10.9a
specified the CAST function to convert a DECIMAL value to an
INTEGER value, and vice versa.) In the following sample query,
DB2 and SQL Server use CAST to covert character-strings to
DATEs, and ORACLE uses its TO_DATE function to perform this
data-type conversion.

Sample Query 10.12: Display all MNAME, BDCHAR1, and BDCHAR2

values. Use your system’s data-type conversion function to:

• Convert BDCHAR1 values to DATEs

• Convert BDCHAR2 values to DATEs

DB2: The DB2 version of CAST understands the BDCHAR1 and BDCHAR2
formats. However, DB2 does not understand the BDCHAR3 date-

format.

SQL Server: The SQL Server version of CAST understands the
BDCHAR1, BDCHAR2, and BDCHAR3 formats.

Important Observation: This result table shows that the BDCHAR1
and MYDATE1 columns appear to be identical. However, because
MYDATE1 has a DATE data-type, it operates according to
chronological time. This does not apply to the BDCHAR1 character-
string.

SELECT MNAME, DB2 & SQL Server
 BDCHAR1, CAST (BDCHAR1 as DATE) MYDATE1,
 BDCHAR2, CAST (BDCHAR2 as DATE) MYDATE2
FROM DEMO3
ORDER BY MNAME

 MNAME BDCHAR1 MYDATE1 BDCHAR2 MYDATE2
 EVAN 2017-06-05 2017-06-05 06/05/2017 2017-06-05
 HANNAH 2014-11-25 2014-11-25 11/25/2014 2014-11-25
 JACQUELINE 2019-01-10 2019-01-10 01/10/2019 2019-01-10
 JESSIE 1982-03-07 1982-03-07 03/07/1982 1982-03-07
 JONHHY 2015-05-10 2015-05-10 05/10/2015 2015-05-10
 JOSEPHINE 2017-06-13 2017-06-13 06/13/2017 2017-06-13
 JULIE 1978-05-17 1978-05-17 05/17/1978 1978-05-17

Free SQL Book, Tim Martyn 263 Copyright Pending, 2022

ORACLE: The TO_DATE function converts the BDCHAR1, BDCHAR2, and
BDCHAR3 character-strings to DATE values.

 Syntax: TO_DATE (column, 'date-format')

 This 'date-format' is the format of the stored column. (It is

not the format of the desired result.) The desired result is
ORACLE’s default date-format. The ORACLE reference manual
describes date-formats that are recognized by the TO_DATE
function.

ORACLE

SELECT MNAME, BDCHAR1, TO_DATE (BDCHAR1, 'YYYY-MM-DD') MYDATE1,

 BDCHAR2, TO_DATE (BDCHAR2, 'MM/DD/YYYY') MYDATE2,
 BDCHAR3, TO_DATE (BDCHAR3, 'MONTH DD, YYYY') MYDATE3
FROM DEMO3
ORDER BY MNAME

MNAME BDCHAR1 MYDATE1 BDCHAR2 MYDATE2 BDCHAR3 MYDATE3
EVAN 2017-06-05 05-JUN-17 06/05/2017 05-JUN-17 June 5, 2017 05-JUN-17
HANNAH 2014-11-25 25-NOV-14 11/25/2014 25-NOV-14 November 25, 2014 25-NOV-14

JACQUELINE 2019-01-10 10-JAN-19 01/10/2019 10-JAN-19 January 10, 2019 10-JAN-19
JESSIE 1982-03-07 07-MAR-82 03/07/1982 07-MAR-82 March 7, 1982 07-MAR-82

JONHHY 2015-05-10 10-MAY-15 05/10/2015 10-MAY-15 May 10, 2015 10-MAY-15

JOSEPHINE 2017-06-13 13-JUN-17 06/13/2017 13-JUN-17 June 13, 2017 13-JUN-17

JULIE 1978-05-17 17-MAY-78 05/17/1978 17-MAY-78 May 17, 1978 17-MAY-78

Free SQL Book, Tim Martyn 264 Copyright Pending, 2022

Today’s DATE

All systems provide some method to display today’s date. This is
the date when the SQL statement is executed.

Sample Query 10.13: Display Jacqueline’s BDDATE value, followed

by today’s date. Assume today is Feb 27, 2019.

DB2: DB2 provides a CURRENT_DATE Register. CURRENT_DATE is
referenced just like any other column in a table, even though it
is not a column in a table.

SQL Server: The GETDATE() function returns today’s date-time
value. Because this function returns time information along with
date information, the CAST is used to convert the GETDATE()
result to a DATE value without the time information.

DB2 and SQL Server result tables look like:

MNAME BIRTHDAY TODAY
 JACQUELINE 2019-01-10 2019-02-27

ORACLE: ORACLE provides a SYSDATE pseudo-column. SYSDATE is
referenced like any other column in a table, even though it is
not a column in a table.

MNAME BIRTHDAY TODAY

 JACQUELINE 10-JAN-19 27-FEB-19

The SYSDATE pseudo-column also contains a time component. This
result table shows that the time component is automatically
removed from the result. Sample Query 10.19 will show how to use
ORACLE’s TO_CHAR function with SYSDATE to display both date and
time values.

SELECT MNAME, BDDATE BIRTHDAY, DB2
 CURRENT_DATE TODAY

FROM DEMO3
WHERE MNAME = 'JACQUELINE'

 SELECT MNAME, BDDATE BIRTHDAY, SQL Server

 CAST (GETDATE() AS DATE) TODAY
FROM DEMO3
WHERE MNAME = 'JACQUELINE'

SELECT MNAME, BDDATE BIRTHDAY, ORACLE

 SYSDATE TODAY
FROM DEMO3
WHERE MNAME = 'JACQUELINE'

Free SQL Book, Tim Martyn 265 Copyright Pending, 2022

Extracting DATE Components

All systems provide functions that extract the year, month, and
day components from DATE values.

Sample Query 10.14: Reference the DEMO3 table. Display the:

• MNAME and BDDATE columns

• Month component of BDDATE

• Day component of BDDATE

• Year component of BDDATE

DB2 and SQL Server: Both systems provide the MONTH, DAY, and
YEAR functions which accept a DATE as an argument and return an
integer result.

MNAME BDDATE MYMONTH MYDAY MYYEAR
 EVAN 2017-06-05 6 5 2017
 HANNAH 2014-11-25 11 25 2014
 JACQUELINE 2019-01-10 1 10 2019
 JESSIE 1982-03-07 3 7 1982
 JONHHY 2015-05-10 5 10 2015
 JOSEPHINE 2017-06-13 6 13 2017
 JULIE 1978-05-17 5 17 1978

ORACLE: The EXTRACT function specifies a “day”, “month”, or
“year” argument to extract the desired component of a DATE.

MNAME BDDATE MYMONTH MYDAY MYYEAR
 EVAN 05-JUN-17 6 5 2017
 HANNAH 25-NOV-14 11 25 2014
 JACQUELINE 10-JAN-19 1 10 2019

 JESSIE 07-MAR-82 3 7 1982
 JONHHY 10-MAY-15 5 10 2015
 JOSEPHINE 13-JUN-17 6 13 2017
 JULIE 17-MAY-78 5 17 1978

SELECT MNAME, BDDATE, DB2 & SQL Server
 MONTH (BDDATE) MYMONTH,

 DAY (BDDATE) MYDAY,
 YEAR (BDDATE) MYYEAR

FROM DEMO3
ORDER BY MNAME

SELECT MNAME, BDDATE, ORACLE
EXTRACT (month FROM BDDATE) MYMONYH,
EXTRACT (day FROM BDDATE) MYDAY,
EXTRACT (year FROM BDDATE) MYYEAR

FROM DEMO3
ORDER BY MNAME

Free SQL Book, Tim Martyn 266 Copyright Pending, 2022

Weekday Names

You can display the weekday names (e.g., Monday, Tuesday) of
DATE values.

Sample Query 10.15: For all rows, display the MNAME and BDDATE

values, followed by the weekday name of each BDDATE value.

DB2: The DAYNAME function returns the weekday name.

SQL Server: The DATENAME function returns the weekday name. The
first argument (dw) is one of many possible arguments that can
be specified by this function.

DB2 and SQL Server Result

ORACLE: The TO_CHAR function can specify 'DAY' as an argument.
 This function supports other arguments.

SELECT MNAME, BDDATE, DB2

 DAYNAME (BDDATE) BDDAY
FROM DEMO3
ORDER BY MNAME

SELECT MNAME, BDDATE, SQL Server
 DATENAME (dw, BDDATE) BDDAY
FROM DEMO3

ORDER BY MNAME

SELECT MNAME, BDDATE, ORACLE
 TO_CHAR (BDDATE, 'DAY') BDDAY
FROM DEMO3
ORDER BY MNAME

 MNAME BDDATE DBDAY
 EVAN 2017-06-05 Monday
 HANNAH 2014-11-25 Tuesday
 JACQUELINE 2019-01-10 Thursday
 JESSIE 1982-03-07 Sunday
 JONHHY 2015-05-10 Sunday
 JOSEPHINE 2017-06-13 Tuesday
 JULIE 1978-05-17 Wednesday

MNAME BDDATE BDDAY
EVAN 05-JUN-17 MONDAY
HANNAH 25-NOV-14 TUESDAY

JACQUELINE 10-JAN-19 THURSDAY
JESSIE 07-MAR-82 SUNDAY
JONHHY 10-MAY-15 SUNDAY
JOSEPHINE 13-JUN-17 TUESDAY
JULIE 17-MAY-78 WEDNESDAY

Free SQL Book, Tim Martyn 267 Copyright Pending, 2022

What weekday were you born on?

The following examples assume that your birthdate is 1943-08-30.
You can substitute your own birthdate for this date.

Each of the following SELECT statements applies the same general
method. An individual function is nested within another
individual function. First, a function (CAST or TO_DATE)
converts the '1943-08-30' character-string to a DATE value. Then
a second function (DAYNAME, TO_CHAR, or DATENAME) nests the
first function as an argument to return the weekday name.

DB2

SQL Server

ORACLE

These statements produce the same result table. Because DEMO3
has eight rows, Monday appears eight times.

 MYBDAY
 Monday
 Monday
 Monday
 Monday

Monday
 Monday
 Monday

You can specify DISTINCT to remove the duplicate rows. An
alternative method is described in Appendix 10.5B.

SELECT DAYNAME (CAST ('1943-08-30' AS DATE)) MYBDAY
FROM DEMO3

SELECT DATENAME (dw, CAST ('1943-08-30' AS DATE)) MYBDAY
FROM DEMO3

SELECT TO_CHAR
 (TO_DATE ('1943-08-30', 'YYYY-MM-DD'), 'DAY') MYBDAY

FROM DEMO3

Free SQL Book, Tim Martyn 268 Copyright Pending, 2022

Comparing DATE Values

If a WHERE-clause references a DATE column, the system will
perform the comparison operation based upon the notion of
chronological time.

Sample Query 10.16a: Reference the DEMO3 table. Display all

BDDATE values that predate the year 2000.

DB2 & SQL Server: Use CAST to convert '2000-01-01' to a DATE.

BDDATE
 1982-03-07
 1978-05-17

Syntax & Logic: The CAST function was used to convert '2000-01-
01' character-string to a DATE. Then the system compared the two
DATE values according to chronological time.

ORACLE: Use TO_DATE to convert '2000-01-01' to a DATE.

BDDATE
07-MAR-82
17-MAY-78

Syntax & Logic: The TO_DATE function was used to convert '2000-
01-01' ('YYYY-MM-DD' format) to a DATE. Then the system compared
the two DATE values according to chronological time.

* The above examples used built-in functions to explicitly convert

character-strings to DATEs. This allowed the WHERE-clauses to
compare “a DATE to a DATE.” We emphasize this point because,
sometimes (perhaps unfortunately), you can implicitly convert a
character-string to a DATE. The following page illustrates an
example.

SELECT BDDATE DB2 & SQL Server

FROM DEMO3

WHERE BDDATE < CAST ('2000-01-01' AS DATE)

SELECT BDDATE ORACLE

FROM DEMO3

WHERE BDDATE < TO_DATE ('2000-01-01', 'YYYY-MM-DD')

Free SQL Book, Tim Martyn 269 Copyright Pending, 2022

Implicit versus Explicit Conversions to DATE

In Chapter 1, we noted that you could code WHERE FEE = 0 even
though FEE is a DECIMAL. The system performed an implicit data-
type conversion of 0 to 0.0 and everything worked. However, we
discouraged this sloppy code. Likewise, sometimes, you can “get
away with” an implicit conversion of a character-string to a
DATE. The following statement, which satisfies the previous
Sample Query 10.16, works in DB2 and SQL Server.

Recommendation: Avoid implicit data-type conversion. Systems can
be fickle, and character-strings must be in some acceptable
format. We recommend that, when you want to perform a
chronological comparison, explicitly convert character-strings
to DATEs.

In the preceding Sample Query 10.16a, the BDDATE column already
contained DATE values. Hence, we only had to convert the '2000-

01-01' character-string to a DATE. The following sample query
requires a chronological comparison of two character-strings.

Sample Query 10.16b. Reference the DEMO3 table. Display all

BDCHAR2 values that predate the year 2000.

BDCHAR2
03/07/1982
05/17/1978

Logic: Conversion functions explicitly converted both character-
strings to DATE values before the less-than (<) comparison
operation.

SELECT BDCHAR2 DB2 & SQL Server
FROM DEMO3
WHERE CAST (BDCHAR2 AS DATE) <

 CAST ('2000-01-01' AS DATE)

SELECT BDDATE DB2 & SQL Server

FROM DEMO3

WHERE BDDATE < '2000-01-01' Not-so-good

SELECT BDCHAR2 ORACLE
FROM DEMO3
WHERE TO_DATE (BDCHAR2, 'MM/DD/YYYY') <
 TO_DATE ('2000-01-01', 'YYYY-MM-DD')

Free SQL Book, Tim Martyn 270 Copyright Pending, 2022

Calculations Involving DATE Values

Consider some common-sense questions about DATE-Calculations.

 Does it make sense to “add” two DATE values?

Does it make sense to “subtract” two DATE values?
Does it make sense to “multiple” two DATE values?
Does it make sense to “divide” two DATE values?

Your intuitive answers to these questions should offer some
insight into SQL’s acceptance or rejection of the following

expressions.

 DATE1 + DATE2 not reasonable ➔ reject

DATE1 - DATE2 reasonable ➔ accept

DATE1 * DATE2 not reasonable ➔ reject

DATE1 / DATE2 not reasonable ➔ reject

Most readers correctly conclude that adding, multiplying, and
dividing two DATE values does not make sense. But, subtracting
one DATE value from another is reasonable. For example, a common
temporal calculation involves subtracting a birth-date from

today’s date.

 TODAY – BIRTHDATE

Most systems support DATE-Subtraction and will accept the above
expression. (Other systems provide a built-in function that
performs DATE-subtraction.)

Important Question: When you subtract a DATE from a DATE (e.g.,
TODAY – BIRTHDATE), is the result a DATE? Before answering this
question, it may be helpful to revisit SQL calculations that we

have already encountered.

Numeric Calculations: When you add, subtract, multiply, or
divide any two numbers, the result is (surprise) a number
(unless you try to divide by zero).

Character-String Calculations: Consider the CONCAT function
to be a form of “string-addition,” and the SUBSTR function
to be a form of “string-subtraction.” These operations
produce a result which is (surprise) a character-string.

However, unlike numeric and character-string calculations, when

you subtract a DATE from a DATE (e.g., DATE1 - DATE2) the result
is not another DATE. Instead, DATE-subtraction returns an
interval, which is described on the following page.

Free SQL Book, Tim Martyn 271 Copyright Pending, 2022

Intervals

The notion of an interval is another important temporal concept,
and all systems offer some support for intervals. (DB2 uses the
term “duration” instead of “interval.”)

Points on a Timeline: Within the context of DATEs (without a
time component), a date is the smallest atomic unit of time.
Therefore, a DATE can be illustrated as a point on a timeline as
shown below.

Intervals: An interval is a temporal distance between two DATEs
as illustrated below.

An interval can be measured in some number of days, or months,
or years. (Time intervals are measured in terms of hours, minutes,
seconds, milliseconds, etc.)

Temporal Calculations: Intervals allows you to perform date-time
calculations. For example, the above interval represents a
person’s age. You can measure this interval in terms of years,
moths, or days. The following Sample Query 10.17 will display
this interval in terms of days.

INTERVAL Data-Type: Some database systems support the built-in
INTERVAL data-type (not described here) that directly represents

an interval.

BDDATE TODAY

Interval

BDDATE

Free SQL Book, Tim Martyn 272 Copyright Pending, 2022

DATE Subtraction

The following sample query illustrates DATE-subtraction that
returns an interval result. Assume today is March 1, 2019.

Sample Query 10.17: Display Hannah and Jacqueline’s MNAME and

BDDATE values, followed by today’s date, followed by their
age in days.

DB2: The DAYS function returns the number of days after Day
0001-01-01. Apply DAYS to both CURRENT_DATE and BDDATE. The

difference between the results is the age in terms of days.

MNAME BIRTHDAY TODAY AGEDAYS
HANNAH 2014-11-25 2019-03-01 1557
JACQUELINE 2019-01-10 2019-03-01 50

Careful! DB2 allows you to simply subtract two DATE values

without specifying the DAYS function, as shown below. However,
this result may not conform to your intuition. Hannah’s age of
40306 represents 4 years, 03 months, and 06 days.

MNAME BIRTHDAY TODAY YMMDD
HANNAH 2014-11-25 2019-03-01 40306

 JACQUELINE 2019-01-10 2019-03-01 122

ORACLE: Recall that SYSDATE stores today’s date and time values.
Use the TRUNC function to truncate the time component before
subtracting the BDDATE value. The result is person’s age
measured in days.

MANME BIRTHDAY TODAY AGEDAYS
HANNAH 25-NOV-14 01-MAR-19 1557
JACQUELINE 10-JAN-19 01-MAR-19 50

SELECT MNAME, BDDATE BIRTHDAY, SYSDATE TODAY, ORACLE
 TRUNC (SYSDATE) - BDDATE AGEDAYS

FROM DEMO3
WHERE MNAME IN ('HANNAH', 'JACQUELINE')

SELECT MNAME, BDDATE BIRTHDAY, CURRENT_DATE TODAY, DB2
 DAYS (CURRENT_DATE) - DAYS (BDDATE) AGEDAYS
FROM DEMO3
WHERE MNAME IN ('HANNAH', 'JACQUELINE')

SELECT MNAME, BDDATE BIRTHDAY, CURRENT_DATE TODAY, DB2
 CURRENT_DATE - BDDATE YYMMDD
FROM DEMO3
WHERE MNAME IN ('HANNAH', 'JACQUELINE')

Free SQL Book, Tim Martyn 273 Copyright Pending, 2022

SQL Server: SQL Server provides a DATEDIFF function to calculate
the interval difference between two DATE values. This function
allows you to specify the interval unit (“day”, “month”, or
“year”) for the result. Here, the result is measured in days.

MNAME BIRTHDAY TODAY AGEDAYS
HANNAH 2014-11-25 2019-03-01 1557
JACQUELINE 2019-01-10 2019-03-01 50

Other Intervals: We usually want to display a person’s age as some
number of years. This interval value can be approximated by
dividing the calculated AGEDAYS value by 365. We say
“approximated” because some years have 366 days. To address this
imprecision, most systems also support MONTHS and YEARS intervals.

SELECT MNAME, BDDATE, SQL Server

 CAST (GETDATE() AS DATE) TODAY,
 DATEDIFF (day, BDDATE, GETDATE()) AGEDAYS
FROM DEMO3
WHERE MNAME IN ('HANNAH', 'JACQUELINE')

Free SQL Book, Tim Martyn 274 Copyright Pending, 2022

DATE + Interval; DATE – Interval

The following query objectives require adding and subtracting
intervals to DATE values to produce DATE values.

Sample Query 10.18: Reference the DEMO3 table. Display each

BDDATE value followed by three other DATE values which are:
10 days, 3 months, and 5 years after the BDDATE value.

DB2: DB2 supports the DAYS, MONTHS, and YEARS keywords to
represent intervals. These keywords are preceded by a number to

specify the size of the interval.

 BDDATE PLUS10D PLUS3M PLUS5Y
 2017-06-05 2017-06-15 2017-09-05 2022-06-05
 2014-11-25 2014-12-05 2015-02-25 2019-11-25
 2019-01-10 2019-01-20 2019-04-10 2024-01-10

 1982-03-07 1982-03-17 1982-06-07 1987-03-07
 2015-05-10 2015-05-20 2015-08-10 2020-05-10
 2017-06-13 2017-06-23 2017-09-13 2022-06-13

 1978-05-17 1978-05-27 1978-08-17 1983-05-17

A similar query objective requires subtracting an interval from
a DATE value to produce a DATE result. Display the BDDATE column
followed by more three dates which are: 10 days, 3 months, and 5
years before the BDDATE values.

 BDDATE MINUS10D MINUS3M MINUS5Y
 2017-06-05 2017-05-26 2017-03-05 2012-06-05
 2014-11-25 2014-11-15 2014-08-25 2009-11-25
 2019-01-10 2018-12-31 2018-10-10 2014-01-10
 1982-03-07 1982-02-25 1981-12-07 1977-03-07
 2015-05-10 2015-04-30 2015-02-10 2010-05-10
 2017-06-13 2017-06-03 2017-03-13 2012-06-13

 1978-05-17 1978-05-07 1978-02-17 1973-05-17

SELECT BDDATE, DB2
 BDDATE + 10 DAYS PLUS10D,
 BDDATE + 3 MONTHS PLUS3M,
 BDDATE + 5 YEARS PLUS5Y
FROM DEMO3

SELECT BDDATE, DB2
 BDDATE - 10 DAYS MINUS10D,

 BDDATE - 3 MONTHS MINUS3M,
 BDDATE - 5 YEARS MINUS5Y
FROM DEMO3

Free SQL Book, Tim Martyn 275 Copyright Pending, 2022

SQL Server: SQL Server supports the DATEADD function which
allows you to add some number of days, weeks, or years to a
DATE value to return another DATE value.

You can specify a negative value to subtract units of days,

months, or years.

[DATEADD also allows you to specify units of time such as hours,
minutes, or seconds.]

ORACLE: If you add a number to a DATE, the system assumes the
number represents days. ORACLE also supports an ADD_MONTHS
function to add some number of months to a DATE value. This
function can be used to add years by converting years to months.

The following statement adds: 10 days (PLUS10D), 3 months
(PLUS3M), and 5 years (PLUS5Y) to the BDDATE value; and it
subtracts: 10 days (MINUS10D), 3 months (MINUS3M), and 5 years
(MINUS5Y) from the BDDATE value.

BBDATE PLUS10D PLUS3M PLUS5Y MINUS10D MINUS3M MINUS5Y
05-JUN-17 15-JUN-17 05-SEP-17 05-JUN-22 26-MAY-17 05-MAR-17 05-JUN-12

25-NOV-14 05-DEC-14 25-FEB-15 25-NOV-19 15-NOV-14 25-AUG-14 25-NOV-09
10-JAN-19 20-JAN-19 10-APR-19 10-JAN-24 31-DEC-18 10-OCT-18 10-JAN-14

07-MAR-82 17-MAR-82 07-JUN-82 07-MAR-87 25-FEB-82 07-DEC-81 07-MAR-77

10-MAY-15 20-MAY-15 10-AUG-15 10-MAY-20 30-APR-15 10-FEB-15 10-MAY-10
13-JUN-17 23-JUN-17 13-SEP-17 13-JUN-22 03-JUN-17 13-MAR-17 13-JUN-12
17-MAY-78 27-MAY-78 17-AUG-78 17-MAY-83 07-MAY-78 17-FEB-78 17-MAY-73

SELECT BDDATE, ORACLE

BDDATE + 10 PLUS10D,
ADD_MONTHS (BDDATE , 3) PLUS3M,
ADD_MONTHS (BDDATE , 60) PLUS5Y,
BDDATE -10 MINUS10D,
ADD_MONTHS (BDDATE , -3) MINUS3M,
ADD_MONTHS (BDDATE , -60) MINUS5Y

FROM DEMO3

SELECT BDDATE, SQL Server
 DATEADD (day, 10, BDDATE) PLUS10D,
 DATEADD (month, 3, BDDATE) PLUS3M,
 DATEADD (year, 5, BDDATE) PLUS5Y
FROM DEMO3

SELECT BDDATE, SQL Server

 DATEADD (day, -10, BDDATE) MINUS10D,
 DATEADD (month, -3, BDDATE) MINUS3M,
 DATEADD (year, -5, BDDATE) MINUS5Y
FROM DEMO3

Free SQL Book, Tim Martyn 276 Copyright Pending, 2022

Time Data

Some applications need to store information about time. Again,
there is considerable variation among different systems. We only
say a few words on this topic to help you get started reading
your SQL reference manual.

DB2 supports a TIME data-type which represents hour, minute, and
second values. It also supports a TIMESTAMP data-type which
represents year, month, day, hour, minute, second, and
microsecond values.

SQL Server supports a TIME data-type which represents hour,
minute, second, and fractional seconds. It also supports a
DATETIME data-type which represents year, month, day, hour,
minute, second, and fractional seconds. (A DATETIME2 data-type
is same as the DATETIME data-type, but is has greater accuracy
in its fractional seconds.)

ORACLE supports a TIMESTAMP data-type which represents year,
month, day, hour, minute, second, and fractional seconds.

Because time values are not stored in the DEMO3 table, we use
today’s time to demonstrate system-specific methods to access

today’s time of statement execution. Assume today’s date is
March 1, 2019. The time values vary in the following results
because these statements were executed at different times.

Sample Query 10.19: Display all MNAME values followed by today’s

date and time of execution.

DB2: In addition to the CURRENT_DATE register, DB2 also supports
a CURRENT_TIME and CURRENT_TIMESTAMP registers. CURRENT_TIME
returns hour, minute, and second values, whereas

CURRENT_TIMESTAMP returns year, month, day, hour, minute,
second, and millisecond values. The following statement
specifies CURRENT_TIMESTAMP.

MNAME MYDATETIME
EVAN 2019-03-01 15:23:58.441

 HANNAH 2019-03-01 15:23:58.441

 JACQUELINE 2019-03-01 15:23:58.441
 JESSIE 2019-03-01 15:23:58.441
 JONHHY 2019-03-01 15:23:58.441
 JOSEPHINE 2019-03-01 15:23:58.441
 JULIE 2019-03-01 15:23:58.441

SELECT MNAME, DB2
 CURRENT_TIMESTAMP MYDATETIME

FROM DEMO3
ORDER BY MNAME

Free SQL Book, Tim Martyn 277 Copyright Pending, 2022

SQL Server: The GETDATE() function returns year, month, day,
hour, minute, second, and millisecond values.

MNAME MYDATETIME
EVAN 2019-03-01 16:49:14.613
HANNAH 2019-03-01 16:49:14.613

JACQUELINE 2019-03-01 16:49:14.613
JESSIE 2019-03-01 16:49:14.613
JONHHY 2019-03-01 16:49:14.613
JOSEPHINE 2019-03-01 16:49:14.613
JULIE 2019-03-01 16:49:14.613

If you need greater time accuracy, you can reference SQL
Server’s SYSDATETIME function.

ORACLE: ORACLE’s SYSDATE pseudo-column contains both today’s
date and time values. (Recall that Sample Query 10.14 referenced
SYSDATE which, by default, only returned the date value.) To

access the time component, you must use the TO_CHAR function to
covert the SYSDATE value to a character-string pattern that
includes both date and time. The ORACLE reference manual
describes many such patterns.

MNAME MYDATETIME
EVAN 01-03-2019 15:27:35

HANNAH 01-03-2019 15:27:35
JACQUELINE 01-03-2019 15:27:35
JESSIE 01-03-2019 15:27:35
JONHHY 01-03-2019 15:27:35
JOSEPHINE 01-03-2019 15:27:35
JULIE 01-03-2019 15:27:35

If you need greater time accuracy, you can reference ORACLE’s
SYSTIMESTAMP pseudo-column.

Other Time Processing: As with DATE values, your system provides
methods to reformat, compare, and calculate time values. This

book only illustrates the extraction of time components.

SELECT MNAME, SQL Server
 GETDATE () MYDATETIME

FROM DEMO3
ORDER BY MNAME

SELECT MNAME, ORACLE
 TO_CHAR (SYSDATE, 'DD-MM-YYYY HH24:MI:SS') MYDATETIME
FROM DEMO3
ORDER BY MNAME

Free SQL Book, Tim Martyn 278 Copyright Pending, 2022

Extracting Time Components

Sample Query 10.14 illustrated functions that extract the year,
month, and day components of a DATE value. Similar functions can
extract the hour, minute, and second components of TIME and
TIMESTAMP values. Because time values are not stored in the
BDDATE column, we use today’s timestamp to demonstrate system-
specific methods to access today’s time of statement execution.

Sample Query 10.20: Reference the DEMO3 table. Display the:

• MNAME column

• Hour component of the current timestamp

• Minute component of the current timestamp

• Second component of the current timestamp

The following DB2, SQL Server, and ORACLE functions produce the
same result table (with the exception that ORACLE will also
display the fractional part of a second).

MNAME MYHOUR MYMINUTE MYSECOND
EVAN 10 14 2
HANNAH 10 14 2

JACQUELINE 10 14 2
JESSIE 10 14 2
JONHHY 10 14 2
JOSEPHINE 10 14 2
JULIE 10 14 2

DB2: Utilize the HOUR, MINUTE, and SECOND functions.

SQL Server: Specify the DATEPART function with HOUR, MINIUTE,

or SECOND as arguments. (The DATEPART function can also be
used to extract year, month, and date components.)

SELECT MNAME, DB2
 HOUR (CURRENT_TIMESTAMP) MYHOUR,

 MINUTE (CURRENT_TIMESTAMP) MYMINUTE,
 SECOND (CURRENT_TIMESTAMP) MYSECOND

FROM DEMO3
ORDER BY MNAME

SELECT MNAME, SQL Server
 DATEPART (HOUR, GETDATE()) MYHOUR,

DATEPART (MINUTE, GETDATE()) MYMINUTE,
DATEPART (SECOND, GETDATE()) MYSECOND

FROM DEMO3
ORDER BY MNAME

Free SQL Book, Tim Martyn 279 Copyright Pending, 2022

ORACLE: Specify the EXTRACT function with HOUR, MINIUTE, or
SECOND as arguments.

Summary

All systems support date-time data-types and functions. This
chapter only illustrated a few popular DB2, ORACLE, and SQL Server
functions in order to present basic concepts.

Undoubtedly, you have observed that date-time functions are more
complex than the basic arithmetic and character-string functions
introduced in Chapter 10. This occurs because date-time processing
is inherently complex. Consider the following questions that this
chapter did not address.

• What is the oldest historical date that your system can
represent? Also, if your system supports very old historical
dates, how does it handle the transition from the Julian
Calendar to Gregorian Calendar which was implemented in
different years in different countries?

• How does your system incorporate time zones?

• How does your system handle daylight savings time which

applies within some geographic locations but not others?

Many systems address some of these issues. The concepts are
similar, but coding details differ. Again, you are encouraged to
consult your SQL reference manual for a description of all date-
time data-types and functions provided by your system.

SELECT MNAME, ORACLE
EXTRACT (HOUR FROM SYSTIMESTAMP) MYHOUR,
EXTRACT (MINUTE FROM SYSTIMESTAMP) MYMINUTE,
EXTRACT (SECOND FROM SYSTIMESTAMP) MYSECOND

FROM DEMO3
ORDER BY MNAME

Free SQL Book, Tim Martyn 280 Copyright Pending, 2022

Appendix 10.5A: Theory

We mention two topics that may be of interest to application
developers who have some experience with object-oriented
programming languages (e.g., C++ and JAVA) or work on projects
that have significant date-time processing requirements.

Object Orientation: The DATE data-type uses some internal (hidden)
coding scheme to represent DATE values, and this chapter’s sample
queries illustrate that users do not need to consider this coding

scheme. This implies that DATE is a built-in abstract data-type.
In addition to other built-in abstract data-types (e.g., TIME,
TIMESTAMP), many systems support user-defined abstract data types
via a CREATE TYPE statement.

Without explanation, we note that supporting abstract data-types
is an important step towards to providing object-oriented
functionality within a relational database system. This is an
advanced topic that is not discussed in this book.

Temporal Databases: This is an advanced topic that transcends the
date-time concepts presented in this book. Briefly, a temporal

database supports the notions of: (1) “valid time” which
designates when a data-item becomes true in the real world, and
(2) “transaction time” which designates when a data-item was
recorded within the database.

***** Within the context of SQL, the best resource to begin
learning about temporal databases is a wonderful (but slightly
dated) book by Richard Snodgrass, Developing Time-Oriented
Database Applications in SQL. You can purchase this book from
Amazon and other book sellers, or you can obtain a free PDF
version of this book by visiting Richard Snodgrass’s web site at
the University of Arizona. [Thank you, Richard!!!]

Free SQL Book, Tim Martyn 281 Copyright Pending, 2022

Appendix 10.5B: One-Row “Dummy” Tables

Reconsider the three SELECT statements that satisfied the “What
weekday were you born on?” question. The DB2 solution looked like:

SELECT DAYNAME (CAST ('1943-08-30' AS DATE)) MYBDAY
FROM DEMO3

Because DEMO3 has 8 rows, the result shows 8 rows.

 MYBDAY

 Monday
 Monday
 Monday
 Monday

Monday
 Monday
 Monday

We could specify DISTINCT to remove duplicate rows, but there is
an alternative way. First, note that this query objective does
not require access to the DEMO3 table or any other table. We
only used DEMO3 because it is a small table, and every SELECT

statement (excluding SQL Server) must specify a FROM-clause.

Some systems (e.g., DB2, ORACLE) provide a “dummy” table with
just one row. Referencing this table allows you to produce the
following a one-row result table.

MYBDAY
 Monday

DB2: DB2 supports a dummy table called SYSIBM.SYSDUMMY1.

SELECT DAYNAME (CAST ('1943-08-30' AS DATE)) MYBDAY

FROM SYSIBM.SYSDUMMY1

ORACLE: ORACLE supports a dummy table called DUAL.

 SELECT TO_CHAR

 (TO_DATE ('1943-08-30', 'YYYY-MM-DD'), 'DAY') MYBDAY
 FROM DUAL

SQL Server users use another method to produce a one-row result

table. Instead of a dummy table, SQL Server supports a “no
table” option, where you can code a SELECT statement
without a FROM-clause.

 SELECT DATENAME (dw, CAST ('1943-08-30' AS DATE)) MYBDAY

Free SQL Book, Tim Martyn 282 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 283 Copyright Pending, 2022

 Chapter

 11

 Null Values

A null value indicates that a value is unknown. In this book, a
hyphen (-) is used to represent a null value. For example, the
hyphen in the COLY column of the following table indicates that
the COLY value is unknown.

[Different front-end tools display different symbols to represent
null values. One tool might display the question mark, another
might display “null,” and yet another might display blanks.]

Below, we revisit the CREATE TABLE statement for the PRESERVE
table to note that the optional NOT NULL clause was specified for
every column.

Specification of a NOT NULL clause tells the system to prohibit
any operation that attempts to store a null value in a column.
Hence, all previous sample queries and exercises did not have to
consider the problematic (but interesting) issues associated with

null values. Sample queries that address these issues will be
presented in this chapter.

COLX COLY

 100 200
 400 -
 700 100

CREATE TABLE PRESERVE
(PNO INTEGER NOT NULL UNIQUE,
 PNAME VARCHAR (25) NOT NULL,
 STATE CHAR (2) NOT NULL,
 ACRES INTEGER NOT NULL,
 FEE DECIMAL (5,2) NOT NULL)

Free SQL Book, Tim Martyn 284 Copyright Pending, 2022

NTAB and NTAB2 Tables

This chapter’s sample queries will reference the following NTAB
table (Figure 11.1), and the exercises will reference the NTAB2
table (Figure 11.2). The following CREATE TABLE statements, which
created these tables, used different methods to designate that a
column is allowed to contain null values.

The column definitions in NTAB explicitly specify NULL implying
that null values are allowed. Because the column definitions in
NTAB2 do not specify NULL or NOT NULL, the system assumes the

default of NULL has been specified. Hence all columns in these
tables will accept null values.

 CREATE TABLE NTAB CREATE TABLE NTAB2
 (A INTEGER NULL, (A INTEGER,
 B INTEGER NULL) B INTEGER)

Assume that INSERT operations have inserted some rows with null
values. (The INSERT statement will be introduced in Chapter 15.)
In particular, observe that the last row in each table contains
all null values, a valid but most unusual situation.

Complexity: Sample Queries 11.1-11.11 will introduce some

problematic issues associated with null values. After examining
these sample queries, you might conclude that null values are
unnecessarily complex and hope that every column is declared as
NOT NULL. However, null values appear in many real-world tables.
You cannot avoid them.

There are two general coding techniques that address problematic
issues associated with null values. Your SQL code may specify a:

(1) WHERE-clause that rejects rows with null values.
or

(2) Built-in function that substitutes a real value for a

null value.

Sample Queries 11.12-11.14 will illustrate these techniques.

A B

5 5

5 10

5 -

- 10

- -

Figure 11.1: NTAB Table

A B

10 -

15 10

 - 30

 - 10

40 40

 - -

Figure 11.2: NTAB2 Table

Free SQL Book, Tim Martyn 285 Copyright Pending, 2022

Arithmetic Expressions Involving Null Values

Assume you know how many dollars you have in your pocket. Call
this amount A. Also, assume you do not know how many dollars I
have in my pocket. Call this amount B. How many total dollars will
we have if we pool our money? (What is A+B?) You don’t know. The
following sample query illustrates this logic.

Sample Query 11.1: Reference the NTAB table.
 Display columns A, B, and the value of A+B.

A B A+B
5 5 10
5 10 15
5 - -
- 10 -
- - -

Logic: An arithmetic expression returns a null value if any

operand is null. This behavior is reasonable and conforms to the
intuition of most users.

Exercise:

11A. Display the result table produced by executing:

 SELECT A, B, A-B
 FROM NTAB2

SELECT A, B, A+B

FROM NTAB

A B
5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 286 Copyright Pending, 2022

Aggregate Functions Involving Null Values

Careful! Unlike arithmetic expressions, aggregate functions simply
ignore null values.

Sample Query 11.2: Reference the NTAB table. What is the sum of

column A?

 SUM (A)
15

Important Observations: After reading Sample Queries 11.1 and
11.2, you might think: That’s strange. In the presence of null
values, an aggregate function behaves differently than an
arithmetic expression. The essence of this difference is:

As Sample Query 11.1 illustrates, within an arithmetic
expression, if any operand is null value, the result is a

null value.

As the above Sample Query 11.2 illustrates, an aggregate
function ignores null values. The function performs the
calculation using only the non-null values.

Some users are shocked by this apparently inconsistent behavior.
They say something like: “This is crazy!!!!” This apparently
inconsistent behavior can become confusing. See the following
Sample Query 11.3.

Special Case Circumstance: An aggregate function (e.g., SUM, MAX,
MIN, AVG, COUNT) will return a null value if the function
references a column (or an intermediate-result column) that
contains all null values.

Exercise:

11B. Display the result table produced by executing:

 SELECT SUM(A), SUM(B)
 FROM NTAB2

SELECT SUM (A)

FROM NTAB

A B
5 5
5 10
5 -

- 10
- -

 NTAB

Free SQL Book, Tim Martyn 287 Copyright Pending, 2022

Careful!!!

Before the computer era, paper-and-pencil bookkeepers would cross-
tabulate a table to detect a calculation error. Consider the
following table without null values.

A B A+B
5 5 10
5 10 15
100 5 105
200 10 210

100 100 200

 410 130 540

The bookkeeper hoped that SUM(A+B) would equal SUM(A)+SUM(B).

 SUM(A+B) = 10 + 15 + 105 + 210 + 200 = 540

 SUM(A)+SUM(B) = 410 + 130 = 540

Obtaining the same result (540) offers pretty good evidence that

there were no manual calculation errors.

Sample Query 11.3: Perform a cross-tabulation on the NTAB table.
 Show (A+B) does not equal SUM(A)+SUM(B).

SUM(A+B) SUM(A)+SUM(B)

25 40

Logic: A B A+B

5 5 10
5 10 15
5 - -

- 10 -
- - -

 15 25 (40 or 25)

Conclusion: Be careful when calculating with null values.

Exercise:

11C. Display the result table produced by executing:

 SELECT SUM(A+B), SUM(A) + SUM(B)
 FROM NTAB2

SELECT SUM(A+B), SUM(A)+SUM(B)

FROM NTAB

A B
5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 288 Copyright Pending, 2022

Comparing with Null Values

Assume you know how many dollars you have in your pocket. Call
this amount A. You do not know how many dollars I have in my
pocket. Call this amount B. Do you know if we both have the same
number of dollars? (Does A=B?) You don’t know. The A=B result is
unknown. SQL applies the same logic.

The system only selects a row if a WHERE-condition evaluates to
True. If the condition evaluates to False or Unknown, the row is
not selected. Consider the following example. The interesting row

is the last row where both A and B contain a null value.

Sample Query 11.4: Display all rows from NTAB where A = B.

A B

 5 5

Logic: Consider the A=B condition for each row in NTAB.

1. The first row is selected. (“5=5” is True).

2. The second row is not selected. (“5=10” is False).

3. The third row is not selected
 (“5=null” is Unknown: only True implies selection.)

4. The fourth row is not selected
 (“null=10” is Unknown: only True implies selection.)

5. The fifth row is not selected. You may find this to be

confusing. After all, both A and B contain null values. We
will explain this logic on the following page. For the
moment, we simply state that:

A null value is not equal to another null value!

This sample query specifies an equals (=) comparison operator.
The same logic applies to the other comparison operators. For
example, a greater than (>) comparison is "unknown" if either or

both of the operands are null.

SELECT *

FROM NTAB

WHERE A = B

A B
5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 289 Copyright Pending, 2022

“NULL=NULL” is Unknown: This logic can be explained by asking you
to consider two people, Person-A and Person-B. Assume you do not
know how many dollars each person has in his pocket. (A is null,
and B is null.) Obviously, you cannot conclude that both people
have the same number of dollars. Hence “NULL=NULL” is Unknown:

Occasionally someone will disagree and say something like:

 “Given any value X, it must be true that X=X. Therefore, it

should be the case that NULL = NULL also evaluates to True.”

This comment is not valid because X=X assumes that X is a value.

However! NULL is not a value.

 NULL indicates the absence of a value.

For any value X, X=X does indeed evaluate to True. However,
because NULL is not a value, we cannot conclude that two NULL
“values” are equal to each other.

Then, why do we call them Null “values?” We should not call them
“NULL values.” However, we do so because almost everyone else

does, including your SQL reference manual. (Ted Codd, who started
all this null-value business, later said that he wished he had
called them null “marks” where a mark indicates the absence of a
value.)

Exercise:

11D. Display the result table produced by executing:

 SELECT *
 FROM NTAB2

 WHERE A = B

Free SQL Book, Tim Martyn 290 Copyright Pending, 2022

“NULL<>NULL” is Unknown: Referring to the previous scenario, both
persons may or may not have the same number dollars in their
pockets. You don’t know. Therefore, if you cannot conclude that
Person-A and Person-B have the same number of dollars in their
pockets, then, likewise, you cannot conclude that these persons do
not have the same number of dollars in their pockets.

Sample Query 11.5: Display all rows from NTAB where A <> B.

 A B

5 10

Logic: Consider the A<>B condition for each row in NTAB.

1. The first row is not selected.
 (“5<>5” is False, implying the row is not selected.)

2. The second row is selected.

(“5<>10” is True, implying the row is selected.)

3. The third row is not selected.
 (“5<>null” is Unknown: only True implies selection.)

4. The fourth row is not selected
 (“null<>10” is Unknown: only true implies selection.)

5. The fifth row is not selected.
 (“null<>null” is Unknown: only True implies selection.)

Exercise:

11E. Display the result table produced by executing:

 SELECT *
 FROM NTAB2
 WHERE A <> B

SELECT *

FROM NTAB

WHERE A <> B

A B
5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 291 Copyright Pending, 2022

COUNT (*) – Careful with Nulls!

Sample Query 8.4.1 introduced the COUNT(*) function that returned
the number of selected rows without considering the values that
are stored in the rows. Therefore, the presence or absence of null
values does not impact the behavior of COUNT(*). For example,

 SELECT COUNT(*) ROWCT
 FROM NTAB

 ROWCT

 5

Incorrect Do-it-yourself Average: Using COUNT(*) would lead to an
error if you try to calculate a do-it-yourself average. Consider
the following statement that incorrectly attempts to calculate the
average of the known values in column A.

 SELECT SUM (A * 1.00)/COUNT(*) BADAVG
 FROM NTAB

 BADAVG

 3.00 → Error

Here, SUM(A) returned 15.00, and COUNT(*) returned 5
Then, (15.00/5) = 3.00

Correct Average: The correct average is 5.00 as shown below.

 SELECT AVG (A*1.00) GOODAVG
 FROM NTAB

 GOODAVG
 5.00

Here, the AVG function simply ignored the NULL values and
calculated 15.00/3 = 5.

The following page presents another variation of the COUNT
function that will be used to correctly code a do-it-yourself
average.

A B
5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 292 Copyright Pending, 2022

COUNT (column)

The COUNT (column) function returns the number of non-null values
in a specified column. The following sample query illustrates the
behavior of COUNT (column).

Sample Query 11.6: Reference the NTAB table. How many non-null

values are in column A?

COUNT (A)
 3

Observation: The following statement produces the correct average
of Column A.

 SELECT SUM(A * 1.00)/COUNT(A) GOODAVG
 FROM NTAB

 GOODAVG
 5.00

Here, SUM(A * 1.00) returned 15.00, and COUNT(A) returned 3
Then, (15.00/3) = 5.00

Exercise:

11F. Display the result table produced by executing:

 SELECT COUNT (*), COUNT (A), COUNT (B)
 FROM NTAB2

SELECT COUNT (A)

FROM NTAB

A B
5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 293 Copyright Pending, 2022

Three-Value Logic (3VL) System

Two-Value Logic (2VL): In previous chapters, when considering a
WHERE-clause, the truth value for a condition was either (1) True
or (2) False. There were only two truth-values. There was no third
truth-value. Hence, we had a 2-Value Logic (2VL) system.

Three-Value Logic (3VL): Sample Queries 11.4 and 11.5 showed that,
in the presence of Null values, a WHERE-clause could have three
possible truth values: True (T), False (F), and Unknown (U).
Hence, we have 3-Value Logic (3VL) system. Understanding the 3VL
is important. Consider the following scenario.

 A user knows there are 5 rows in NTAB. Then he executes the

following statement and observes the result.

 SELECT COUNT(*) CT
 FROM NTAB
 WHERE A=B

 CT
 1

 Next, he considers, but does not execute:

 SELECT COUNT(*) CT
 FROM NTAB
 WHERE A<>B

 Instead, he incorrectly deduces that the result would be:

 CT

 4 Error

 However, if he had executed this statement, he would see

the correct result is:

 CT
 1

 This user made an erroneous deduction because he

incorrectly applied the 2VL in the context of null values.
(Review Sample Query 11.5.) Within the 2VL system without
null values, given 5 rows in any table, and knowing that
“A=B” returns one row, you can correctly deduce that “A<>B”
will return 4 rows. However, this conclusion is not valid in
a 3VL system.

Conclusion: Practically all computer languages utilize the
traditional 2VL. SQL is the only major computer language that (in
the presence of null values) utilizes a 3VL.

Free SQL Book, Tim Martyn 294 Copyright Pending, 2022

Truth Tables for 3VL

The 3VL becomes more complex when we consider the Boolean
connectors (AND, OR, NOT). Within a 3VL system, the conventional
(2VL) truth-table is enhanced to include the U (Unknown) truth
value as shown below in Figure 11.4. [Suggestion: Review the truth
tables for the 2VL in the Summary for Chapter 4.]

 →

 →

 →

Figure 11.4 adds three new rows (designated by →) to the
conventional truth-table for a 2VL. This figure summarizes the
behavior of the Boolean operators within a 3VL system. The

evaluations of True (T), False (F), and Unknown (U) are consistent
with the semantics of AND, OR, and NOT in the 2VL. Below, we
justify the truth-values for the new rows in the above figure.

AND-Conditions: As with the 2VL, the AND of two conditions
evaluates to True if both conditions are True.

T AND U evaluates to U

 Assume the U-condition is actually True. Then, under this

assumption, we have T AND T which evaluates to True.

 Assume the U-condition is actually False. Then, under this
assumption, we have T AND F which evaluates to False.

 Hence, because these two assumptions produce different truth-

values, we conclude that T AND U evaluates to U.

F AND U evaluates to F

 Assume the U-condition is actually True. Then, under this

assumption, we have F AND T which evaluates to False.

 Assume the U-condition is actually False. Then, under this

assumption, we have F AND F which evaluates to False.

 Hence, because both assumptions produce the same truth-value of

False, we conclude that F AND U evaluates to False.

Figure 11.4: Boolean Operators within 3VL

C1 C2 C1 AND C2 C1 OR C2 NOT C1 NOT C2
T T T T F F
T F F T F T

T U U T F U
F T F T T F
F F F F T T
F U F U T U
U U U U U U

Free SQL Book, Tim Martyn 295 Copyright Pending, 2022

U AND U evaluates to U

 Assume both U-conditions are actually True. Then, under this

assumption, we have T AND T which evaluates to True.

 Assume both U-conditions are actually False. Then, under this

assumption, we have F AND F which evaluates to False.

 Hence, U OR U evaluates to U because these two assumptions do

not produce the same truth-value.

OR-Conditions: As with the 2VL, the OR of two conditions evaluates
to True if one or both conditions are True.

 T OR U evaluates to T

 Assume the U-condition is actually True. Then, under this

assumption, we have T OR T which evaluates to True.

 Assume the U-condition is actually False. Then, under this

assumption, we have T OR F which evaluates to True.

 Hence, T OR U evaluates to T because both assumptions produce

the same truth-value of True.

 F OR U evaluates to U

 Assume the U-condition is actually True. Then, under this

assumption, we have F OR T which evaluates to True.

 Assume the U-condition is actually False. Then, under this

assumption, we have F OR F which evaluates to False.

 Hence, F OR U evaluates to U because these two assumptions

produce different truth-values.

 U OR U evaluates to U

 Assume both U-conditions are actually True. Then, under this

assumption, we have T OR T which evaluates to True.

 Assume both U-conditions are actually False. Then, under this

assumption, we have F OR F which evaluates to False.

 Hence, U OR U evaluates to U because these two assumptions do

not produce the same truth-value.

NOT U evaluates to U: Assume a U-condition is actually True. Under
this assumption, we have NOT T which evaluates to F. Next,
assume a U-condition is actually False. Under this assumption,
we have NOT F which evaluates to T. Hence, NOT U evaluates to U
because both assumptions produce different truth-values.

Free SQL Book, Tim Martyn 296 Copyright Pending, 2022

Compound-Conditions with 3VL

Obviously, the 3VL system requires greater attention when you
verify a result table. The following sample queries invite you to
verify your understanding of the Boolean operators within a 3VL.

Sample Query 11.7a: Display all rows from NTAB where
 A = 5 and B > 5.

 A B
 5 10

Logic:

Sample Query 11.7b: Display all rows from NTAB where
 A = 5 or B > 5.

 A B
 5 5
 5 10
 5 -
 - 10

Logic:

SELECT *

FROM NTAB

WHERE A = 5 AND B > 5

SELECT *

FROM NTAB

WHERE A = 5 OR B > 5

A B
5 5
5 10
5 -
- 10
- -

 NTAB

A B A=5 B>5 A=5 AND B>5
5 5 T F F

5 10 T T

5 - T U U
- 10 U T U
- - U U

A B A=5 B>5 A=5 OR B>5

5 5 T F T

5 10 T T T

5 - T U T

- 10 U T T
- - U U U

Free SQL Book, Tim Martyn 297 Copyright Pending, 2022

Sample Query 11.8: Display all rows from NTAB where
 A = B or A<>B.

A B
5 5

 5 10

Logic:

Theory Comment: If you have read Appendix 4C, you may observe that
the above statement conforms to Aristotle’s Law of the Excluded
Middle. However, this law only applies within a 2VL system. It
does not apply within a 3VL system. Notice that above truth table
does not contain all True values in the last column.

Exercises:

11G. Display the result table produced by executing:

 SELECT *
 FROM NTAB2
 WHERE A <> B OR B < 20

11H. Display the result table produced by executing:

 SELECT *
 FROM NTAB2
 WHERE A=B OR A<>B

SELECT *

FROM NTAB

WHERE A = B

OR A <> B

A B A=B A<>5 A=B OR A<>B

5 5 T F T

5 10 F T T
5 - U U U
- 10 U U U

- - U U U

A B
5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 298 Copyright Pending, 2022

ORDER BY with Null Values

The next three sample queries present the ORDER BY, DISTINCT, and
GROUP BY clauses within the context of null values. These sample
queries may appear to be inconsistent with some concepts presented
earlier in this chapter.

Sample Query 11.9: Reference the NTAB table.
 Display Column B in ascending sequence

DB2 and ORACLE: Null values appear last, at the bottom of the
output display, because they sort higher than any known value.

SQL Server: Null values will appear first, at the top of the
output display, because they sort lower than any known value.

Apparent Semantic Problem: Having null values sort higher or lower
than known values raises a subtle semantic issue. Earlier we

emphasized that a comparison involving a null value evaluates to
Unknown. However, sorting a collection of values involves
comparing them, and, if a value is null, then how does the system
know where to place the null value within the sequence? This
apparent inconsistency is resolved by noting that a null value
must go somewhere. DB2 and ORACLE place null values last, at the
high end of the sequence. SQL Server places null values first, at
the low end of the sequence.

11I. On your system, what result table is produced by executing

the following statement?

 SELECT B
 FROM NTAB2
 ORDER BY B

NTAB

A B
5 5
5 10
5 -
- 10
- -

SELECT B

FROM NTAB

ORDER BY B

DB2 & ORACLE

 B
 5
10
10

 -
 -

 -

SQL Server

 B
 -
 -
 5

10
10

10
 -
 -

Free SQL Book, Tim Martyn 299 Copyright Pending, 2022

DISTINCT with Null Values

If we specify DISTINCT in the presence of null values, we
encounter another apparent inconsistency. DISTINCT treats null
values similar to known values because it does not display
“duplicate” null values.

Sample Query 11.10: Reference the NTAB table. Display all values

(including null values) in column A. Do not display
duplicate values.

 A
 5
 -

Logic: Column A has two null values. But, only one null value
appears in the result. Again, this may appear to be inconsistent
with our previous observation that a null value is not equal to

another null value.

We resolve this issue by noting that each null value is
represented by some symbol. And, multiple null values are
represented by the same symbol. When DISTINCT encounters multiple
occurrences of this symbol, it treats them as duplicates. (This
argument may not be satisfying, but that’s the way it works.)

11J. Display the result table produced by executing:

 SELECT DISTINCT A

 FROM NTAB2

SELECT DISTINCT A

FROM NTAB

NTAB
A B
5 5
5 10
5 -
- 10
- -

Free SQL Book, Tim Martyn 300 Copyright Pending, 2022

GROUP BY with Null Values

If we specify GROUP BY COLX where column COLX contains null
values, we encounter another apparent inconsistency. GROUP BY
treats null values similar to known values when it forms groups.

Sample Query 11.11: Reference the NTAB table. Group the rows by

column A and display the sum of the column B values for
each group.

 A SUM (COLA)
 5 15
 - 10

Logic: For the purpose of grouping, SQL treats null values as
equal to each other. Hence, in the current example, the null group

contains two rows as illustrated below

Again, this behavior may appear to be inconsistent with previous
statements that a null value is not equal to another null value.

We resolve this issue by contending that rows with null values
should be stored in some group. Because all null values are
represented by the same symbol, these rows should be placed in
their own group. (Again, this argument may not be satisfying, but
that’s the way it works.)

11K. Display the result table produced by executing:

 SELECT A, SUM(B)
 FROM NTAB2
 GROUP BY A

SELECT A, SUM (B)

FROM NTAB

GROUP BY A

NTAB
A B
5 5
5 10
5 -
- 10
- -

A B
5 5
5 10
5 -

- 10
- -

Free SQL Book, Tim Martyn 301 Copyright Pending, 2022

Addressing the Complexity of Null Values

The preceding sample queries illustrated subtle logical issues
pertaining to null values and the 3VL. These potential problems
may be eliminated if every column in every table is declared to be
NOT NULL as shown below in Figure 11.5.

Most front-end tools include a Metadata Panel as illustrated in
Figure 1.1. This metadata includes the specification NOT NULL for
columns.

There is a pretty good chance that some of your tables have one or
more columns that allow null values. (A theoretical justification
for representing unknown values in a database system is presented
in Appendix 11A.) This author speculates that 99% of all SQL users
will encounter null values in at least one of their tables. Hence,

you cannot completely avoid null values.

The remaining sample queries present some SQL techniques for
addressing null values. These techniques can help in many but not
all circumstances.

Figure 11.5: Columns specified as NOT NULL

CREATE TABLE NTABX
(A INTEGER NOT NULL,
 B INTEGER NOT NULL)

Free SQL Book, Tim Martyn 302 Copyright Pending, 2022

IS [NOT] NULL Condition

You can explicitly test a column for the presence or absence of
null values. Specifying "column IS NULL" will select rows having a
null value in the specified column. Specifying "column IS NOT
NULL" will select rows without nulls in the specified column.

Sample Query 11.12a: Display all NTAB rows with a null value in

column A.

 A B

- 10
 - -

Syntax: Do not specify an equal sign. The following WHERE-clause
will not satisfy the query objective because a null value does not
equal any value.

 SELECT *
 FROM NTAB

 WHERE A = NULL → Error

Sample Query 11.12b: Display all NTAB rows with a non-null value

in column A.

 A B

5 5
5 10
5 -

Syntax: Do not specify a not-equal sign. You should specify "WHERE
A IS NOT NULL".

SELECT *

FROM NTAB

WHERE A IS NULL

SELECT *

FROM NTAB

WHERE A IS NOT NULL

A B

5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 303 Copyright Pending, 2022

The next sample query modifies Sample Query 11.3. This example
shows that the accountant’s cross-tabulation method returns
consistent results after you eliminate null values.

Sample Query 11.13: Calculate the overall total of the non-null

values found in columns A and B. Use two approaches: First,
find the sum of column A, the sum of column B, and then add
the results. Second, for each row, add its A and B values,
and then summarize these totals.

SUM(A)+ SUM(B) SUM(A+B)
25 25

Logic: Because the WHERE-clause eliminated every row with a null
value, only two rows were selected. Hence, the following cross-

tabulation was applied.

 A B A+B
 5 5 10
 5 10 15

SUM 10 15 25

Sometimes, it is reasonable to exclude null values. However, note
that the above “IS NOT NULL” conditions rejected 60% (3/5) of all
NTAB rows. Therefore, the usefulness of the calculated results may
be questionable. It may be better to substitute some real value
for each null value, as will be illustrated in Sample Query

11.14b.

SELECT SUM(A) + SUM(B), SUM(A+B)

FROM NTAB

WHERE A IS NOT NULL

AND B IS NOT NULL

Free SQL Book, Tim Martyn 304 Copyright Pending, 2022

Default Values

The DBA may be able to help users avoid some of the problems
associated with null values by designating some real (non-null)
“default” value to represent an unknown value. (Chapter 13 will
show how this default can be specified within a CREATE TABLE
statement.) Specifying a default value is a very old technique
that was and still is applied within conventional 2VL systems.

For example, assume TABLEX contains a decimal column, COLX, that
has some unknown values. The DBA could designate COLX as NOT

NULL, and then specify some value (e.g., -1.0) as the default
value to represent an unknown value. Then, to summarize all
known values in the COLX, a user would execute:

 SELECT SUM (COLX)

FROM TABLEX
WHERE COLX <> -1.0

Of course, this presumes that -1.0 can never appear as a real
value in COLX. This method may be effective in many circumstances.
However, there are circumstances where designating a default value
may not be a good idea.

Know-Your-Data Problem with Default Values: You must remember the
default value for each column. What if another decimal column,
COLY, could also contain unknown values, but COLY may contain
negative values, including -1.0? Hence, you cannot specify -1.0 as
the default value for COLY. Some other default value must be
specified, and you must remember it. You might hope that the DBA
could specify some generic default value (e.g., -9999.999) that
applies to all columns. However, what if COLY is an integer or a
character-string column? You can see where all this is going. You
must be prepared to deal with different default values for
different columns.

Good News: NULL represents an unknown value for any data-type.

Conclusion: Default values might help, but they cannot help in all
circumstances. This is one reason why a DBA may permit some
columns to contain null values.

Free SQL Book, Tim Martyn 305 Copyright Pending, 2022

COALESCE Function: Substitute a “Real” Value for a Null Value

The default-value method is “permanent” in the sense that a
default value stays in effect until the DBA makes a design change.
Also, this method is “global” in the sense that all SQL statements
written by different users encounter the same default value.

The following method allows a column to contain null values. Then,
when desired, the user can code a SQL statement with the COALESCE
function to substitute a “temporary and local” value for a null
value. This substituted value only applies for this statement.

Sample Query 11.14a: Display the NTAB table with the following

substitutions. Substitute 6 for any null value in column
A, and substitute 9 for any null value in column B.

 COALESCE (A,6) COALESCE (B,9)
 5 5

5 10

5 9
6 10
6 9

Syntax & Logic: The first argument of COALESCE is a column or
expression that could possibly evaluate to null. The second
argument is a value to be substituted for the null value.

 COALESCE (A, 6) substitutes 6 for every null value in column A.

 COALESCE (B, 9) substitutes 9 for every null value in column B.

Alternative System-Specific Functions: Most database systems
support the COALESCE function. Also, most systems also provide
other system-specific functions that can be used instead of
COALESCE. Without explanation, we present some examples.

With DB2, you could specify the VALUE function.

 SELECT VALUE (A, 6), VALUE (B, 9) FROM NTAB

With DB2 and ORACLE, you could specify the NVL function.

SELECT NVL (A, 6), NVL (B, 9) FROM NTAB

With SQL Server, you could specify the ISNULL function.

 SELECT ISNULL (A, 6), ISNULL (B, 9) FROM NTAB

SELECT COALESCE (A, 6), COALESCE (B, 9)

FROM NTAB

A B
5 5
5 10
5 -
- 10
- -

 NTAB

Free SQL Book, Tim Martyn 306 Copyright Pending, 2022

Sample Query 11.14b: Calculate two grand totals of all values in
the NTAB table using the cross-tabulation method. This
time, substitute 0 for any null value in column A, and
substitute 1 for any null value in column B.

 GRANDTOTAL1 GRANDTOTAL2

42 42

Syntax & Logic: Nothing new. This query assumes that the user, in
consultation with the business expert, decides that 0 is a good
default for an unknown value in column A; and 1 is a good default
for an unknown value in column B.

SELECT
 SUM (COALESCE(A,0) + COALESCE(B,1)) GRANDTOTAL1,
 SUM (COALESCE(A,0))+ SUM (COALESCE(B,1)) GRANDTOTAL2
FROM NTAB

Free SQL Book, Tim Martyn 307 Copyright Pending, 2022

NULLS FIRST and NULLS LAST

Assume you want to override your system’s placement of null values
within a sorted column. For example, consider the following
statement from Sample Query 11.9.

SELECT B
FROM NTAB
ORDER BY B

If your system sorts null values last, the result table will

look like:

 B

 5
 10
 10
 -
 -

Assume you want null values to sort first such that the result
looks like:

 B

 -
 -
 5
 10
 10

The following ORDER BY clause specifies the NULLS FIRST option to
satisfy this objective.

 SELECT B

FROM NTAB

 ORDER BY B NULLS FIRST

Alternatively, if your system already sorts null values first,
specifying ORDER BY B NULLS LAST will sort null values last.

Important: Not all systems support the NULLS FIRST and NULLS LAST
options. Therefore, you may have to code some do-it-yourself
approach to place null values is a desired first/last position
within a sequence. In Chapter 22, Sample Queries 22.12a and 22.12b
will demonstrate such a do-it-yourself approach.

Free SQL Book, Tim Martyn 308 Copyright Pending, 2022

Summary

A null value is a symbol (indicator, mark) denoting that a value
is unknown. If your SQL statement references a column with null
values, you must be aware of the following:

▪ An arithmetic expression will produce a null value if any
operand is a null value.

▪ Aggregate Functions ignore null values. They calculate a
result using only the non-null values.

▪ COUNT(*) counts selected rows. This function is not
influenced by null values in the selected rows.

▪ COUNT (column) counts the number of non-null values in a
column.

▪ A null value is neither equal nor unequal to another null
value.

▪ Null values imply a three-value logic (3VL) system.

▪ Null values may sort higher or lower than non-null values.
For example, in DB2 and ORACLE, null values sort higher; in
SQL Server, null values sort lower.

▪ GROUP BY will place all null values in the same group.

▪ DISTINCT will treat all null values as duplicates.

▪ To test for the presence/absence of null values in column
COLX, specify "COLX IS NULL" or "COLX IS NOT NULL".

▪ All systems support some function (e.g., COALESCE) that
allows you to substitute a real value for null value within
an SQL statement.

Free SQL Book, Tim Martyn 309 Copyright Pending, 2022

Summary Exercises

You are given the following NTAB3 table.

 Figure 11.6: NTAB3 table.

What is the result of executing the following statements?

1. SELECT A, B, A*B FROM NTAB3;

2. SELECT MAX(A), MIN (B) FROM NTAB3;

3. SELECT SUM(A)+SUM(B), SUM(A+B) FROM NTAB3;

4. SELECT COUNT (*), COUNT(A) FROM NTAB3;

5. SELECT * FROM NTAB3 WHERE A = B;

6. SELECT * FROM NTAB3 WHERE A <> B;

7. SELECT COUNT (*) FROM NTAB3 WHERE A = B OR A <> B;

8. SELECT * FROM NTAB3 WHERE A <> 10 AND B < 10

9. SELECT * FROM NTAB3 WHERE A = 10 OR B < 10

10. SELECT * FROM NTAB3 ORDER BY A;

11. SELECT DISTINCT A FROM NTAB3;

12. SELECT A, SUM(B) FROM NTAB3 GROUP BY A;

13. SELECT * FROM NTAB3 WHERE A IS NULL;

 14. SELECT * FROM NTAB3 WHERE A IS NOT NULL;

 15. SELECT SUM(A)+SUM(B), SUM(A+B) FROM NTAB3

 WHERE A IS NOT NULL AND B IS NOT NULL;

16. SELECT COALESCE (A,25), COALESCE (B,15) FROM NTAB3;

 A B
20 20
50 -
 - -
 - 30
10 50
10 10

40 50

Free SQL Book, Tim Martyn 310 Copyright Pending, 2022

Appendix 11A: Theory

The database literature contains many publications that debate
the pros and cons of null values. This literature also proposes
alternative methods for representing and processing unknown
values. Some of these methods may be considered to be slightly
esoteric. For example, Codd also proposed a 4VL system.

Philosophical justification for representing unknown values in a
database: Ideally, (1) a database design should accurately
represent its application domain. (2) Many application domains

have unknown data. Therefore, (3) a database design should utilize
some method to represent unknown data.

For example, within a medical or health insurance application, a
person who is adopted might not be able to provide a simple yes/no
answer to a question like: Did your biological father ever have
cancer? If this person answers “I don’t know,” any default yes/no
value would not be accurate. In this circumstance, data accuracy
requires the database design to “somehow” represent unknown data.

Laws of Logic: Appendix 4B described two tautologies, the Law of
the Excluded Middle and the Law of Non-Contradiction. These laws

do not apply within a 3VL system.

The Law of the Excluded Middle, C OR (NOT C), is not a
tautology. The following truth table shows this expression
does not contain all T-values.

The Law of Non-Contradiction, NOT (C AND (NOT C)) is not a

tautology. The following truth table shows this expression
does not contain all T-values.

Conclusion: What is the best way to deal with unknown values
within a database system? This is an interesting and debatable
question.

C NOT C C OR (NOT C)
T F T

F T T

U U U

C NOT C C AND (NOT C) NOT (C AND (NOT C))

T F F T

F T F T

U U U U

Free SQL Book, Tim Martyn 311 Copyright Pending, 2022

 PART III

 Data Definition

 &

 Data Manipulation

This part of the book consists of four chapters that introduce

some of SQL’s data definition and data manipulation

statements. Some of these chapters are optional. Below we

outline the topics presented in each chapter and offer some

advice to help you determine which of these chapters you

should read.

Terminology: The Data Definition Language (DDL) refers to SQL

statements that create and drop database objects. DDL

statements presented in this part of the book include the

CREATE TABLE, DROP TABLE, CREATE INDEX, and DROP INDEX

statements.

Terminology: The Data Manipulation Language (DML) refers to

SQL statements that modify data in a database table. DML

statements presented in this part of the book include the

INSERT, UPDATE, and DELETE statements.

*** Chapter 12: This is an important chapter, and all readers

should read it. This chapter presents five sample sessions

that introduce SQL’s basic data definition and data

manipulation statements. Do not focus on details (which will

be presented in the following three chapters). Reading this

chapter will help you understand some very important know-

your-data concepts associated with more complex sample

queries to be presented later in this book.

If you are only interested in executing SELECT statements,

after reading Chapter 12, you can bypass the remainder of

this Part III and proceed to Part IV.

Free SQL Book, Tim Martyn 312 Copyright Pending, 2022

Chapter 13: This chapter presents a discussion of the CREATE

TABLE statement that was previewed in Chapter 0 (Figure 0.1).

Application developers who want to create tables within a

test database should read this chapter. All other users can

skip this chapter.

Chapter 14: This chapter introduces the CREATE INDEX and DROP

INDEX statements. This chapter is optional for all readers.

However, if you have read the preceding efficiency

appendices, you have already learned some basic concepts

about database indexes. This chapter illustrates that coding

CREATE INDEX and DROP INDEX statements is relatively

straightforward.

Chapter 15: This chapter introduces SQL’s three major data

manipulation statements.

• The INSERT statement is used to store new row(s) into a

table.

• The UPDATE statement is used to modify existing row(s)

in a table.

• The DELETE statement is used to remove existing row(s)

from a table.

Application developers should read this chapter because they

will probably embed INSERT, UPDATE, and DELETE statements

within stored procedures and application programs. All other

users can skip this chapter.

Free SQL Book, Tim Martyn 313 Copyright Pending, 2022

Chapter

 12

 Read This Chapter!

 Preview Sample Sessions:

This is an important chapter. It presents five sample sessions

that preview the CREATE TABLE, DROP TABLE, INSERT, UPDATE,

and DELETE statements.

Focus on concepts. Do not worry about syntactical details

that will be presented in the following chapters. Commentary

will focus on important know-your-data concepts that will

become very relevant when we introduce join operations in the

following Part IV of this book.

Free SQL Book, Tim Martyn 314 Copyright Pending, 2022

Sample-Session-1: Getting Started

Objective: Introduce the basic syntax and behavior of the

CREATE TABLE, DROP TABLE, INSERT, UPDATE, and DELETE

statements.

You should: (i) scan the following sample session, (ii) read

the commentary about each statement on the following pages,

and then (iii) execute each statement. This sample session

shows “SELECT * FROM DOG” after each INSERT, UPDATE, and

DELETE statement so that you can observe the changes produced

by each statement.

DROP TABLE DOG;

CREATE TABLE DOG

 (DNO INTEGER NOT NULL,

 DNAME CHAR (10) NOT NULL);

SELECT * FROM DOG;

INSERT INTO DOG VALUES (1000, 'SPOT');

SELECT * FROM DOG;

INSERT INTO DOG VALUES (3000, 'ROVER');

SELECT * FROM DOG;

INSERT INTO DOG VALUES (2000, 'WALLY');

SELECT * FROM DOG;

UPDATE DOG

SET DNAME = 'SPIKE'

WHERE DNO = 3000;

SELECT * FROM DOG;

UPDATE DOG

SET DNAME = 'REX'

WHERE DNAME LIKE 'S%';

SELECT * FROM DOG;

DELETE FROM DOG

WHERE DNAME = 'REX';

SELECT * FROM DOG;

DROP TABLE DOG;

Free SQL Book, Tim Martyn 315 Copyright Pending, 2022

Commentary on Sample-Session-1 Statements

DROP TABLE DOG;

You should see an error message indicating that you attempted

to drop a table that does not exist.

CREATE TABLE DOG

 (DNO INTEGER,

 DNAME CHAR (10));

You should see a message indicating creation of the DOG table.

(Observe that no column is designated as UNIQUE.)

SELECT * FROM DOG;

Observe that the new DOG table is empty.

 DOG

 DNO DNAME

INSERT INTO DOG VALUES (1000, 'SPOT');

Observe a message indicating a successful insert.

SELECT * FROM DOG;

Verify the preceding insert operation.

 DOG

 DNO DNAME

 1000 SPOT

INSERT INTO DOG VALUES (3000, 'ROVER');

Observe a message indicating a successful insert.

SELECT * FROM DOG;

Verify the preceding insert operation.

 DOG

 DNO DNAME

 1000 SPOT

 3000 ROVER

Free SQL Book, Tim Martyn 316 Copyright Pending, 2022

INSERT INTO DOG VALUES (2000, 'WALLY');

Observe a message indicating a successful insert.

SELECT * FROM DOG;

Verify the preceding insert operation.

 DOG

 DNO DNAME

 1000 SPOT

 3000 ROVER

 2000 WALLY

UPDATE DOG

SET DNAME = 'SPIKE'

WHERE DNO = 3000;

Observe a message indicating a successful update operation.

This statement indicates that you want to change the DNAME

value of Dog 3000 to SPIKE.

SELECT * FROM DOG;

Verify the preceding update of one row.

 DOG

 DNO DNAME

 1000 SPOT

 3000 SPIKE

 2000 WALLY

Free SQL Book, Tim Martyn 317 Copyright Pending, 2022

UPDATE DOG

SET DNAME = 'REX'

WHERE DNAME LIKE 'S%';

Observe a message indicating a successful UPDATE operation.

The two rows describing SPIKE and SPOT have their DNAME values

changed to REX.

SELECT * FROM DOG;

Verify the preceding update of two rows.

 DOG

 DNO DNAME

 1000 REX

 3000 REX

 2000 WALLY

DELETE FROM DOG

WHERE DNAME = 'REX';

Observe a message indicating a successful delete operation.

This DELETE operation applies to the two REX rows.

SELECT * FROM DOG;

Verify the preceding deletion of two rows.

 DOG

 DNO DNAME

 2000 WALLY

DROP TABLE DOG;

All rows are automatically deleted before the DOG table is

dropped from the database.

Free SQL Book, Tim Martyn 318 Copyright Pending, 2022

Sample-Session-2: Table with Duplicate Rows

Objective: Illustrate the insertion of duplicate rows into a

table, and describe why duplicate rows are problematic.

 Inserts problematic row

Commentary:

The DROP TABLE statement drops any pre-existing MAN table.

The CREATE TABLE statement creates the MAN table. The basic

syntax for the CREATE TABLE statement was introduced in Figure

0.2 which created the PRESERVE table. Unlike the CREATE TABLE

for PRESERVE, the above CREATE TABLE statement does not

designate any column as UNIQUE.

The first three INSERT statements store three rows into the

MAN table. There is nothing problematic about these rows.

Observe that these three rows are distinct.

The fourth INSERT statement is valid, but problematic. This

statement executes without an error. However, we consider

this row to be “garbage” because it is an exact duplicate of

another row. The following Sample Session-3 demonstrates how

to the system can automatically prevent this kind of “garbage

insert” operation.

DROP TABLE MAN;

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR (10) NOT NULL);

INSERT INTO MAN VALUES (77, 'MOE');

INSERT INTO MAN VALUES (99, 'CURLY');

INSERT INTO MAN VALUES (88, 'LARRY');

INSERT INTO MAN VALUES (99, 'CURLY');

SELECT * FROM MAN;

Free SQL Book, Tim Martyn 319 Copyright Pending, 2022

At the end of Sample Session-2, the MAN table looks like:

 MAN

 MNO MNAME

 77 MOE

 99 CURLY

 88 LARRY

 99 CURLY

Know-Your-Data Observation: Upon scanning this table you

might say: “Hey – this table has some duplicate rows.” This

observation is very important. It should prompt you to contact

the business expert to discuss your observation.

You: The MAN table has duplicate rows. Should this

duplication be expected?

Business Expert: This is bad! I will ask the DBA to

prevent this kind of problem.

What’s wrong with duplicate rows? We offer a practical answer

and a theoretical answer.

Practical Answer: A result table with duplicate rows can be

confusing. Also, query objectives can become fuzzy. For

example, assume your query objective is: How many men are

represented in the MAN table? If duplicate rows are allowed,

this query objective is not equivalent to: How many rows are

in the MAN table?

Theoretical Answer: C.J. Date quotes Ted Codd: “If you say

something is true, saying it twice doesn’t make it any truer!”

Other theoretical issues associated with duplicate rows were

in presented Appendix 3B.

Free SQL Book, Tim Martyn 320 Copyright Pending, 2022

Sample-Session-3: PRIMARY KEY Clause

Objective: Illustrate how the PRIMARY KEY clause prohibits the

insertion of duplicate values into a column. Hence, duplicate

rows cannot appear in a table.

PRIMARY KEY versus UNIQUE: Figure 0.2, which illustrated the

CREATE TABLE statement for the PRESERVE table, specified the

PNO column as UNIQUE. This differs from the following CREATE

TABLE statement for the MAN table where the MNO column is

specified as the PRIMARY KEY.

*** Both the PRIMARY KEY clause and the UNIQUE clause prohibit

duplicate values. However, declaring a column as the PRIMARY

KEY (versus UNIQUE) provides additional advantages that will

be described on the following page.

 ERROR – duplicate MNO

The DROP TABLE, CREATE TABLE, and first four INSERT statements

execute successfully.

The last INSERT fails because the MNO is the primary-key and

this column already contains an MNO value of 99. The system

will automatically trap this error, prevent this insert

operation, and generate an error message. At the end of Sample

Session-3, the MAN table looks like:

 MAN

 MNO MNAME

 77 MOE

 99 CURLY

 88 LARRY

 55 CURLY

DROP TABLE MAN;

CREATE TABLE MAN

(MNO INTEGER NOT NULL PRIMARY KEY,

 MNAME CHAR (10) NOT NULL);

INSERT INTO MAN VALUES (77, 'MOE');

INSERT INTO MAN VALUES (99, 'CURLY');

INSERT INTO MAN VALUES (88, 'LARRY');

INSERT INTO MAN VALUES (55, 'CURLY');

SELECT * FROM MAN;

INSERT INTO MAN VALUES (99, 'SHEMP');

Free SQL Book, Tim Martyn 321 Copyright Pending, 2022

PRIMARY KEY Advantages

Similar to a UNIQUE column:

• A primary key column is used to uniquely identify a row

in a table.

• Specifying a column as the primary-key column helps the

system automatically prevent duplicate rows.

• Future sample queries will show that knowing a column is

a primary-key will facilitate query analysis.

Unlike UNIQUE:

• Sample Session-5 will introduce another very important

database concept, the “Foreign-Key.” We will see that a

foreign-key references a primary-key. Hence, a primary-

key must be defined before a foreign-key can reference

it.

Column-Constraint versus Table-Constraint

Column-Constraint: The following CREATE TABLE statement

specifies the PRIMARY KEY clause as a column-constraint.

Here, this clause is specified in the definition of the MNO

column.

CREATE TABLE MAN

(MNO INTEGER NOT NULL PRIMARY KEY,

 MNAME CHAR (10) NOT NULL)

Table-Constraint: Alternatively, the above PRIMARY KEY

constraint could have been specified as a table-constraint

that is specified after all columns have been defined.

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR (10) NOT NULL,

 PRIMARY KEY (MNO))

Sometimes, as illustrated by this example, you can optionally

specify either a column-constraint or a table-constraint.

Chapter 13 will describe circumstances where you will not

have this option.

Free SQL Book, Tim Martyn 322 Copyright Pending, 2022

Sample-Session-4A: “Related” Tables

Objective: Introduce a database design with two tables that

are related to each other.

This session, using the same techniques shown in the preceding

sessions, creates and populates two tables, MAN and DOG.

Notice that the DOG table has a column (MNO) that contains

the man number of the man who owns the dog. This column

represents a relationship between the MAN and DOG tables. A

casual description this relationship is: “Man owns dog.” More

precisely, this relationship means that:

▪ Each dog must be owned by exactly one man.

▪ A man can own any number of dogs (including no dogs).

→

After this sample session, the MAN and DOG tables contain

the following values.

 MAN DOG

 MNO MNAME DNO DNAME MNO

 77 MOE 1000 SPOT 99

 99 CURLY 3000 ROVER 77

 88 LARRY 2000 WALLY 99

 55 CURLY

DROP TABLE MAN;

DROP TABLE DOG;

CREATE TABLE MAN

(MNO INTEGER NOT NULL PRIMARY KEY,

 MNAME CHAR (10) NOT NULL);

INSERT INTO MAN VALUES (77, 'MOE');

INSERT INTO MAN VALUES (99, 'CURLY');

INSERT INTO MAN VALUES (88, 'LARRY');

INSERT INTO MAN VALUES (55, 'CURLY');

CREATE TABLE DOG

(DNO INTEGER NOT NULL PRIMARY KEY,

 DNAME CHAR (10) NOT NULL,

 MNO INTEGER NOT NULL);

INSERT INTO DOG VALUES (1000, 'SPOT', 99);

INSERT INTO DOG VALUES (3000, 'ROVER',77);

INSERT INTO DOG VALUES (2000, 'WALLY',99);

SELECT * FROM MAN;

SELECT * FROM DOG;

Free SQL Book, Tim Martyn 323 Copyright Pending, 2022

Observations: By scanning the MAN and DOG tables we learn

details about this “man owns dog” relationship.

• Dog 1000 is owned by Man 99.

• Dog 2000 is owned by Man 99.

• Dog 3000 is owned by Man 77.

• Man 77 owns one dog, Dog 3000.

• Man 99 owns two dogs, Dog 1000 and Dog 2000.

• Two men, Man 88 and Man 55, do not own any dogs.

Data Model: When an application design includes multiple

tables (the usual situation), the database designer usually

produces a high-level graphical model called a data model. An

example is shown below in Figure 12.1.

This data model identifies table-names, column-names, and

primary key (PK) columns. It excludes some detail information

such as column data-types and specification of NOT NULL

clauses.

Important: Figure 12.1 has a label showing “Related” in

quotes. These quotes are meant to imply that these tables are

not related in the sense that the database system knows about

this “man-owns-dog” relationship. You know about this

relationship, but the system does not. Therefore, the system

would allow someone to code an INSERT statement that violates

this relationship. The following Sample Session-4B

illustrates an example.

MAN

MNO (PK)

MNAME

DOG

DNO (PK)

DNAME

MNO

Figure 12.1: “Related” Tables

Free SQL Book, Tim Martyn 324 Copyright Pending, 2022

Sample-Session-4B: Violation of Referential Integrity

Objective: Introduce the concept of “Referential Integrity”

and illustrate a violation of this concept.

This session creates and populates the same MAN and DOG tables

shown in the previous Sample Session-4A. It inserts the same

four rows into the MAN table and the same three rows into the

DOG table. Then, it inserts one more row, a problematic row,

into the DOG table.

We have already noted that each dog must be owned by exactly

one man. To be more precise, each dog must be owned by a man

who is described in the MAN table. Now, to be very precise,

every MNO value in the DOG table must match some MNO value in

the MAN table. The following sample session illustrates a

violation this rule.

Consider the last INSERT statement that inserts an MNO value

of 11 into the DOG table. This is problematic because there

is no man with an MNO value of 11 in the MAN table. Hence, we

consider this MNO value (11) in the DOG table to be garbage.

 Problematic INSERT

DROP TABLE MAN;

DROP TABLE DOG;

CREATE TABLE MAN

(MNO INTEGER NOT NULL PRIMARY KEY,

 MNAME CHAR (10) NOT NULL);

INSERT INTO MAN VALUES (77, 'MOE');

INSERT INTO MAN VALUES (99, 'CURLY');

INSERT INTO MAN VALUES (88, 'LARRY');

INSERT INTO MAN VALUES (55, 'CURLY');

CREATE TABLE DOG

(DNO INTEGER NOT NULL PRIMARY KEY,

 DNAME CHAR (10) NOT NULL,

 MNO INTEGER NOT NULL);

INSERT INTO DOG VALUES (1000, 'SPOT', 99);

INSERT INTO DOG VALUES (3000, 'ROVER',77);

INSERT INTO DOG VALUES (2000, 'WALLY',99);

INSERT INTO DOG VALUES (4000, 'SPIKE',11);

SELECT * FROM MAN;

SELECT * FROM DOG;

Free SQL Book, Tim Martyn 325 Copyright Pending, 2022

After executing these statements, the MAN and DOG tables

contain the following values.

 MAN DOG

 MNO MNAME DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 3000 ROVER 77

 99 CURLY 2000 WALLY 99

 4000 SPIKE 11 problematic

The above problematic row violates the notion of “Referential

Integrity.”

Referential Integrity is a database design concept. In this

example, it means that each dog should refer to a “real” man;

a dog should not refer to a “fictitious” man (i.e., any man

whose MNO value is not 77, 88, or 99).

This description of referential integrity is at a high-level

(real-world level) in terms of men and dogs. It does not refer

to lower-level SQL terms such as tables, columns, and keys.

Sample Session-5 will introduce a SQL feature called a

“Foreign Key” that tells the system to automatically enforce

this higher-level notion of referential integrity.

The following Sample Session-5 will specify a FOREIGN KEY

clause in the DOG table. This clause effectively tells the

system about the man-owns-dog relationship. When the system

knows about this relationship (as you do), it will

automatically prohibit execution of the problematic INSERT

statement.

Free SQL Book, Tim Martyn 326 Copyright Pending, 2022

Sample-Session-5: Foreign Key Enforces Referential Integrity

Objective: Illustrate how the FOREIGN KEY clause enforces

referential integrity.

This session re-creates the same MAN and DOG tables shown

Sample Sessions 4A and 4B with one very significant

enhancement. The CREATE TABLE statement for the DOG table

includes the following clause.

 FOREIGN KEY (MNO) REFERENCES MAN

This clause declares the MNO column in the DOG table is a

FOREIGN KEY that references the primary key column (MNO) in

the MAN table. This means that every MNO value in the DOG table

must appear somewhere in the primary-key column of the MAN

table. Given this constraint, the system will automatically

reject the last INSERT statement.

The last INSERT statement is automatically rejected by system

because it attempts to insert “garbage” (11) into the MNO

column of DOG.

 Error: Non-matching

 Foreign key

DROP TABLE MAN;

DROP TABLE DOG;

CREATE TABLE MAN

(MNO INTEGER NOT NULL PRIMARY KEY,

 MNAME CHAR (10) NOT NULL);

INSERT INTO MAN VALUES (77, 'MOE');

INSERT INTO MAN VALUES (88, 'LARRY');

INSERT INTO MAN VALUES (99, 'CURLY');

CREATE TABLE DOG

(DNO INTEGER NOT NULL PRIMARY KEY,

 DNAME CHAR (10) NOT NULL,

 MNO INTEGER NOT NULL,

 FOREIGN KEY (MNO) REFERENCES MAN);

INSERT INTO DOG VALUES (1000, 'SPOT', 99);

INSERT INTO DOG VALUES (3000, 'ROVER',77);

INSERT INTO DOG VALUES (2000, 'WALLY',99);

INSERT INTO DOG VALUES (4000, 'SPIKE',11);

SELECT * FROM MAN;

SELECT * FROM DOG;

Free SQL Book, Tim Martyn 327 Copyright Pending, 2022

The MAN and DOG tables now contain the following values.

 MAN DOG

 MNO MNAME DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 3000 ROVER 77

 99 CURLY 2000 WALLY 99

Observe there is no violation of referential integrity.

Database Relationship: A FOREIGN KEY clause effectively

implements a database relationship. In this example, the

FOREIGN KEY clause defines a one-to-many relationship between

the MAN and DOG tables. The following Figure 12.2 illustrates

this relationship by enhancing the data model shown in Figure

12.1.

Data Model: To represent the man-owns-dog relationship, the

above Figure 12.2 includes a line (labeled OWNS) between the

MAN and DOG rectangles. This figure also designates the MNO

column in the DOG table as a foreign key (FK).

A FOREIGN KEY (FK) clause defines a one-to-many relationship.

In this example, the OWNS relationship means that: (i) each

man can own many dogs; and, (ii) each dog must have exactly

one owner. The solid circle in the symbol is used to

designate that DOG is the “many-side” of the one-to-many

relationship.

Terminology – “Parent” and “Child”: When two tables are

related via a one-to-many relationship, the “one-table” is

called the parent, and the “many-table” is called the child.

In Figure 12.2, MAN is the parent of DOG. DOG is the child of

MAN. A parent can have any number of children (including no

children), but each child must have exactly one parent.

Figure 12.2: Related Tables
MAN

MNO (PK)

MNAME

DOG

DNO (PK)

DNAME

MNO (FK)

OWNS

Free SQL Book, Tim Martyn 328 Copyright Pending, 2022

Preview: Join Operations & Foreign Keys

Examine the following query objective and its result table.

 Objective: Only consider men who own dogs. Display all

information about these men and their dogs.

MNO MNAME DNO DNAME MNO

 99 CURLY 1000 SPOT 99

 77 MOE 3000 ROVER 77

 99 CURLY 2000 WALLY 99

We do not show the SQL code that produces this result table.

We only make some important observations.

• This result table should be intuitively obvious. Each

row shows information about a man and his dog. For

example, the first row shows that CURLY owns SPOT. Any

man (e.g., Man 88) who does not own a dog does not appear

in the result.

• This result displays columns from both the MAN and DOG

tables. To produce this result, the SELECT statement

must reference both tables. Specifically, the SELECT

statement will contain code that joins these tables.

Part IV of this book will present a detail description

of join-operations.

• It should be clear that joining two tables involves

“matching” some column value in the first table against

some column value in the second table. The above result

shows rows where MNO values in the MAN table matched MNO

values in the DOG table. For example, CURLY’s MNO value

of 99 matched SPOT’s MNO value of 99. Only rows with

matching MNO values appear in the result table.

• This matching operation was based upon a primary-

key/foreign-key relationship. Here, the MNO column

(primary-key column) of MAN was compared to the MNO

column (foreign-key column) of DOG. In real-world

queries, most join-operations involve comparing primary-

key values with foreign-key values.

Free SQL Book, Tim Martyn 329 Copyright Pending, 2022

Dot-Notation: Qualifying Column-Names

The MAN and DOG tables have a column with the same name (MNO).

If a SELECT statement references two tables, and both tables

have a column with the same name, the dot-notation is used to

distinguish each column. For example:

 MAN.MNO references the MNO column in the MAN table.

 DOG.MNO references the MNO column in the DOG table.

The dot-notation can be utilized in a SELECT statement that

references a single table. For example, the following two

statements are equivalent.

Statement-2 uses the dot-notation where each column-name is

preceded by the name of the table that contains the column.

In this statement, we have “qualified” each column-name with

its table-name.

Clearly, the unqualified column-names in Statement-1 are much

simpler. Hence, the dot-notation is rarely used for single-

table queries.

Statement-1

SELECT PNO,

 PNAME,

 ACRES

FROM PRESERVE

Statement-2

SELECT PRESERVE.PNO,

 PRESERVE.PNAME,

 PRESERVE.ACRES

FROM PRESERVE

Free SQL Book, Tim Martyn 330 Copyright Pending, 2022

Philosophical Question: What’s in a Database?

We offer two answers to this question. The first answer is

correct but incomplete. This second answer is profound; it

distinguishes a database system from a conventional file

system.

Answer-1: A database is a collection of data. This answer

might be satisfactory if we restrict our attention to Chapters

1-11 where we executed SELECT statements against a single

table.

Answer-2: A database is a collection of data plus

relationships between the data. Within a relational database,

foreign-keys define relationships.

Summary

This chapter previewed the CREATE TABLE and DROP TABLE

statements and the three most popular DML statements (INSERT,

UPDATE, and DELETE). Users were encouraged to preview these

statements even though they may never execute such

statements. Most application developers will execute DML

statements. Therefore, Chapter 15 will offer more details

about the DML statements previewed in this chapter.

We have seen that the PRIMARY KEY and FOREIGN KEY clauses

prevent some kinds of garbage from entering a table. However,

most importantly, from a query perspective, knowledge about

primary-keys and foreign-keys will be very helpful when you

begin to code SELECT statements that specify join-operations.

Free SQL Book, Tim Martyn 331 Copyright Pending, 2022

Chapter

 13

 CREATE TABLE Statement

Introduction: Again, most users do not need to read this

chapter. However, this chapter should be very useful for

application developers who wish to create tables in a testing

environment.

CREATE TABLE statements were previewed in Chapter 0 (Figure

0.2), and described in sample sessions in the preceding

Chapter 12. The primary objective of this chapter is to offer

more details about the CREATE TABLE statement.

Database Analysis/Design: Database administrators do not

arbitrarily create tables. They are given design

specifications produced by database analysts/designers. These

specifications designate the:

▪ tables to be created

▪ columns in each table

▪ data-type for each column

▪ database integrity constraints (e.g., primary keys)

Coding CREATE TABLE statements becomes a relatively

straightforward task if you are given a correct design

specification. The real challenge pertains to following some

methodology of database analysis and design to produce this

design specification. Appendixes 13A and 13B present some

basic concepts pertaining to database analysis and design.

Free SQL Book, Tim Martyn 332 Copyright Pending, 2022

CREATE TABLE Statement

The following Figure 13.1 outlines the general syntax for the

CREATE TABLE statement.

The following Figure 13.2 illustrates two CREATE TABLE

statements that create the TESTDEPT and TESTEMP tables. (Two

DROP TABLE statements are initially executed in case these

tables already exist.) Take a close look at the column

definitions in each statement. Your intuition should give you

some idea about the purpose of each clause which is described

on the following pages.

Figure 13.1: General Syntax for CREATE TABLE Statement

CREATE TABLE table-name

(Column1-name data-type [column-constraint(s)],

 Column2-name data-type [column-constraint(s)],

 . . . ,

 [table-constraint(s)]);

DROP TABLE TESTEMP;

DROP TABLE TESTDEPT;

CREATE TABLE TESTDEPT

(DNO INTEGER NOT NULL PRIMARY KEY,

 DNAME VARCHAR(20) NOT NULL UNIQUE,

 BLD CHAR(3) NOT NULL DEFAULT 'AB1',

 BUDGET DECIMAL(9,2) NOT NULL DEFAULT 0.0);

CREATE TABLE TESTEMP

(ENO CHAR(3) NOT NULL,

 ENAME VARCHAR(25) NOT NULL,

 JCODE INTEGER NOT NULL CHECK (JCODE IN (1,3,7,11)),

 SALARY DECIMAL(7,2) NOT NULL DEFAULT 0.0,

 OTMAX DECIMAL(5,2) NOT NULL DEFAULT 0.0,

 DNO INTEGER NOT NULL,

 PRIMARY KEY (ENO),

 FOREIGN KEY (DNO) REFERENCES TESTDEPT,

 CHECK (OTMAX <= .15 * SALARY));

Figure 13.2: CREATE TABLE Statements

Free SQL Book, Tim Martyn 333 Copyright Pending, 2022

Data-Types: The data-types of the columns in these tables are

the familiar INTEGER, DECIMAL, CHAR and VARCHAR types. The

following Section-A will introduce other data-types.

Constraints: We have already introduced four major database

constraints (PRIMARY KEY, UNIQUE, FOREIGN KEY, and NOT NULL).

Examination of Figure 13.2 shows the specification of two

other database constraints, CHECK and DEFAULT. The following

Section-B will discuss these constraints, and Section-C will

say more about the FOREIGN KEY constraint.

Column-Constraints versus Table-Constraints: Figure 13.1

shows that a column-constraint is specified for a specific

column, and a table-constraint is specified after all columns

have been defined. The CREATE TABLE statement for TESTDEPT

(Figure 13.2) shows all column-constraints, whereas the

CREATE TABLE statement for TESTEMP shows both column-

constraints and table-constraints. We also note that:

• Some constraints can be specified as either a column-

constraint or a table-constraint. For example, within

the CREATE TABLE statement for TESTDEPT, the PRIMARY KEY

clause is specified as a column-constraint; whereas,

within the CREATE TABLE statement for TESTEMP, the

PRIMARY KEY clause is specified as a table-constraint.

This is possible because both primary keys are atomic

(single-column) keys.

• Some constraints, such as the NOT NULL constraint, must

be specified as a column-constraint.

• Some constraints must be defined as a table-constraint.

For example, the CHECK constraint for the TESTEMP table

cannot be a column-constraint because it references

multiple columns (OTMAX and SALARY).

Sequence for Executing CREATE TABLE Statements: In Figure

13.2, the TESTDEPT table was created before the TESTEMP table.

This was necessary because the foreign-key in TESTEMP

references the primary-key in TESTDEPT, which presumably has

already been created. If we had created the TESTEMP first, we

would get an error because its FOREIGN KEY clause would

reference a non-existing table. (However, Figure 13.6 will

illustrate a method that allows us to initially create the

TESTEMP table.)

Free SQL Book, Tim Martyn 334 Copyright Pending, 2022

A. Data-Types

All systems support a small number of standard data-types,

including those we have already encountered: INTEGER,

DECIMAL, CHAR, and VARCHAR. All systems also support the

SMALLINT data-type to be described below. These five data-

types are sufficient for most business applications.

All systems also support many vendor-specific data-types,

such as date-time data-types. Furthermore, modern systems

have evolved to include more specialized object-oriented and

XML data-types. (Discussion of these data-types is beyond the

scope of this book.) For the sake of illustration, we outline

many of the data-types supported by DB2.

DB2 Numeric Data-Types

 SMALLINT two-byte integer with a precision of 5 digits

 Range: -32,768 to 32,767

 INTEGER four-byte integer with a precision of 10 digits

 Range: -2,147,483,648 to +2,147,483,647

 BIGINT eight-byte integer with a precision of 19 digits

 Range: -9,223,372,036,854,775,808 to

 +9,223,372,036,854,775,807

 DECIMAL (p, s)

 Maximum precision is 31 digits

 Scale (number of digits in the fractional part) cannot

be negative or greater than the precision.

 Range: -1031+1 to 1031-1

 REAL single-precision floating-point number

 32-bit approximation of a real number

 Range: zero, or -3.402E+38 to -1.175E-37,

 or 1.175E-37 to 3.402E+38

 DOUBLE [or FLOAT) double-precision floating-point number

 64-bit approximation of a real number

 Range: zero, or -1.79769E+308 to -2.225E-307,

 or 2.225E-307 to 1.79769E+308

Free SQL Book, Tim Martyn 335 Copyright Pending, 2022

DB2 Character-String Data-Types

 CHAR(n) Fixed-length (n: 1-254 bytes)

 VARCHAR(n) Variable-length (n: 1-32,672 bytes)

 CLOB (n) Character Large Object (Max = two gigabytes - 1)

 Special restrictions apply to CLOB. For example, CLOB

columns cannot be referenced in:

• SELECT-clauses that specify DISTINCT

• GROUP BY, ORDER BY, BETWEEN, and IN clauses

• Character-string patterns in LIKE-clauses

DB2 Temporal Data-Types

 DATE Three-parts (year, month, and day).

 Range of year is 0001-9999.

 Range of month is 1-12.

 Range of day is 1-m, where m depends on the month.

 TIME Three-parts (hour, minute, and second) 24-hour clock

 Range of the hour is 0-24. If hour=24, minute and second

specifications are zero

 Range of the minute is 0-59.

 Range of the second is 0-59.

 TIMESTAMP Seven-parts (year, month, day, hour, minute,

second, and microsecond)

 Date and time as defined above, except time includes a

fractional specification of microseconds.

 Some other DB2 Data-Types include

• BLOB and DBCLOB

• GRAPHIC(n), VARGRAPHIC(n) and LONG VARGRAPHIC(n)

• DATALINK

• XML

Free SQL Book, Tim Martyn 336 Copyright Pending, 2022

B. Database Constraints

The basic idea behind database integrity is to have the system

automatically reject any statement that attempts to store

garbage in a table. To realize this objective, the DBA must

define what constitutes valid data. Then the system can reject

any operation that violates this definition.

Characteristics of valid data are defined by integrity

constraints. You have already encountered four kinds of

integrity constraints. These are the PRIMARY KEY, UNIQUE,

FOREIGN KEY, and NOT NULL constraints. This chapter offers more

details about these constraints and introduces two other kinds

of constraints (DEFAULT and CHECK). The following discussion

refers to the integrity constraints illustrated in Figure

13.2.

PRIMARY KEY: A table can only have one primary-key. For

example, DNO is declared to be the primary-key of the TESTDEPT

table. This means that the system will not allow duplicate

values in the DNO column. Also, PRIMARY KEY column(s) must be

declared as NOT NULL.

Composite Primary-Keys: Sometimes, no individual column will

contain unique values. For example, every individual column

in the PURCHASE table (Figure 9.2) contains duplicate values.

However, within this table, every combination of (PNO, SNO,

ENO, PJNO, PURDAY) values is unique. Hence, your CREATE-ALL-

TABLES script shows a composite primary-key specified as:

PRIMARY KEY (PNO, SNO, ENO, PJNO, PURDAY)

Because this PRIMARY KEY clause references multiple columns,

it must be specified as a table-constraint.

FOREIGN KEY: Future examples will show that, if a foreign-

key references a composite primary-key, then the foreign-key

will also be composite.

Also, note that the foreign-key column (DNO) in TESTEMP has

the same name as the referenced primary-key column in

TESTDEPT. This naming pattern is common, but it is not

mandatory.

Free SQL Book, Tim Martyn 337 Copyright Pending, 2022

NOT NULL: Chapter 11 introduced the NOT NULL clause and

described potential problems associated with null values.

Note that all columns in TESTDEPT and TESTEMP tables are

declared to be NOT NULL.

UNIQUE: DNAME is declared to be a UNIQUE column. As with the

DNO column, the system will prohibit the storage of duplicate

DNAME values. However, there are two important differences

between the PRIMARY KEY versus UNIQUE clauses.

1. A table can only specify one PRIMARY KEY clause. However,
multiple UNIQUE clauses may be specified.

2. A FOREIGN KEY clause almost always references a PRIMARY
KEY. (Many systems allow a FOREIGN KEY clause to reference

a UNIQUE column. However, most practitioners will only do

so in special case design circumstances.)

DEFAULT: Assume some column is defined as NOT NULL. What

happens when you want to execute an INSERT statement and you

do not know this column’s value? In this circumstance, in may

make sense to specify some non-null default value that is

stored whenever an actual value is unknown. This is the

purpose of the DEFAULT clause specified for the BLD and BUDGET

columns in the TESTDEPT table and the SALARY and OTMAX columns

in the TESTEMP table. If an INSERT statement does not specify

a value for any of these columns, the system automatically

stores the specified default value in the column.

CHECK: The CHECK clause allows you to identify all valid

values for a column. Consider the TESTEMP table. The JOBCODE

column can only contain 1, 3, 7, or 11. Users should know

about this constraint. Otherwise, they might code the

following unreasonable WHERE-clause which will return an

error message or “no hit” message.

 SELECT * FROM TESTEMP WHERE JOBCODE = 5

A CHECK-clause can specify other SQL conditions, such as:

CHECK column-name BETWEEN ___ AND ___

Finally, a CHECK clause can reference multiple columns from

the same table. For example, CHECK (OTMAX <= .15 * SALARY)

ensures that an employee’s maximum overtime amount (OTMAX)

will not exceed 15% of his salary.

Free SQL Book, Tim Martyn 338 Copyright Pending, 2022

C. More about Foreign Keys

We describe potential errors associated with foreign-keys.

Again, we refer to the TESTDEPT and TESTEMP tables defined in

Figure 13.2. Note that the DNO column in TESTEMP is a foreign-

key that must match some DNO value in TESTDEPT. Below we

consider the behavior of the INSERT, UPDATE, and DELETE

statements within the context of foreign-keys. The system

will automatically reject any operation if the operation

fails a foreign-key data verification check.

Review Notation:

• TESTDEPT.DNO refers to the DNO column in TESTDEPT

• TESTEMP.ENO refers to the ENO column in TESTEMP

• TESTEMP.DNO refers to the DNO column in TESTEMP

TESTEMP Table (Child Table)

 INSERT row into TESTEMP: The system verifies that the new

TESTEMP.DNO value is equal to some TESTDEPT.DNO value.

Chapter 12 (Sample-Session-5) presented an example of

this type of verification.

 UPDATE DNO column in TESTEMP: The system verifies that the

new TESTEMP.DNO value is equal to some TESTDEPT.DNO

value.

 DELETE row from TESTEMP: No validation is necessary. A

department is not required to have any employees.

TESTDEPT Table (Parent Table)

 INSERT row into TESTDEPT: No validation is necessary. A

department is not required to have any employees.

 UPDATE DNO column in TESTDEPT: The system verifies that the

current TESTDEPT.DNO value (which will be changed) is

not equal to some existing TESTEMP.DNO value.

 DELETE row from TESTDEPT: The system verifies that the

TESTDEPT.DNO value is not equal to some existing

TESTEMP.DNO value.

Free SQL Book, Tim Martyn 339 Copyright Pending, 2022

To summarize, the system automatically performs a validity

check on TESTDEPT for each INSERT and UPDATE of TESTEMP, and

it performs a validity check on TESTEMP for each DELETE and

UPDATE of TESTDEPT. The general objective is to verify that

each child-row is always related to some parent-row. This

validation maintains referential integrity.

Variations in FOREIGN KEY Clause: All systems support

variations of the FOREIGN KEY clause. For example, most

systems allow specification of the “ON DELETE CASCADE” clause

as shown below.

 CREATE TABLE TESTEMP

 FOREIGN KEY (DNO) REFERENCES TESTDEPT ON DELETE CASCADE

ON DELETE CASCADE changes the behavior of a DELETE operation

on a parent-table. Here, deleting a parent-row will also cause

the automatic deletion of all its children. For example, if

you delete a TESTDEPT row, all TESTEMP rows with matching DNO

values are automatically deleted. Other variations of the

FOREIGN KEY clause are beyond the scope of this book.

Database Design

A Foreign-Key Defines a One-to-Many (1:M) Relationship: The

FOREIGN KEY clause in Figure 13.2 implies that:

• Each employee works for exactly one department.

• Each department can hire many employees. (“Many”

includes one and zero. A department may have just one

employee or no employees.)

The following data model illustrates a one-to-many

relationship (HIRES) between TESTDEPT (parent-table) and

TESTEMP (child-table).

 HIRES

TESTDEPT

DNO (PK)

DNAME

BLD

BUDGET

TESTEMP

ENO (PK)

ENAME

JOBCODE

SALARY

DNO (FK)

Figure 13.3: One-to-Many Relationship

(HIRES)

Free SQL Book, Tim Martyn 340 Copyright Pending, 2022

Examples: Two Data Models

Below we present two data models, each with a one-to-many

relationship. These examples illustrate that a one-to-many

relationship between a parent-table and a child-table is

represented by specifying a FOREIGN KEY clause in the child-

table.

1. MAN-OWNS-DOG Relationship: Sample-Session-5 in Chapter 12

presented a one-to-many relationship (OWNS). Each dog is

owned by one man; and, a man can own many dogs.

The following data model illustrates the primary-key column

(MNO) in the MAN table (the parent-table) and a related

foreign-key column (MNO) in the DOG table (the child-table).

The FOREIGN KEY clause is specified in DOG, the child-table.

It designates the MNO column as the foreign-key column. Note

that this column is NOT NULL. This implies that every dog

must be owned by some man.

Comment: A data model may also represent a many-to-many

relationship. For example, a man may own many dogs, and an

individual dog may be owned by multiple men. Appendix 13A

will address this topic.

MAN

MNO (PK)

MNAME

DOG

DNO (PK)

DNAME

MNO (FK)

OWNS

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR (10) NOT NULL,

 PRIMARY KEY (MNO));

CREATE TABLE DOG

(DNO INTEGER NOT NULL,

 DNAME CHAR (10) NOT NULL,

 MNO INTEGER NOT NULL,

 PRIMARY KEY (DNO),

 FOREIGN KEY (MNO) REFERENCES MAN);

Free SQL Book, Tim Martyn 341 Copyright Pending, 2022

2. DOG-BITES-MAN Relationship: Assume that a dog may bite

many men, and (unrealistically) each man must be bitten by

exactly one dog. In this silly scenario, DOG becomes the

parent-table and MAN becomes the child-table. Hence, a

foreign-key in MAN references the primary-key of the DOG

table.

Examine the DNO column in the above CREATE TABLE statement

for the MAN table. This column, like all other columns, is

specified as NOT NULL. This is consistent with our design

objective that “(unrealistically) each man must be bitten by

exactly one dog.”

Alternatively, assume we want to represent a more realistic

design scenario where a man may or may not be bitten by a

dog. (But he cannot be bitten by more than one dog). In this

circumstance, the designer decides to allow the foreign-key

column (MAN.DNO) to contain a null value for any man who has

not been bitten by a dog. Hence, the DNO column in the

following CREATE TABLE statement does not specify a NOT NULL

clause.

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR (10) NOT NULL,

 DNO INTEGER, No NOT NULL clause

 PRIMARY KEY (MNO),

 FOREIGN KEY (DNO) REFERENCES DOG)

DOG

DNO (PK)

DNAME

MAN

MNO (PK)

MNAME

DNO (FK)

BITES

CREATE TABLE DOG

(DNO INTEGER NOT NULL,

 DNAME CHAR (10) NOT NULL,

 PRIMARY KEY (DNO));

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR (10) NOT NULL,

 DNO INTEGER NOT NULL,

 PRIMARY KEY (MNO),

 FOREIGN KEY (DNO) REFERENCES DOG);

Free SQL Book, Tim Martyn 342 Copyright Pending, 2022

D. ALTER TABLE Statement

The ALTER TABLE statement allows you to make some changes to

the definition of an existing table that may contain rows. We

illustrate this statement by presenting two examples.

Example-1: Some DBAs initially code CREATE TABLE statements

without any PRIMARY KEY or FOREIGN KEY clauses. These CREATE

TABLE statements are followed by ALTER TABLE statements that

specify the PRIMARY Key and FOREIGN KEY clauses. This approach

is shown in the following Figure 13.4. It produces the same

design as the code shown in Figure 13.2. This method has the

advantage of allowing you to execute CREATE TABLE statements

in any sequence without worrying about foreign-key

dependencies.

DROP TABLE TESTEMP;

DROP TABLE TESTDEPT;

CREATE TABLE TESTEMP

(ENO CHAR(3) NOT NULL,

 ENAME VARCHAR(25) NOT NULL,

 JCODE INTEGER NOT NULL CHECK (JCODE IN (1,3,7,11)),

 SALARY DECIMAL(7,2) NOT NULL DEFAULT 0,

 OTMAX DECIMAL(5,2) NOT NULL DEFAULT 0,

 DNO INTEGER NOT NULL,

 CHECK (OTMAX <= .15 * SALARY));

CREATE TABLE TESTDEPT

(DNO INTEGER NOT NULL,

 DNAME VARCHAR(20) NOT NULL UNIQUE,

 BLD CHAR(3) NOT NULL DEFAULT 'AB1',

 BUDGET DECIMAL(9,2) NOT NULL DEFAULT 0);

ALTER TABLE TESTDEPT

ADD PRIMARY KEY (ENO);

ALTER TABLE TESTEMP

 ADD PRIMARY KEY (ENO)

 ADD FOREIGN KEY (DNO) REFERENCES TESTDEPT;

Figure 13.4: ALTER TABLE Statements

Free SQL Book, Tim Martyn 343 Copyright Pending, 2022

 Example-2: The following Figure 13.5 contains an ALTER TABLE

statement that adds two new columns, MADDR and MIQ, to the

MAN table. Existing rows will contain null MADDR values, and

their MIQ values will default to 100.

After executing the above statements, you can display the MAN

table to observe the null values for the new MADDR column,

and the 100 values for the new MIQ column.

Comment: There is considerable variation among the ALTER

TABLE options available on different database systems. Again,

consult your SQL manual for details.

DROP TABLE DOG;

DROP TABLE MAN;

CREATE TABLE MAN

(MNO INTEGER NOT NULL PRIMARY KEY,

 MNAME CHAR (10) NOT NULL);

INSERT INTO MAN VALUES (77, 'MOE');

INSERT INTO MAN VALUES (88, 'LARRY');

INSERT INTO MAN VALUES (99, 'CURLY');

CREATE TABLE DOG

(DNO INTEGER NOT NULL PRIMARY KEY,

 DNAME CHAR (10) NOT NULL,

 MNO INTEGER NOT NULL,

FOREIGN KEY (MNO) REFERENCES MAN);

INSERT INTO DOG VALUES (1000, 'SPOT', 99);

INSERT INTO DOG VALUES (3000, 'ROVER', 77);

INSERT INTO DOG VALUES (2000, 'WALLY', 99);

ALTER TABLE MAN

 ADD COLUMN MADDR VARCHAR (30)

 ADD COLUMN MIQ INTEGER NOT NULL DEFAULT 100;

Figure 13.5: ALTER TABLE Statement

Free SQL Book, Tim Martyn 344 Copyright Pending, 2022

E. Constraint Names

You can specify the optional keyword CONSTRAINT to explicitly

assign a name to a constraint. This name is stored in the

system’s data dictionary. (If CONSTRAINT is not specified,

the system will automatically assign some system-generated

name.) For example, you could assign the name PK_MAN to the

PRIMARY KEY constraint for the MAN table by coding:

 CONSTRAINT PK_MAN PRIMARY KEY (MNO)

Many DBAs assign constraint names according to some pattern

(e.g., constraint names for primary keys begin with PK). This

simplifies searching the data dictionary.

The CREATE TABLE statements in the following Figure 13.6

include constraint names for the PRIMARY KEY and FOREIGN KEY

clauses. This figure does not assign constraint names to the

NOT NULL constraints.

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR(10) NOT NULL,

 CONSTRAINT PK_MAN PRIMARY KEY (MNO));

CREATE TABLE DOG

(DNO INTEGER NOT NULL,

 DNAME CHAR(10) NOT NULL,

 MNO INTEGER NOT NULL,

 CONSTRAINT PK_DOG PRIMARY KEY (DNO),

 CONSTRAINT FK_MAN FOREIGN KEY (MNO) REFERENCES MAN);

Figure 13.6: Constraint Names

Free SQL Book, Tim Martyn 345 Copyright Pending, 2022

F. DROP TABLE Statement

Sample sessions presented in Chapter 12 illustrated dropping

tables in preparation for creating other tables with the same

names.

The DROP TABLE statement is simple. Its general syntax is:

 DROP TABLE table-name

This statement deletes all rows in the table as part of the

drop table process.

DROP TABLE Sequence: Our discussion of the CREATE TABLE

statements in Figure 13.2 noted that we created TESTDEPT (the

parent table) before creating TESTEMP (the child table)

because TESTEMP has a foreign key that references TESTDEPT.

Likewise, if you intend to drop both the TESTDEPT and TESTEMP

tables, you should drop TESTEMP first. If you were allowed to

drop TESTDEPT first, then the foreign key values in TESTEMP

would not match.

So, what happens if you attempt to drop TESTDEPT first without

dropping TESTEMP? Different systems will take different

actions. For example, if you executed:

 DROP TABLE TESTDEPT

DB2 would first remove the foreign-key constraint from

TESTEMP and then drop TESTDEPT.

ORACLE would return an error message. However, if you wanted

ORACLE to behave like DB2, you would execute:

 DROP TABLE TESTDEPT CASCADE CONSTRAINTS

Recommendation for Application Developers: As stated above,

before dropping a table, the system will automatically delete

all its rows. The deletion of many rows could incur a large

efficiency cost associated with transaction processing, a

topic which is discussed in Chapter 29. Application

developers who execute DML statements are strongly encouraged

to read this chapter.

Free SQL Book, Tim Martyn 346 Copyright Pending, 2022

Summary

Tip of the Iceberg: This chapter covered a lot of ground.

Yet, our discussion omitted many details about the CREATE

TABLE and ALTER TABLE statements.

As you read the following chapters, you will realize that the

information presented in this chapter will be very useful

when you tackle multi-table queries presented later in this

book.

Data Model Notation: The literature on data models shows a

variety of different graphical notations. Below, we

illustrate three other notations for representing a one-to-

many relationship between TESTDEPT and TESTEMP.

Crow’s Feet Notation:

Chen’s Entity-Relationship Notation:

Arrow Notation:

With the Arrow Notion, the arrow illustrates the

direction of a foreign-key referencing a primary-skey.

TESTDEPT

TESTEMP

HIRE

S

1 M

HIRES

TESTDEPT

TESTEMP

HIRES

TESTDEPT

TESTEMP

Free SQL Book, Tim Martyn 347 Copyright Pending, 2022

Appendix 13A: Representing Many-to-Many Relationships

The real world frequently presents the database designer with

a many-to-many relationship. However, a foreign-key can only

represent a one-to-many relationship. Therefore, whenever a

database designer encounters a many-to-many relationship, she

must transform it into a two one-to-many relationships. Below

we present an example that illustrates this transformation.

Assume your logical data model already contains the MAN and

DOG tables. Also assume that a dog may bite many men; and, a

man may be bitten by many dogs. We will call this many-to-

many relationship BITES.

Step-1: Represent BITES within the data model by drawing a

line between MAN and DOG. This line has nodes at both ends

as illustrated below in Figure 13.8.1.

[Notation: This figure underlines the primary-key columns.]

Step-2: Transform the data model such that the many-to-many

BITES relationship is replaced by a new “relationship

table,” the BITE_EVENT table. Also, two new one-to-many

relationships are specified. These are the one-to-many

relationship between DOG and BITE-EVENT, and one-to-many

relationship between MAN and BITE-EVENT. The modified data

model now looks like:

MAN

MNO

MNAME

DOG

DNO

DNAME

BITES

Figure 13.8.1: Step-1

MAN

MNO

MNAME

DOG

DNO

DNAME

BITE_EVENT

Figure 13.8.2: Step-2

Free SQL Book, Tim Martyn 348 Copyright Pending, 2022

Step-3: Define a composite primary-key for the new BITE_EVENT

table composed of the primary-keys from the related tables.

In this example (DNO, MNO) is designated as the primary-

key of the BITE_EVENT table. The data model now looks like

the following Figure 13.8.3.

[Aside: Sometimes, a designer may also include one or more

non-key columns (e.g., BITEDATE) in the BITE_EVENT table.]

Step-4: The above data model now shows two one-to-many

relationships. Hence, we must specify two foreign-keys.

 (i) Considering the one-to-many relationship between DOG

and BITE-EVENT, we designate BITE_EVENT.DNO as a foreign-

key referencing DOG. FK1 designates this foreign key.

 (ii) Considering the one-to-many relationship between MAN

and BITE_EVENT, we designate BITE_EVENT.MNO as a foreign-

key referencing MAN. FK2 designates this foreign key.

Our data model now looks like the following Figure 13.8.4.

The preceding four steps have transformed the original data

model with a many-to-many relationship (Figure 13.8.1) into

an equivalent data model (Figure 13.8.4) with a new BITE_EVENT

table and two one-to-many relationships. This revised model

can now be codified as a collection of CREATE TABLE

statements.

MAN

MNO

MNAME

DOG

DNO

DNAME

BITE_EVENT

DNO (FK1)

MNO (FK2)

Figure 13.8.4: Step-4

MAN

MNO

MNAME

DOG

DNO

DNAME

BITE_EVENT

DNO

MNO

Figure 13.8.3: Step-3

Free SQL Book, Tim Martyn 349 Copyright Pending, 2022

Step5: The Step-4 data model (Figure 13.8.4) contains most of

the information required to formulate the CREATE TABLE

statements. We only need to determine the data-type of each

column and decide if any columns can contain null values.

For tutorial purposes, we will make simple assumptions

about data-types, and we will assume that all columns are

non-null. The following Figure 13.8.5 shows the CREATE

TABLE statements derived from the Step-4 data model.

Optional Step-6: After reading Chapter 15, you will know how

to code INSERT statements to insert data that looks like:

 MAN DOG BITE_EVENT

 MNO MNAME DNO DNAME DNO MNO

 77 MOE 1000 SPOT 1000 88

 88 LARRY 3000 ROVER 2000 99

 99 CURLY 2000 WALLY 2000 88

This sample data shows that every DNO value in BITE_EVENT

matches some DNO value in DOG; and, every MNO value in

BITE_EVENT matches some MNO value in MAN. It also shows that

Dog 2000 has bitten multiple men (99 and 88); Man 88 was

bitten by multiple dogs (1000 and 2000); Man 77 was not bitten

by any dog; and Dog 3000 did not bite any man.

DROP TABLE BITE_EVENT;

DROP TABLE DOG;

DROP TABLE MAN;

CREATE TABLE MAN

(MNO INTEGER NOT NULL PRIMARY KEY,

 MNAME CHAR(10) NOT NULL);

CREATE TABLE DOG

(DNO INTEGER NOT NULL PRIMARY KEY,

 DNAME CHAR(10) NOT NULL);

CREATE TABLE BITE_EVENT

(DNO INTEGER NOT NULL,

 MNO INTEGER NOT NULL,

 PRIMARY KEY (DNO, MNO),

 FOREIGN KEY (DNO) REFERENCES DOG,

 FOREIGN KEY (MNO) REFERENCES MAN);

Figure 13.8.5: Step-5

Free SQL Book, Tim Martyn 350 Copyright Pending, 2022

Appendix 13B: Database Analysis & Design

Previous examples of data models and tabular designs have

previewed some design-steps for a methodology of database

analysis and design. This appendix presents a more

comprehensive (but still incomplete) high-level overview of

an analysis/design methodology. The following Figure 13.9

illustrates a methodology that is organized into three major

phases.

1. Analysis is the process of determining “what” we want to
do. Specifically, database analysis determines what data

we want to store in our database. The primary task to

realize this objective is to build a Conceptual Data

Model (CDM).

2. Design is the process of determining “how to” do what we
want to do. Logical database design determines what

tables, columns, and keys will be used represent the

data to be stored in the database. The primary task to

realize this objective is to transform the Conceptual

Data Model (CDM) into a Logical Data Model (LDM). This

transformation from a CDM into a LDM is generally (but

not entirely) a “cookbook” process.

3. Implementation transforms the LDM into a collection of
CREATE TABLE statements. This is another “cookbook”

process.

Figure 13.9: Logical Database Analysis & Design

1. Analysis

Build Conceptual Data Model (CDM)

2. Logical Design

Build Logical Data Model (LDM)

3. Implementation

Code CREATE TABLE Statements

Free SQL Book, Tim Martyn 351 Copyright Pending, 2022

1. Analysis

The database analyst communicates with business experts to

discover relevant business object-types (e.g., DEPARTMENT and

EMPLOYEE) and relationships (e.g., HIRES) between the object-

types. These object-types and relationships are represented

within a data model similar to the data models shown in Figures

13.2, 13.4, and 13.15.4. These models are called Conceptual

Data Models (CDM). A CDM is “business” model. A CDM model is

presumably easy to understand because it is a graphical model

that ignores many technical details. The following Figure 13.9

illustrates an example.

A CDM excludes many details. For example, the above CDM:

• does not specify all columns for DEPARTMENT and EMPLOYEE

object-types

• does not specify column data-types

• does not specify foreign-keys

• does not transform a many-to-many relationship (WORKS_ON)

into two one-to-many relationships

For these reasons, a CDM cannot be directly transformed into

a collection of CREATE TABLE statements.

Database analysis involves creating a complete and correct CDM

that represents your real-world application domain. This is a

very challenging task which is not described in this book. Our

examples will assume that someone has already done this

analysis and produced a valid CDM.

[The database literature contains a large body of work devoted

to formulating conceptual data models. Two popular models for

representing conceptual data models are the ER (Entity-

Relationship) Model and the UML (Unified Modeling Language)

Model. These models include many features that are not

illustrated in this book.]

Figure 13.9: Conceptual Data Model (CDM)

DEPARTMENT

DNO

DNAME

. . .

EMPLOYEE

ENO

ENAME

. . .

HIRES WORKS

ON

PROJECT

PNO

PNAME

STARTDATE

STOPDATE

Free SQL Book, Tim Martyn 352 Copyright Pending, 2022

2. Logical Design

Assuming that database analysis has produced a complete and

correct Conceptual Data Model, the logical design process

becomes a step-by-step “cookbook” process. This process

transforms the CDM into a more detailed Logical Data Model

(LDM) that can be implemented via CREATE TABLE Statements.

The basic steps for converting a CDM into a LDM are outlined

below.

• Represent each object-type (e.g., DEPARTMENT) as a table

and designate the primary-key for each table.

• Represent each one-to-many relationship as a foreign-

key that is stored in the child-table referencing the

primary-key of the parent-table.

• Represent each many-to-many relationship as a

relationship-table. The primary key of this table is a

composite key composed of the keys from the related

tables. Each component of the composite primary key

becomes a foreign-key. (Details were described in

Appendix 13A.)

• Specify all columns for each table, and specify a data-

type for each column.

• Specify other constraints (e.g., NOT NULL)

Applying these steps, the CDM shown in Figure 13.9 is

transformed into the following LDM (Figure 13.10).

Figure 13.10: Logical Data Model

WORKS_ON

ENO [INTEGER] (FK1)

PNO [INTEGER] (FK2)

PROJECT

PNO [INTEGER]

PNAME [VARCHAR(20)]

STARTDATE [DATE]

STOPDATE [DATE]

EMPLOYEE

ENO [INTEGER]

ENAME [VARCHAR(25)]

SALARY [DEC (7,2)]

DNO [INTEGER] (FK)

DEPARTMENT

DNO [INTEGER]

DNAME [VARCHAR(30)]

BUDGET [DEC (9,2)]

Free SQL Book, Tim Martyn 353 Copyright Pending, 2022

3. Implementation

Implementation transforms the LDM into a collection of CREATE

TABLE statements. Here, the LDM shown in Figure 13.10 is

transformed into the following collection of CREATE TABLE

statements (Figure 13.11). This transformation is “cookbook.”

Within the LDM, each rectangle becomes a table; each attribute

becomes a column; each LDM primary-key becomes a PRIMARY KEY

clause; and each LDM foreign-key (FK) becomes a FOREIGN KEY

clause.

For testing purposes, we recommend building a prototype

database by executing these CREATE TABLE statements,

populating the tables with sample data, and executing some

representative sample queries.

Also, notice that the above Implementation Phase does not

consider machine efficiency. Efficiency issues are considered

in a separate design task called Physical Database Design.

CREATE TABLE DEPARTMENT

(DNO INTEGER NOT NULL PRIMARY KEY,

 DNAME VARCHAR(20) NOT NULL,

 BUDGET DECIMAL(9,2));

CREATE TABLE EMPLOYEE

(ENO INTEGER NOT NULL,

 ENAME VARCHAR(25) NOT NULL,

 SALARY DECIMAL(7,2) NOT NULL,

 DNO INTEGER NOT NULL,

 PRIMARY KEY (ENO),

 FOREIGN KEY (DNO) REFERENCES DEPARTMENT);

CREATE TABLE PROJECT

(PNO INTEGER NOT NULL PRIMARY KEY,

 PNAME VARCHAR(20) NOT NULL,

 STARTDATE DATE NOT NULL,

 STOPDATE DATE);

CREATE TABLE WORKS_ON

(ENO INTEGER NOT NULL,

 PNO INTEGER NOT NULL,

 PRIMARY KEY (ENO, PNO),

 FOREIGN KEY (ENO) REFERENCES EMPLOYEE,

 FOREIGN KEY (PNO) REFERENCES PROJECT);

Figure 13.12: Implementation (CREATE TABLE Statements)

Free SQL Book, Tim Martyn 354 Copyright Pending, 2022

Physical Database Design

The preceding methodology of Logical Database Analysis and

Design is “Logical” because it can be used with any relational

database. It is not tightly coupled to any specific database

system (e.g., DB2, ORACLE). However, Physical Database Design

becomes more system-specific because each system supports

different (but similar) internal physical structures that can

be tuned for efficiency purposes.

The DBA controls many performance related factors that are

not addressed in this book. These include creating special

table structures (e.g., clustered tables), special types of

indexes (e.g., bitmap index), increasing the size of memory

buffers, assigning multiple tables to the same tablespace,

and partitioning a table to facilitate parallel processing.

A database index is the only physical design structure that

has been addressed in this book’s Efficiency Appendices. The

following optional chapter on the CREATE INDEX statement will

provide more insight into index design. Below we make a few

preliminary observations about this topic.

Most database systems automatically create an index for each

primary-key. Given the CREATE TABLE statements shown in

Figure 13.11, we conclude that most systems will

automatically create four indexes.

▪ Index on DNO in TESTDEPT

▪ Index on ENO in TESTEMP

▪ Index on PNO in PROJECT

▪ Index on (ENO, PNO) in WORKS_ON

Also, there are good reasons for creating an index on most

(perhaps all) foreign-keys. However, your system will not

automatically create these indexes.

Physical design usually requires a CREATE TABLE statement to

include special clauses (e.g., a TABLESPACE clause) before

this statement is executed in a production environment. Such

clauses are not necessary within a testing environment, and

this book does not discuss these clauses.

Finally, physical database design is a fun topic. If you have

enjoyed reading the preceding Efficiency Appendices, you are

encouraged to read the following chapter.

Free SQL Book, Tim Martyn 355 Copyright Pending, 2022

Appendix Exercises

These exercises are optional. (They pertain to database design,

a topic that is not the primary focus of this book.) For these

exercises, you are given a Conceptual Data Model (CDM) that

has been produced by database analysis. Transform this model

into a Logical Data Model (LDM) and then into a collection of

CREATE TABLE statements. Specify foreign-keys. Make reasonable

assumptions about data-types. All columns are non-null.

13.1 Professional Sports Team: Each player plays on just one

team. Each team has many players.

13.2 College Sports Team: A student may play on many teams.

Each team has many players.

MEMBER_OF
STUDENT

SNO

SNAME

PHONE

TEAM

TNO

TNAME

BUDGET

PLAYER

PNO

PNAME

POSITION

HIRES

TEAM

TNO

TNAME

BUDGET

Free SQL Book, Tim Martyn 356 Copyright Pending, 2022

13.3 Book Publishing: A publisher sells many books. Each book

has one publisher. A book may have multiple coauthors. An

author may write many books.

13.4 Star Design: Sometimes, within a data warehouse

application, a designer creates a CDM that looks like a

“star.” The following star model shows an EVENT object-

type as the center of the star where all other object-

types (OBJA, OBJB, OBJC, and OBJD) surround EVENT and

have a one-to-many-relationship with EVENT.

PUBLISHER

PNAME

ADDRESS

PHONE

BOOK

ISBN

TITLE

YEAR_PUB

SELLS

WRITES AUTHOR

ANO

ANAME

EVENT

ANO

BNO

CNO

DNO

EDATE

OBJA

ANO

ANAME

OBJD

DNO

DNAME

OBJC

CNO

CNAME

OBJB

BNO

BNAME

Free SQL Book, Tim Martyn 357 Copyright Pending, 2022

13.5 Cyclic Design: Sometimes multiple relationships between

object-types can form a cycle. Assume we have the MAN and DOG

object-types with the following two relationships.

 OWNS Relationship: A man can own many dogs; and, each

dog must be owned by one man.

 BITES Relationship: A dog may bite many men; and each

man must be bitten by one dog.

The following two CREATE TABLE statements are “almost

correct.” The problem involves designating which table to

create first. In the following example, which initially

attempts to create the MAN table, an error occurs because its

foreign-key references DOG, a table that has not yet been

created. A similar problem occurs if we attempt to create the

DOG table first.

Utilize ALTER TABLE statements, as illustrated in Figure 13.4

to resolve this problem.

“Almost” Correct (Chicken-Egg Problem)

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR (10) NOT NULL,

 DNO INTEGER NOT NULL,

 PRIMARY KEY (MNO),

 FOREIGN KEY (DNO) REFERENCES DOG);

CREATE TABLE DOG

(DNO INTEGER NOT NULL,

 DNAME CHAR (10) NOT NULL,

 MNO INTEGER NOT NULL,

 PRIMARY KEY (DNO),

 FOREIGN KEY (MNO) REFERENCES MAN);

OWNS

BITES

DOG

DNO

DNAME

MNO (FK)

MAN

MNO

MNAME

DNO (FK)

Free SQL Book, Tim Martyn 358 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 359 Copyright Pending, 2022

Chapter

 14

 CREATE INDEX Statement

This chapter is optional reading for all readers. Appendices

1A, 2A, and 4A have already explained “why” you might want to

create an index. This chapter’s sample statements explain “how

to” create an index.

The CREATE INDEX statement is (obviously) used to create a

database index. Its syntax is straightforward. However, you

must understand some basic concepts before you create an

index. Therefore, you are encouraged to read/review Appendices

1A, 2A, and 4A before reading this chapter. Furthermore, if

you decide to read this chapter, you should also read its

related Appendix 14A.

This chapter’s sample statements will reference the TESTDEPT

and TESTEMP tables shown in Figure 13.2. Most systems

automatically create an index on any column that is declared

to be a PRIMARY KEY or UNIQUE. Therefore, we will assume that

your system has automatically created indexes on the

TESTDEPT.DNO, TESTDEPT.DNAME, and TESTEMP.ENO columns.

Because each of these columns contains unique values, each

corresponding index is a “unique-index.” Appendix A2 (Figure

A2.1) illustrated an example of a unique-index, the XPNO

index, based upon the PNO column in the PRESERVE table.

Your system will not automatically create an index on a

foreign-key column. However, many designers create an index

on every foreign-key because foreign-key columns are

frequently referenced in SELECT statements the specify join-

operations (to be described Chapter 16).

Free SQL Book, Tim Martyn 360 Copyright Pending, 2022

“Simple” Index

A “simple” (another unofficial term) index is an index that is

based on just one column.

Sample Statement 14.1: Create an index, called XENAME,

based on the ENAME column in the TESTEMP table.

System Response: The system should return a message indicating

successful creation of the index.

Syntax: A simplified version of the general syntax is:

 CREATE INDEX index-name

 ON table-name (column-name)

• The name of the index follows CREATE INDEX. (We specified

an “X” before the column-name to form “XENAME”. This

naming pattern is optional.)

• The ON-clause must reference a valid table-name.

• The column-name must be enclosed within parentheses and

must reference a column within the specified table.

Behavior: If TESTEMP is a recently created table that does

not contain any rows, the system will construct an “empty”

index. Subsequently, it will insert a new ENAME entry into

the index after each successful INSERT operation. If the

TESTEMP table already contains some rows, the system will

construct the index by scanning the table to obtain ENAME

values and pointers to row locations. This process could take

some time if the table has many rows.

After an index is created, the system will automatically

maintain it. For example, if you insert a new row into the

TESTEMP table, the system will automatically use its ENAME

value and its row location to store a new entry in the XENAME

index; and, if you delete a row, the system will automatically

remove the index entry that references the row. Simply put,

once you create the index, the system does the rest.

CREATE INDEX XENAME

ON TESTEMP (ENAME)

Free SQL Book, Tim Martyn 361 Copyright Pending, 2022

Unique Index

A unique index must be based on a unique column.

Sample Statement 14.2: For this example, temporarily assume

the CREATE TABLE statement for TESTDEPT did not designate

the DNAME column as UNIQUE. Under this circumstance, the

system would not have automatically created an index on

the DNAME column. Therefore, you could explicitly create

a unique index on DNAME by executing the following

statement.

System Response: If you attempt to execute this statement, the

system should return an error message indicating that there

already exists a unique index on DNAME column.

Syntax: The optional keyword UNIQUE is placed after CREATE.

The general syntax expands to:

 CREATE [UNIQUE] INDEX index-name

 ON table-name (column-name)

Behavior: Assume an INSERT operation attempted to insert

ACCOUNTING into the DNAME column in the TESTDEPT table. Before

allowing this operation to successfully complete, the system

must verify that ACCOUNTING does not already appear in the

DNAME column of any existing row. Without the XDNAME index,

the system would have to scan all TESTDEPT rows to determine

the presence/absence of an existing ACCOUNTING value. With the

XDNAME index, the system could directly access this index to

determine the presence/absence of an existing ACCOUNTING value.

UNIQUE Constraint versus CREATE UNIQUE INDEX: We previously

stated that most systems automatically create a unique-index

on each UNIQUE column. Therefore, you would not need to create

a unique-index on any column that was already specified as

UNIQUE. Declaring a column as UNIQUE within the CREATE TABLE

statement is usually the preferred method. (The answer to

Exercise 14.3 in Appendix 14A will explain this preference.)

CREATE UNIQUE INDEX XDNAME

ON TESTDEPT (DNAME)

Free SQL Book, Tim Martyn 362 Copyright Pending, 2022

Composite Index

Assume you frequently execute SELECT statements with WHERE-

clauses that match the following code pattern.

 SELECT * FROM TESTEMP

 WHERE JOBCODE = ____ AND SALARY = ____

You could create a simple index on either or both of the JOBCODE

or SALARY columns. However, you should also consider creating

one index that is defined on both columns. This kind of index

is called a composite (or compound) index.

Sample Statement 14.3: Create a composite index on two

columns in the TESTEMP table. The first column is JOBCODE.

The second column is SALARY. (We will see that the order

of column specification is important.)

System Response: The system should return a message indicating

the successful creation of the index.

Syntax: The general syntax expands to:

 CREATE [UNIQUE] INDEX index-name

 ON table-name (column-name1, column-name2,...)

Logic: This index could help any SELECT statement that

specifies one of following WHERE-clause patterns.

 WHERE JOBCODE = ____ AND SALARY = ______

 WHERE SALARY = ____ AND JOBCODE = ______

 WHERE JOBCODE = ____

However, most systems (usually) would not use the XJOBSAL index

for a SELECT statement with the following WHERE-clause pattern.

 WHERE SALARY = ____

An explanation is provided in Appendix 14A.

CREATE INDEX XJOBSAL

ON TESTEMP (JOBCODE, SALARY)

Free SQL Book, Tim Martyn 363 Copyright Pending, 2022

Unique-Composite Index

A composite index can be defined as UNIQUE. The previous CREATE

INDEX statement did not create a unique-composite index on the

JOBBCODE and SALARY columns because we implicitly assumed that

multiple EMPLOYEE rows could possibly have the same JOBCODE

and SALARY values.

Sample Statement 14.4: Note that the TESTEMP.ENAME column is

allowed to contain duplicate values. Assume that we have an

unusual business rule: If two employees have the same name,

they cannot work in the same department. This means that each

pair of (ENAME, DNO) values should always be unique. Create

a unique composite index on these two columns where ENAME is

the first part of the index.

System Response: Again, the system should return a message

indicating the successful creation of the index.

Logic: This index will enforce the stated business rule, and

it could also help any SELECT statement that specifies one of

following WHERE-clause patterns.

 WHERE ENAME = ____ AND DNO = ______

 WHERE DNO = ____ AND ENAME = ______

 WHERE ENAME = ____

Most systems (usually) will not use the XENAMEDNO index for a

query with the following WHERE-clause pattern.

 WHERE DNO = ____

An explanation is provided in Appendix 14A.

CREATE UNIQUE INDEX XENAMEDNO

ON TESTEMP (ENAME, DNO)

Free SQL Book, Tim Martyn 364 Copyright Pending, 2022

Index Sequence

In Appendix 2A, we noted that the system could utilize an index

to return rows in some sequence without sorting the rows. (See

the section on “Indexes Facilitate Sorting.”) Figure 2.1

illustrated an index with values stored in ascending sequence.

This is the default sequence. Therefore, previous CREATE INDEX

statements defaulted to an ascending (ASC) sequence.

After creating the XENAME index, the system could use it when

a SELECT statement contains ORDER BY ENAME. However, what if

many of your SELECT statements contained the following ORDER

BY clause?

 ORDER BY ENAME DESC

In this circumstance, you should consider creating an index

where its ENAME values are stored in descending sequence.

Sample Statement 14.5: Similar to Sample Statement 14.1. Create

an index, called XENAME2, based on the ENAME column in

TESTEMP. The values in this index should be stored in

descending sequence.

System Response: Again, the system should return a message

indicating the successful creation of the index.

Syntax: The general syntax expands to:

 CREATE [UNIQUE] INDEX index-name

 ON table-name (col-name1 [ASC|DESC],

 col-name2 [ASC|DESC],...);

Finally, we note that all database systems offer other

extensions to the CREATE INDEX statement that are not covered

in this book.

CREATE INDEX XENAME2

ON TESTEMP (ENAME DESC)

Free SQL Book, Tim Martyn 365 Copyright Pending, 2022

Summary

This chapter introduced the basic syntax of the CREATE INDEX

statement. We conclude some observations.

Indexes do not require any changes to SELECT statements: The

presence or absence of an index should not impact the coding

of SELECT statements. The optimizer (introduced in Appendix

4A) should decide to use an index if it is beneficial.

Index Design: Each table can have many indexes. Recall that

Appendix 2A described circumstances where the cost of an index

might exceed its benefits. The following Appendix 14A will

offer some general guidelines.

Naming Indexes: Index-names can be explicitly assigned by two

methods.

1. As illustrated in this chapter, the CREATE INDEX

statement assigns a name to the index.

2. Assume the system automatically creates an index in

response to a column being designated as a PRIMARY KEY

or UNIQUE. If a CONSTRAINT clause has been specified, it

can be assigned a name, and this name becomes the name

of the index. For example, assume the CREATE TABLE

statement that created the TESTDEPT table (Figure 13.2)

was changed to look like:

CREATE TABLE TESTDEPT

 (DNO INTEGER NOT NULL

 CONSTRAINT PKDNO PRIMARY KEY,

 DNAME VARCHAR(20) NOT NULL

 CONSTRAINT UDNAME UNIQUE,

 BLD CHAR(3) NOT NULL DEFAULT 'AB1',

 BUDGET DECIMAL(9,2) NOT NULL DEFAULT 0);

 In this circumstance, PKDNO is the name of the index

based on the DNO column, and UDNAME is the name of the

index based on the DNAME column.

 Otherwise, if a column is designated as a PRIMARY KEY or

UNIQUE column without specifying a CONSTRAINT name (as

in Figure 13.2), the system assigns some system-

generated index-name (which may be ugly).

Free SQL Book, Tim Martyn 366 Copyright Pending, 2022

Appendix 14A: Index Design for Efficiency

Guidelines for Creating Indexes: In most real-world

applications, choosing the optimal set of indexes is

practically impossible. Without detail information about query

patterns and frequency of query execution, the best you can do

is to follow some general guidelines.

• Create a unique index on PRIMARY KEY and UNIQUE column(s).
Most systems will automatically do this for you.

• Create an index on each FOREIGN KEY in a large table.

• Create an index on any column in a large table that will be
frequently referenced in a WHERE-clause.

• Create an index on any column in a large table that will be
frequently referenced in an ORDER BY clause.

• Avoid “index redundancy.” For example, if you have a

composite index on ENAME-JOBCODE, do not create another

simple index on ENAME. (See following topic.)

Designing Composite Indexes: The column sequence within a

composite index is significant. The basic idea becomes evident

when we consider a traditional telephone book where each

person’s last name appears before their first name, and the

book is sorted by first name within last name.

Assume the telephone book is represented by a database table

with three columns (LASTNAME, FIRSTNAME, PHONENUMBER), and you

created a composite index on the (LASTNAME, FIRSTNAME) columns.

Each entry in this index would look like:

This index, like a physical telephone book, provides direct

access for the following three query objectives.

Q1. Display the PHONENO for each person whose LASTNAME is

Martyn and FIRSTNAME is Jessica.

Q2. Display the PHONENO for each person whose FIRSTNAME is

Jessica and LASTNAME is Martyn.

Q3. Display the PHONENO values for all persons whose LASTNAME

is Martyn.

LASTNAME FIRSTNAME [pointer to row in table]

 HAPPY

Free SQL Book, Tim Martyn 367 Copyright Pending, 2022

For these three query objectives, you would you start your

search by directly accessing the first person whose last name

is Martyn in the M-section of the phonebook/index.

However, this phonebook/index does not provide direct access

for the following query objective.

Q4. Display the PHONENO values for all persons whose FIRSTNAME

is Jessica. (Note: FIRSTNAME is the second part of index.)

To summarize, the composite index (LASTNAME, FIRSTNAME)

provides direct access for the following WHERE-clause patterns

because each WHERE-clause references LASTNAME which is the

first component of the composite index.

 WHERE FIRSTNAME = _____ AND LASTNAME = _____

WHERE LASTNAME = _____ AND FIRSTNAME = _____

 WHERE LASTNAME = _____

This index does not offer direct access for the following

WHERE-clause pattern because it does not reference LASTNAME.

 WHERE FIRSTNAME = _____

Returning to Sample Statement 14.3, you should now understand

why the XJOBSAL index helps the following search conditions.

 WHERE JOBCODE = ____ AND SALARY = ______

 WHERE SALARY = ____ AND JOBCODE = ______

 WHERE JOBCODE = ____

The XJOBSAL composite index (JOBCODE, SALARY) specifies JOBCODE

as the first component of this index, and each of the above

WHERE-clause patterns reference JOBCODE. You should also

understand why the XJOBSAL index does not help the following

WHERE-clause pattern.

WHERE SALARY = ____

Caveat: In some circumstances (not described in this book), a

system might scan (not directly access) the XJOBSAL index to

satisfy the above search objective (WHERE SALARY = ____). This

is called “skip sequential” access. See your reference manual

for details.

Free SQL Book, Tim Martyn 368 Copyright Pending, 2022

Composite Index on Three Columns: A composite index can

reference more than two columns. If you consider the number of

columns in a typical table, the number of permutations of all

columns becomes very large. To simplify our query analysis, we

assume that our WHERE-clauses frequently reference three

popular columns (COLA, COLB, and COLC). Then we can consider

creating any of the following 15 possible indexes.

(COLA) (COLA, COLB) (COLA, COLB, COLC)

(COLB) (COLA, COLC) (COLA, COLC, COLB)

(COLC) (COLB, COLA) (COLB, COLA, COLC)

(COLB, COLC) (COLB, COLC, COLA)

(COLC, COLA) (COLC, COLA, COLB)

(COLC, COLB) (COLC, COLB, COLA)

However, observe that there is considerable redundancy within

these indexes. For example, if you have already created the

(COLA, COLB) index, then it is highly unlikely that you will

need to create the (COLA) index.

Observe that the following three indexes can satisfy the same

direct access objectives as the above 15 indexes.

Index-1: (COLA, COLB, COLC)

– helps WHERE-clauses that reference all three columns

- helps WHERE-clauses that reference COLA and COLB

- helps a WHERE-clause that references COLA

Index-2: (COLB, COLC)

– helps WHERE-clauses that reference COLB and COLC

– helps a WHERE-clause that references COLB

Index-3: (COLC, COLA)

– helps WHERE-clauses that reference COLC and COLA

– helps a WHERE-clause that references COLC

These three indexes provide direct access for any of the 15

possible (simple or compound) conditions that reference columns

COLA, COLB, or COLC.

Real-world: Because you will search on more than three columns,

choosing an optimal set of indexes presents a very complex

design challenge. Therefore, in practice, designers are forced

to create some “near-optimal” collection of indexes.

Free SQL Book, Tim Martyn 369 Copyright Pending, 2022

Appendix Exercises

14.1 Assume that the solution to Exercise 13.1 is coded in the

following script.

a. What indexes would (usually) be automatically created by

the system?

b. Create an index on all foreign-keys.

b. Create a composite index on the TITLE and YEAR_PUB columns

(in that order) found in the BOOK table.

c. After creating the above indexes, and taking into

consideration the automatically created indexes, the

total number of indexes is _____.

DROP TABLE WRITES;

DROP TABLE AUTHOR;

DROP TABLE BOOK;

DROP TABLE PUBLISHER;

CREATE TABLE PUBLISHER

(PNAME VARCHAR (30) NOT NULL,

 ADDRESS VARCHAR (40) NOT NULL,

 PHONE CHAR (10),

 PRIMARY KEY (PNAME));

CREATE TABLE BOOK

(ISBN VARCHAR (20) NOT NULL,

 TITLE VARCHAR (40) NOT NULL,

 YEAR_PUB CHAR (4) NOT NULL,

 PNAME VARCHAR (30) NOT NULL,

 PRIMARY KEY (ISBN),

 FOREIGN KEY (PNAME) REFERENCES PUBLISHER);

CREATE TABLE AUTHOR

(ANO INTEGER NOT NULL,

 ANAME VARCHAR (30) NOT NULL,

 PRIMARY KEY (ANO));

CREATE TABLE WRITES

(ANO INTEGER NOT NULL,

 ISBN VARCHAR (20) NOT NULL,

 PRIMARY KEY (ANO, ISBN),

 FOREIGN KEY (ANO) REFERENCES AUTHOR,

 FOREIGN KEY (ISBN) REFERENCES BOOK);

Free SQL Book, Tim Martyn 370 Copyright Pending, 2022

14.2 Assume that: (i) both the TESTDEPT and TESTEMP tables

are very large, (ii) the ENAME column is not unique

because two employees may have the same name, and (iii)

your organization has an unusual policy of forbidding

the assignment of two employees having the same name to

the same job. Consider the following query patterns:

You will frequently search on JOBCODE only.

WHERE JOBCODE = _______

You almost never execute a query that searches on ENAME

only.

WHERE ENAME = _______

Occasionally you execute a query with a WHERE-clause

that looks like:

WHERE ENAME = _______ AND JOBCODE = _______

or

WHERE JOBCODE = _______ AND ENAME = _______

Create one composite index on both the ENAME and JOBCODE

columns that could be helpful.

14.3 This is an unfair exercise. But we invite you to speculate

on an answer.

 Discussion of Sample Statement 14.2 raised a design

decision. If a column will contain unique values, should

you declare a UNIQUE constraint or create a UNIQUE index?

We stated that declaring a UNIQUE column within the CREATE

TABLE statement is usually the preferred approach.

Justify this preference.

Free SQL Book, Tim Martyn 371 Copyright Pending, 2022

 Chapter

 15

Data Manipulation:

INSERT – UPDATE - DELETE

This chapter presents details about the three major DML

statements (INSERT, UPDATE, and DELETE) that were previewed

in Chapter 12. These DML statements are very simple. However,

because they are very powerful, careless execution of these

statements could destroy valuable data. Therefore, every

database system provides a security system to verify that

each user has the necessary privileges to execute specific

DML statements on a given table. Also, if you intend to execute

DML statements within a production environment, you are

strongly encouraged read Chapter 29 on Transaction Processing.

MYDEPT Table: If you want to execute the sample statements

presented in this chapter, you must create a table called

MYDEPT by executing the following CREATE TABLE statement. By

creating this table, you automatically have all privileges

required to execute any DML statement against this table.

 CREATE TABLE MYDEPT

 (DNO INTEGER NOT NULL PRIMARY KEY,

 DNAME VARCHAR (20) NOT NULL UNIQUE,

 BLD CHAR (3) NOT NULL DEFAULT 'AB1',

 BUDGET DECIMAL (9,2))

The following sample statements will insert rows into MYDEPT,

update some of these rows, delete some of these rows, and

finally drop this table.

Free SQL Book, Tim Martyn 372 Copyright Pending, 2022

INSERT Statement

Assume MYDEPT has just been created. Hence it is empty.

Sample Statement 15.1.1: Insert a row into MYDEPT with the

following values.

• DNO: 10

• DNAME: ACCOUNTING

• BLD: XX5

• BUDGET: 75000.00

System Response: The system should respond with a message

implying successful insertion of the new row. Verify the

presence of the new row by executing:

SELECT * FROM MYDEPT

The result should look like:

DNO DNAME BLD BUDGET

 10 ACCOUNTING XX5 75000.00

Syntax: The table-name (MYDEPT) follows INSERT INTO. This is

followed by VALUES, followed by the column values enclosed

within parentheses. Each inserted value must have the correct

data-type. (Apostrophes must enclose character-strings.) Each

value must be separated by a comma, which may or may not be

followed by one or more spaces.

This INSERT statement does not explicitly specify column-names.

Therefore, the VALUES-clause must specify its values in the

MYDEPT table’s left-to-right column sequence (as specified in

its CREATE TABLE statement).

Logic: The system automatically validates the data-type of each

value. Because DNO is the primary key of MYDEPT, the system

will verify that the new DNO value (10) does not already exist

in the table. Also, because DNAME is declared to be unique,

the system will verify that the new DNAME value (ACCOUNTING)

does not already exist in the table.

INSERT INTO MYDEPT

VALUES (10, 'ACCOUNTING', 'XX5', 75000.00)

Free SQL Book, Tim Martyn 373 Copyright Pending, 2022

Sample Statement 15.1.2: We satisfy the previous statement

objective by presenting an alternative INSERT statement

that explicitly specifies column-names.

 [Do not execute this statement if you have already

executed the previous INSERT statement. It will fail

because of duplicate DNO values.]

Syntax: For tutorial purposes, the above column-names are not

specified in MYDEPT’s left-to-right column sequence. Note that

BUDGET is the fourth column in the MYDEPT table, but it is

specified as the third column in the above list of column-

names. This statement illustrates that column-names can be

specified in any left-to-right sequence, but corresponding

values in the VALUES clause must be specified in the same

sequence.

Exercise:

15A. Execute the following statement to create the JUNK1 table.

 CREATE TABLE JUNK1

 (C1 INTEGER NOT NULL PRIMARY KEY,

 C2 CHAR (5),

 C3 VARCHAR (10))

Insert the following row into JUNK1.

Verify the CREATE TABLE and INSERT operations by executing:

SELECT * FROM JUNK1

INSERT INTO MYDEPT (DNO, DNAME, BUDGET, BLD)

VALUES (10, 'ACCOUNTING', 75000.00, ‘XX5’)

250 HELLO DOOPY

Free SQL Book, Tim Martyn 374 Copyright Pending, 2022

INSERT with NULL Values

Note that the BUDGET column is the only MYDEPT column that

allows null values. The following INSERT statement specifies

NULL to represent an unknown BUDGET value. Again, we show two

equivalent INSERT statements.

Sample Statement 15.2.1: Insert a row into MYDEPT with the

following known values.

• DNO: 40

• DNAME: ENGINEERING

• BLD: XX7

Syntax & Logic: The keyword NULL is specified for the unknown

BUDGET value. NULL can be specified for any data-type.

Verify the new row by executing: SELECT * FROM MYDEPT

The result should look like:

DNO DNAME BLD BUDGET

 10 ACCOUNTING XX5 75000.00

 40 ENGINEERING XX7 -

The hyphen represents a null value. (Your system may display

a blank or some different symbol to represent a null value.)

Sample Statement 15.2.2: The following equivalent INSERT

statement specifies column-names. [Do not execute this

statement if you have already executed the previous INSERT

statement.]

Syntax: The names and values of the three known columns (DNO,

DNAME, BLD) are specified. The unspecified column (BUDGET)

value will automatically be set to a null.

INSERT INTO MYDEPT

VALUES (40, 'ENGINEERING',’XX7’, NULL)

INSERT INTO MYDEPT (DNO, DNAME, BLD)

VALUES (40, 'ENGINEERING', 'XX7')

Free SQL Book, Tim Martyn 375 Copyright Pending, 2022

INSERT with Default Values

Note that the BLD column is the only MYDEPT column that

specifies a default value.

Sample Statement 15.3: Insert another row into MYDEPT.

Assume BLD and BUDGET values are unknown. The BLD column

will be assigned its default value ('AB1'), and BUDGET

will be assigned a null value. The known values are:

• DNO: 20
• DNAME: INFO. SYS.

Syntax & Logic: The column-names and values of the two known

values are specified. Verify the insert operation by

executing:

 SELECT * FROM MYDEPT

The result should look like:

DNO DNAME BLD BUDGET

 10 ACCOUNTING XX5 75000.00

 40 ENGINEERING XX7 -

 20 INFO. SYS. AB1 -

The following Sample Statement 15.4 will execute an UPDATE

statement against MYDEPT which contains the above three rows.

Cautionary Comment: Unlike some programming languages, SQL does

not allow you to code adjacent commas to imply that a value

is not specified. The system will reject the following

statement.

INSERT INTO MYDEPT

 VALUES (40, 'ENGINEERING', ,) → Error

INSERT INTO MYDEPT (DNO, DNAME)

VALUES (20, 'INFO. SYS.')

Free SQL Book, Tim Martyn 376 Copyright Pending, 2022

UPDATE Statement

The UPDATE statement is used to change row values in one or

more columns of a table. The following sample statement only

changes one column value in one row.

Sample Statement 15.4: Change the BLD value of the department

with a DNO value of 40. Set the new BLD value to XX5.

System Response: The system should respond with a message

implying successful update of the row. Verify the update by

executing: SELECT * FROM MYDEPT

The result should look like:

DNO DNAME BLD BUDGET

 10 ACCOUNTING XX5 75000.00

 40 ENGINEERING XX5 -

 20 INFO. SYS. AB1 -

Syntax & Logic: This statement has three clauses.

• UPDATE is followed by the name of the table to be changed.

• The SET-clause follows the UPDATE-clause. It specifies

one or more columns to be changed. The above SET-clause

only modifies one column (BLD). The SET-clause can specify

a value (e.g., 'XX5'), an expression, or NULL.

• The WHERE-clause follows the SET-clause. This WHERE-

clause is coded like a WHERE-clause in a SELECT statement.

It has the same syntax and may contain Boolean operators.

Here, instead of identifying rows to be retrieved, the

WHERE-clause identifies the row(s) to be changed.

Important Know-Your-Data Observation: Knowing that DNO is

unique guarantees that no more than one row can be changed.

UPDATE MYDEPT

SET BLD = 'XX5',

WHERE DNO = 40

Free SQL Book, Tim Martyn 377 Copyright Pending, 2022

More about the SET-Clause: Sample Statement 15.5 will

illustrate that more than one column can be changed by placing

a comma between each “column-name = _____” expression as

illustrated below.

 UPDATE table-name

 SET column-name = _____,

 column-name = _____,

 column-name = _____,

 column-name = _____

 WHERE condition

Important: If the WHERE-clause identifies multiple rows, then

all such rows are updated.

Be Very Careful!!! The WHERE-clause is optional. However, we

emphasize that the absence of a WHERE-clause will change every

row in the table. For example, to change all BUDGET values to

45000.00, you would execute

 UPDATE MYDEPT

 SET BUDGET = 45000.00

 [Do not execute this statement.]

This behavior is analogous to the SELECT statement. The absence

of a WHERE-clause means that all rows are selected. With an

UPDATE statement, the absence of a WHERE-clause means that all

rows are updated.

Exercises:

15B. Insert the following three rows into JUNK1 (which

currently has one row). The hyphen represents a null

value.

 Verify these insert operations by executing:

 SELECT * FROM JUNK1

15C. Update the JUNK1 table. Change the row where column C1

equals 150. Its new C3 value should be GRUMPY. Verify

this update operation by executing: SELECT * FROM JUNK1

150 - HAPPY

350 HI SAD

850 BYE -

Free SQL Book, Tim Martyn 378 Copyright Pending, 2022

Update Multiple Columns in Multiple Rows

Sample Statement 15.5: For every MYDEPT row that has a DNO

value that is less than 35, make the following changes.

• Set the BDL value to WW9

• Increase the BUDGET value by 20%

System Response: The system should respond with a message

implying a successful UPDATE operation.

Verify by executing: SELECT * FROM MYDEPT

The result should look like:

DNO DNAME BLD BUDGET

 10 ACCOUNTING WW9 90000.00

 40 ENGINEERING XX5 -

 20 INFO. SYS. WW9 -

Syntax: This example changes two columns. These changes are

specified by the two expressions in the SET-clause. A comma

separates these expressions. Some systems will allow you to

code a more compact version of this SET-clause as shown below:

 UPDATE MYDEPT

 SET (BLD, BUDGET) = ('WW9', BUDGET*1.20)

 WHERE DNO < 35

Logic: This statement changes the two rows that match the

WHERE-clause. Both new BLD values are WW9. New BUDGET values

are based on the current value. For the row with DNO = 10, the

current value of 75,000 is increased by 20% yielding a new

value of 90,000. For the row with DNO = 20, the current value

is null; hence the expression produces a null value.

Exercise:

15D. Update the JUNK1 table. Change all rows having a C2 value

beginning with the letter H. The new C3 value for each

row should be set to CRANKY. Verify this update operation

by executing: SELECT * FROM JUNK1

UPDATE MYDEPT

SET BLD = 'WW9',

 BUDGET = BUDGET * 1.20

WHERE DNO < 35

Free SQL Book, Tim Martyn 379 Copyright Pending, 2022

DELETE Statement

The DELETE statement can delete any number of rows from a

table. (You cannot delete columns from a table.)

Sample Statement 15.6: Delete every row from the MYDEPT

table that has a DNAME value ending with “ING”.

System Response: The system should return a message confirming

the successful deletion of rows. Verify the deletes by

executing: SELECT * FROM MYDEPT

The result should look like:

DNO DNAME BLD BUDGET

 20 INFO. SYS. WW9 -

Syntax: The syntax is simple. DELETE FROM is followed by the

table-name. The optional WHERE-condition identifies the row(s)

to be deleted.

Logic: The two rows matching the WHERE-clause were deleted.

Careful! We emphasize that failure to include a WHERE-condition

will delete all rows. For example, the following statement will

delete all rows in MYDEPT.

 DELETE FROM MYDEPT → Careful!!!

If you executed this statement because you intended to delete

all rows, the MYDEPT table will still exist, but it will be

empty. If desired, you could then insert rows. This is

different than executing DROP TABLE MYDEPT which automatically

deletes all rows before it drops the table.

Exercise:

15E. Delete any row from the JUNK1 table with a C1 value that

exceeds 300. Verify this delete operation by executing:

SELECT * FROM JUNK1

DELETE

FROM MYDEPT

WHERE DNAME LIKE '%ING'

Free SQL Book, Tim Martyn 380 Copyright Pending, 2022

Summary

This chapter introduced SQL’s three basic DML statements:

INSERT, UPDATE, and DELETE. Only the basic versions of these

statements were described. In particular, the specification of

“Sub-SELECT” clauses were not described. Chapter 24 will

address this topic.

Other DML Statements: Most systems support other DML statements

in addition to INSERT, UPDATE, and DELETE. Some systems support

the MERGE statement that blends the functionality of INSERT

and UPDATE within a single statement. Also, some systems

support the TRUNCATE statement that offers an efficient method

to delete all rows from a table.

Transaction Processing: This chapter executed INSERT, UPDATE,

and DELETE statements within an interactive environment.

However, DML statements are usually embedded within application

programs and stored procedures that execute in a production

environment. Such programs/procedures frequently include

transaction-processing statements such as COMMIT and ROLLBACK.

Transaction processing is a very important topic for

application developers. This topic will be presented in Chapter

29.

Summary Exercises

15F. DELETE all rows from JUNK1.

15G. INSERT the following rows into JUNK1.

15H. Update JUNK1. Set all C2 values to MAYBE.

15I. DELETE any row where the C1 value is greater than 95.

15J. Drop the JUNK1 table.

/

98 YES1 YES2

95 NO1 NO2

Free SQL Book, Tim Martyn 381 Copyright Pending, 2022

Chapter

 PART IV

 Join-Operations

Casually speaking, a join-operation matches and merges data

from multiple tables into a single result (or intermediate

result) table. For example, given the following tables, T1

and T2, you can produce a result table that looks something

like the following JOIN-RESULT table.

There are two fundamental variations of the join-operation.

These are: (1) the Inner-Join, and (2) the Outer-Join. The

Inner-Join is described in Chapters 16-18. The Outer-Join is

described in Chapters 19-20. Chapter 20.5 will present sample

queries that specify a mixture of inner-join and outer-join

operations.

T1

A B

a b

a b

. . . .

T2

X Y Z

x y z

x y z

.

JOIN-RESULT

A B X Y Z

a b x y z

a b x y z

.

Free SQL Book, Tim Martyn 382 Copyright Pending, 2022

Topics

Chapter 16: Inner-Join: Getting Started

 This chapter introduces the basic inner-join of two

tables.

Chapter 17: More about Inner-Joins

 This chapter does not introduce any new concepts. It

presents sample queries that specify the inner-join of

two tables in conjunction with previously described SQL

operations.

Chapter 18: Multi-Table Inner-Joins

 This chapter presents inner-join operations applied to

three or more tables.

Chapter 19: Outer-Join: Getting Started

 This chapter introduces the three basic types of outer-

join operations. Sample queries are restricted to outer-

join operations involving two tables.

Chapter 20: Multi-Table Left Outer-Joins

 This chapter presents left outer-join operations applied

to three or more tables.

Chapter 20.5: Mixing Inner-Joins and Outer-Joins

 This chapter presents sample queries with FROM-clauses

that specify both inner-join and outer-join operations.

A Reminder about Column Names: Future sample queries will join

tables where multiple tables usually have a column with the

same column-name. For example, Figure 13.2 showed the creation

of the TESTDEPT and TESTEMP tables where both tables contain

a column called DNO. Recall that:

TESTDEPT.DNO references the DNO column in the TESTDEPT table.

TESTEMP.DNO references the DNO column in the TESTEMP table.

Free SQL Book, Tim Martyn 383 Copyright Pending, 2022

Chapter

 16

 Inner-Join: Getting Started

This is a very important chapter. It lays the foundation for

the next five chapters and many other sample queries

throughout the remainder of this book.

Terminology: Whenever we say “join,” we mean inner-join

(versus outer-join).

This chapter introduces the inner-join operation by presenting

sample queries that reference three very similar but different

database designs.

Design-1: Figure 16.1 will illustrate the most common design

scenario. It consists of two tables, DEPARTMENT and EMPLOYEE,

where there is a Primary-Key – Foreign-Key (PK-FK) relationship

between the tables, and the foreign-key is declared to be NOT

NULL.

Design-2: Figure 16.2 illustrates another common design

scenario that is almost identical to Design-1. It consists of

two tables, DEPARTMENT and EMPLOYEE2, where there is a PK-FK

relationship between the tables. The only difference is that

the foreign-key column is allowed to contain null values.

Design-3: Figure 16.3 will present a realistic but less common

design scenario. It consists of two tables, DEPARTMENT and

EMPLOYEE3 where there is no PK-FK relationship between the

tables.

Free SQL Book, Tim Martyn 384 Copyright Pending, 2022

Design-1: PK-FK Relationship (FK is NOT NULL)

Design-1 is implemented by executing the following CREATE TABLE

statements. The first seven sample queries will reference these

tables.

We highlight the PK–FK relationship between DEPARTMENT and

EMPLOYEE. It is important to observe that the foreign-key

(DNO) in the DEPARTMENT table is declared as NOT NULL. Sample

data for these tables are illustrated below in Figure 16.1a.

Observe that the EMPLOYEE.DNO values satisfy the foreign-key

constraints.

DEPARTMENT

DNO DNAME BUDGET

10 ACCOUNTING 75000.00

20 INFO. SYS. 20000.00

30 PRODUCTION 7000.00

40 ENGINEERING 25000.00

EMPLOYEE

ENO ENAME SALARY DNO

1000 MOE 2000.00 20

2000 LARRY 2000.00 10

3000 CURLY 3000.00 20

4000 SHEMP 500.00 40

5000 JOE 400.00 10

6000 GEORGE 9000.00 20

Figure 16.1a: Sample Data for Design-1

DROP TABLE EMPLOYEE;

DROP TABLE DEPARTMENT;

CREATE TABLE DEPARTMENT

(DNO CHAR (2) NOT NULL PRIMARY KEY,

 DNAME VARCHAR(20) NOT NULL UNIQUE,

 BUDGET DECIMAL(9,2) NOT NULL);

CREATE TABLE EMPLOYEE

(ENO CHAR (4) NOT NULL PRIMARY KEY,

 ENAME VARCHAR(25) NOT NULL,

 SALARY DECIMAL(7,2) NOT NULL,

 DNO INTEGER NOT NULL,

 FOREIGN KEY (DNO) REFERENCES DEPARTMENT);

Figure 16.1: Design-1

Free SQL Book, Tim Martyn 385 Copyright Pending, 2022

Join DEPARTMENT and EMPLOYEE: The inner-join operation

matches and merges rows from each table by comparing values

from designated columns. The following result was generated

by comparing the DNO values in the DEPARTMENT and EMPLOYEE

tables. It is important to note that only rows with matching

DNO values appear in this result. In particular, observe that

the DEPARTMENT row with the DNO value of 30 does not appear

in this result.

ENO ENAME SALARY DNO DNO1 DNAME BUDGET

1000 MOE 2000.00 20 20 INFO. SYS. 20000.00

2000 LARRY 2000.00 10 10 ACCOUNTING 75000.00

3000 CURLY 3000.00 20 20 INFO. SYS. 20000.00

4000 SHEMP 500.00 40 40 ENGINEERING 25000.00

5000 JOE 400.00 10 10 ACCOUNTING 75000.00

 6000 GEORGE 9000.00 20 20 INFO. SYS. 20000.00

A very popular way (not the only way) to code an inner-join

is described below.

FROM-Clause: The FROM-clause must reference both tables.

Either table can be specified first. A comma must separate

the table-names.

 FROM EMPLOYEE, DEPARTMENT

WHERE-Clause: When joining the DEPARTMENT and EMPLOYEE

tables, we compare the primary-key column (DNO) in the parent-

table (DEPARTMENT) with a foreign-key column (DNO) in the

child-table (EMPLOYEE) by coding a WHERE-clause. This WHERE-

clause specifies the “join-condition.” The following join-

condition states that result table should only contain rows

with matching DEPARTMENT.DNO and EMPLOYEE.DNO values.

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

In this chapter, the first seven sample queries contain the

same FROM and WHERE clauses that look like:

 SELECT . . .

 FROM EMPLOYEE, DEPARTMENT

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

Free SQL Book, Tim Martyn 386 Copyright Pending, 2022

Inner-Join

The following sample query illustrates an inner-join

operation where the join-condition is based on a PK-FK

relationship.

Sample Query 16.1: Display all information about every

employee, followed by all information about the

employee’s department. (I.e., Join the EMPLOYEE and

DEPARTMENT tables by matching on their DNO values.)

ENO ENAME SALARY DNO DNO1 DNAME BUDGET

1000 MOE 2000.00 20 20 INFO. SYS. 20000.00

2000 LARRY 2000.00 10 10 ACCOUNTING 75000.00

3000 CURLY 3000.00 20 20 INFO. SYS. 20000.00

4000 SHEMP 500.00 40 40 ENGINEERING 25000.00

5000 JOE 400.00 10 10 ACCOUNTING 75000.00

6000 GEORGE 9000.00 20 20 INFO. SYS. 20000.00

Syntax: The basic syntax of the inner-join operation is:

 SELECT column(s)

 FROM TABLE1, TABLE2

 WHERE TABLE1.COLX = TABLE2.COLY

FROM-clause: Both table-names are specified in the FROM-

clause, separated by a comma.

WHERE-clause: This WHERE-clause specifies the join-condition.

Here, the comparison operator is the equals (=) symbol. This

precise name for this kind of join is “inner equijoin.”

SELECT-clause: This SELECT-clause does not specify column-

names. Therefore, all EMPLOYEE columns are displayed to the

left of all DEPARTMENT columns because EMPLOYEE is designated

first in the FROM-clause. As mentioned on the previous page,

table-names can be specified in any sequence.

SELECT *

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

Free SQL Book, Tim Martyn 387 Copyright Pending, 2022

Logic: Again, we emphasize that, when you execute an inner-

join, only matching rows appear in the result. Observe that:

The row for DEPARTMENT 20 matches three EMPLOYEE rows.

(Department 20 has three employees.) In general, a row

in a parent-table (DEPARTMENT) may match with none, one,

or many child-table (EMPLOYEE) rows.

Because Department 30 does not have any employees, the

result table does not contain any data for this

department.

Redundant Columns in Result Table: This result table contains

two DNO columns which have identical values. To avoid

potential ambiguity associated with displaying two columns

with the same name (DNO), your front-end tool may assign some

other name to one of the DNO columns. For example, DB2 might

show DNO1 as the column heading for the second DNO column.

Your front-end tool may assign a different heading.

Most users consider this column redundancy to be undesirable.

The following Sample Query 16.2 will display just one DNO

column.

Data-Type Compatibility: The columns being compared must be

“data-type compatible.” This means that you must compare

numbers to numbers, character-strings to character-strings,

and date-time values to date-time values. For example, you

could compare INTEGER to DECIMAL, DECIMAL (5,2) to DECIMAL

(7,3), CHAR to VARCHAR, etc. With these comparisons, the

system must perform some internal data-type transformations.

It is better to compare columns that have the exact same data-

type. (For this reason, database designers almost always

designate each foreign-key column to have the exact same data-

type and length as its corresponding primary-key column.)

Size of Result Table: Observe that the EMPLOYEE table has six

rows, and the result table also has six rows. In Design-1,

when you join the two tables based upon their PK-FK

relationship, the number of rows in the join-result equals

the number of rows in the child-table (EMPLOYEE).

Free SQL Book, Tim Martyn 388 Copyright Pending, 2022

Natural-Join

The result table for Sample Query 16.1 displayed all columns

from both the DEPARTMENT and EMPLOYEE tables. Notice that

both of the join-columns have the same name (DNO). Also,

notice that the result table shows that the DNO values (in

columns DNO and DNO1) contain identical values. Because

redundant data can be confusing, we naturally prefer to avoid

it. The following sample query eliminates this kind of column

redundancy.

Sample Query 16.2: Display the ENAME, ENO, and SALARY values

for all employees followed by the DNO, DNAME, and BUDGET

values of the departments they work in.

ENAME ENO SALARY DNO DNAME BUDGET

MOE 1000 2000.00 20 INFO. SYS. 20000.00

LARRY 2000 2000.00 10 ACCOUNTING 75000.00

CURLY 3000 3000.00 20 INFO. SYS. 20000.00

SHEMP 4000 500.00 40 ENGINEERING 25000.00

JOE 5000 400.00 10 ACCOUNTING 75000.00

GEORGE 6000 9000.00 20 INFO. SYS. 20000.00

Syntax & Logic: Nothing new. This statement contains the same

FROM-clause and WHERE-clause shown in the previous Sample

Query 16.1.

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

Only the SELECT-clause is different. It specifies just one DNO

column, the DEPARTMENT.DNO column. Alternatively, the

EMPLOYEE.DNO column could have been specified.

Terminology: “Natural-join” is the precise name for this kind

of join. However, this term is rarely used within the

community of practitioners. (Also, some systems support a

NATURAL JOIN clause that is not described in this book.)

SELECT ENAME, ENO, SALARY,

 DEPARTMENT.DNO, DNAME, BUDGET

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

Free SQL Book, Tim Martyn 389 Copyright Pending, 2022

Join with ORDER BY

Previous result tables were not explicitly sorted. (The

result may have been incidentally sorted because of some

internal processing by the system.) Appending an ORDER BY

clause allows you to display the result table in some desired

row sequence.

Sample Query 16.3: Enhance the previous Sample Query 16.2.

Display the same result sorted by employee name.

ENAME ENO SALARY DNO DNAME BUDGET

CURLY 3000 3000.00 20 INFO. SYS. 20000.00

 GEORGE 6000 9000.00 20 INFO. SYS. 20000.00

 JOE 5000 400.00 10 ACCOUNTING 75000.00

 LARRY 2000 2000.00 10 ACCOUNTING 75000.00

 MOE 1000 2000.00 20 INFO. SYS. 20000.00

 SHEMP 4000 500.00 40 ENGINEERING 25000.00

Syntax and Logic: Nothing new.

SELECT ENAME, ENO, SALARY,

 DEPARTMENT.DNO, DNAME, BUDGET

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

ORDER BY ENAME

Free SQL Book, Tim Martyn 390 Copyright Pending, 2022

Common Error!

Assume the query objective is the same as Sample Query 16.1

which required an inner-join of the EMPLOYEE and DEPARTMENT

tables. However, also assume that you forget to code a WHERE-

clause to specify the join-condition. You incorrectly execute:

DNO DNAME BUDGET ENO ENAME SALARY DNO1

10 ACCOUNTING 75000.00 1000 MOE 2000.00 20

20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

30 PRODUCTION 80000.00 1000 MOE 2000.00 20

 40 ENGINEERING 25000.00 1000 MOE 2000.00 20

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

20 INFO. SYS. 20000.00 2000 LARRY 2000.00 10

 30 PRODUCTION 80000.00 2000 LARRY 2000.00 10

 40 ENGINEERING 25000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 30 PRODUCTION 80000.00 3000 CURLY 3000.00 20

 40 ENGINEERING 25000.00 3000 CURLY 3000.00 20

10 ACCOUNTING 75000.00 4000 SHEMP 500.00 40

 20 INFO. SYS. 20000.00 4000 SHEMP 500.00 40

 30 PRODUCTION 80000.00 4000 SHEMP 500.00 40

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 5000 JOE 400.00 10

 30 PRODUCTION 80000.00 5000 JOE 400.00 10

 40 ENGINEERING 25000.00 5000 JOE 400.00 10

 10 ACCOUNTING 75000.00 6000 GEORGE 9000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 80000.00 6000 GEORGE 9000.00 20

 40 ENGINEERING 25000.00 6000 GEORGE 9000.00 20

Logic: If you fail to specify a join-condition, the system

will match every row in the first table with every row in the

second table. The above result table shows that the system

matched the four DEPARTMENT rows with the six EMPLOYEE rows

to produce a result table of 24 (4x6) rows. This result does

not conform to our query objective. A join-condition is

necessary to specify the matching criteria. (We will revisit

this SELECT statement in Sample Query 17.1.)

SELECT *

FROM DEPARTMENT, EMPLOYEE

Free SQL Book, Tim Martyn 391 Copyright Pending, 2022

Subset of Join-Result

The following sample query displays a subset of rows and

columns from an intermediate result table produced by an

inner-join operation.

Sample Query 16.4: For each employee earning less than

$3,000.00, display the name of the employee’s department

followed by the employee’s name and salary. Sort the

result by employee names within department names.

DNAME ENAME SALARY

ACCOUNTING JOE 400.00

 ACCOUNTING LARRY 2000.00

 ENGINEERING SHEMP 500.00

 INFO. SYS. MOE 2000.00

Syntax: Nothing new. The SALARY < 3000.00 condition is AND-

connected to the join-condition.

Logic: Conceptually:

1. Code an inner-join to produce an intermediate join-

result.

2. Append an AND-condition to select some subset of rows
from the intermediate join-result.

3. Select the desired columns by specifying the column-
names in the SELECT-clause.

4. Specify an ORDER BY clause to display the final result
in the desired row sequence.

SELECT DNAME, ENAME, SALARY

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND SALARY < 3000.00

ORDER BY DNAME, ENAME

Free SQL Book, Tim Martyn 392 Copyright Pending, 2022

Sample Query 16.5: Only consider employees having a salary

that is less than $999.00. If any such employee works

for a department having a budget that is less than or

equal to $75,000.00, display the department’s DNO and

BUDGET values along with the employee’s ENAME and SALARY

values. Sort the result by the DNO column.

DNO BUDGET ENAME SALARY

10 75000.00 JOE 400.00

40 25000.00 SHEMP 500.00

Logic: Conceptually:

1. Code an inner-join to produce an intermediate join-

result.

2. Append two AND-conditions to select some subset of rows
from the intermediate join-result.

3. Select the desired columns by specifying the column-
names in the SELECT-clause.

4. Specify an ORDER BY clause to display the final result
in the desired row sequence.

The following page presents a procedure (Procedure-1) which

adds more detail to this logic. We also present another

procedure (Procedure-2) which follows a different sequence of

steps to satisfy the same query objective.

SELECT DEPARTMENT.DNO, BUDGET, ENAME, SALARY

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND SALARY < 999.00

AND BUDGET <= 75000.00

ORDER BY DEPARTMENT.DNO

Free SQL Book, Tim Martyn 393 Copyright Pending, 2022

Procedure-1: This following sequence of operations

corresponds to the previously described logical procedure.

1. Produce an intermediate result (IR1) by joining the

EMPLOYEE and DEPARTMENT.

IR1 SELECT * FROM EMPLOYEE, DEPARTMENT

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

 2. Produce a second intermediate result (IR2) by

extracting the desired rows and columns from IR1.

 IR2 SELECT DNO, BUDGET, ENAME, SALARY FROM IR1

 WHERE SALARY < 999.00 AND BUDGET <=75000.00

 3. Produce the final result by sorting IR2.

Procedure-2: Alternatively, a different logical sequence of

operations yields the same result.

 1. Produce intermediate result (IRA) by extracting the

necessary rows and columns from EMPLOYEE.

 IRA SELECT DNO, ENAME, SALARY FROM EMPLOYEE

 WHERE SALARY < 999.00

 2. Produce a second intermediate-result (IRB) by

extracting the necessary rows and columns from

DEPARTMENT.

 IRB SELECT DNO, BUDGET FROM DEPARTMENT

 WHERE BUDGET <=75000.00

 3. Join IRA and IRB to form IRC.

 IRC SELECT IRA.DNO, BUDGET, ENAME, SALARY

 FROM IRA, IRB

 WHERE IRA.DNO = IRB.DNO

 4. Produce the final result by sorting IRC.

Most users will conceptualize this SELECT statement in terms

of Procedure-1. However, a few users will conceptualize it in

terms of Procedure-2. Both are correct. Our commentary on

future sample queries involving join-operations will follow

Procedure-1.

Free SQL Book, Tim Martyn 394 Copyright Pending, 2022

Join Two Tables – Only Display Columns from the Child-Table

Sample Queries 16.1-16.5 joined the DEPARTMENT and EMPLOYEE

tables and displayed columns from both tables. Occasionally,

your query objective requires that you specify a join-

operation, but you only want to display data from one table.

The next example joins the EMPLOYEE and DEPARTMENT tables.

But the SELECT-clause only displays columns from one table,

the child-table (EMPLOYEE).

Sample Query 16.6: Display the employee number and name of

any employee who works for a department having a budget

that is greater than or equal to $25,000.00

 ENO ENAME

2000 LARRY

4000 SHEMP

5000 JOE

Logic: Although only EMPLOYEE columns are displayed, a join

is required because the AND-condition (BUDGET >= 25000.00)

references the BUDGET column in the DEPARTMENT table.

Know-Your-Data Observations: This SELECT-clause only specifies

columns from the child-table. (This observation becomes very

relevant in the following sample query where the SELECT-clause

only specifies columns from the parent-table.) We make two

observations.

1. All EMPLOYEE rows must be present in the intermediate
join-result. Hence, no EMPLOYEE row can disappear because

it fails to match on the join-operation.

2. Because each EMPLOYEE row must match exactly one

DEPARTMENT row, EMPLOYEE information cannot be duplicated

in the join-result.

Similar observations will not apply to the following sample

query.

SELECT ENO, ENAME

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND BUDGET >= 25000.00

Free SQL Book, Tim Martyn 395 Copyright Pending, 2022

Join Two Tables – Only Display Columns from the Parent-Table

The next query is similar to the preceding example. But an

important know-your-data observation requires your attention.

Again, we join two tables and then display columns from just

one table. However, here we only display columns from

DEPARTMENT, the parent-table.

Sample Query 16.7: We are only interested in departments that

have at least one employee. Display the DNAME and BUDGET

values for any such department with a budget that is

less than or equal to $50,000.00.

DNAME BUDGET

INFO. SYS. 20000.00

INFO. SYS. 20000.00

INFO. SYS. 20000.00

ENGINEERING 25000.00

Know-Your-Data Observations: The SELECT-clause only specifies

columns from the parent-table. We make two observations.

1. One or more parent (DEPARTMENT) rows may not be present in

the intermediate join-result. Hence, they cannot appear in

the final result. The PRODUCTION Department (Department 30)

is missing because it does not have any employees. (Note:

This query objective stated “we are only interested in

departments that have at least one employee.”)

2. Duplicate rows may appear in the result table for any

department with more than one employee. Three duplicate rows

for the INFO. SYS. Department (Department 20) appear because

this department has three employees. You can remove this

duplication by specifying DISTINCT.

SELECT DISTINCT DNAME, BUDGET FROM . . .

We emphasize that similar observations did not apply to the

previous Sample Query 16.6.

SELECT DNAME, BUDGET

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND BUDGET <= 50000.00

Free SQL Book, Tim Martyn 396 Copyright Pending, 2022

Design-2: Foreign Key Contains Null Values

Design-2 is almost identical to Design-1. Both designs have

the same DEPARTMENT table and very similar employee tables

(EMPLOYEE and EMPLOYEE2) which have the same columns. Also,

EMPLOYEE2 specifies the same foreign-key column (DNO) that

references the DEPARTMENT table. The only difference is that

the foreign-key column (EMPLOYEE2.DNO) is allowed to contain

null values. (The specification of the DNO column in the

following CREATE TABLE statement for EMPLOYEE2 does not specify

a NOT NULL clause.) This design allows you to hire a new

employee (insert a new row into EMPLOYEE2) without assigning

the new employee to a department.

Sample data for DEPARTMENT and EMPLOYEE2 tables are shown

below. The DEPARTMENT table is unchanged. The only difference

in the data in the EMPLOYEE2 table (versus the EMPLOYEE table)

is that the last row describing Employee 6000 has a null DNO

value.

DEPARTMENT

DNO DNAME BUDGET

10 ACCOUNTING 75000.00

20 INFO. SYS. 20000.00

30 PRODUCTION 7000.00

40 ENGINEERING 25000.00

EMPLOYEE2

ENO ENAME SALARY DNO

1000 MOE 2000.00 20

2000 LARRY 2000.00 10

3000 CURLY 3000.00 20

4000 SHEMP 500.00 40

5000 JOE 400.00 10

6000 GEORGE 9000.00 -

Figure 16.2a:

Design-2 Sample Data

{Same DEPARTMENT table}

CREATE TABLE EMPLOYEE2

(ENO CHAR (4) NOT NULL,

 ENAME VARCHAR(25) NOT NULL,

 SALARY DECIMAL(7,2) NOT NULL,

 DNO INTEGER,

 PRIMARY KEY (ENO),

 FOREIGN KEY (DNO) REFERENCES DEPARTMENT);

Figure 16.2:

Design-2

Free SQL Book, Tim Martyn 397 Copyright Pending, 2022

Join DEPARTMENT and EMPLOYEE2

Sample Query 16.8: We are only interested in employees who

are known to be assigned to some department. Display all

information about those employees, along with all

information about the departments they work in. (I.e.,

Join the DEPARTMENT table and the EMPLOYEE2 table based

on the PK-FK relationship.)

ENO ENAME SALARY DNO DNO1 DNAME BUDGET

1000 MOE 2000.00 20 20 INFO. SYS. 20000.00

2000 LARRY 2000.00 10 10 ACCOUNTING 75000.00

3000 CURLY 3000.00 20 20 INFO. SYS. 20000.00

4000 SHEMP 500.00 40 40 ENGINEERING 25000.00

5000 JOE 400.00 10 10 ACCOUNTING 75000.00

Syntax: Nothing new.

Logic: Notice that the query objective states “For those

employees who are known to be assigned to some department.”

The critical observation is that the result table does not

contain any information about Employee 6000 because his DNO

value is null. Hence, it cannot match any DNO value in

DEPARTMENT.

Again, observe that the result table has no information about

the PRODUCTION department (DNO value of 30) which does not

have any employees.

Know-your-data: The syntax and logic for this SELECT

statement is straightforward. (It has the same structure as

Sample Query 16.1.) The critical observation pertains to

knowing your data. To correctly understand the result table,

you must be aware that some EMPLOYEE2 rows could have null

DNO values.

SELECT *

FROM EMPLOYEE2, DEPARTMENT

WHERE EMPLOYEE2.DNO = DEPARTMENT.DNO

Free SQL Book, Tim Martyn 398 Copyright Pending, 2022

Design-3: No PK-FK Relationship

Design-3 is similar to Design-2 except no foreign-key column

is specified. This design scenario is not very common, but it

is valid.

Assume the database designer is told that it is possible to

hire an employee and assign the employee a DNO value that is

not present in the DEPARTMENT table. This assumption leads to

Design-3 shown below in Figure 16.3. Note that the DNO column

in EMPLOYEE3 is not declared as a foreign key. Also note that

it may contain null values.

Sample data for DEPARTMENT and EMPLOYEE3 tables are shown

below. Notice that the first EMPLOYEE3 row for Employee 1000

has a non-null DNO value (99) that is not found in the

DEPARTMENT table. (Presumably a row describing Department 99

would be inserted into the DEPARTMENT table at some point in

the future.)

DEPARTMENT

DNO DNAME BUDGET

10 ACCOUNTING 75000.00

20 INFO. SYS. 20000.00

30 PRODUCTION 7000.00

40 ENGINEERING 25000.00

EMPLOYEE3

ENO ENAME SALARY DNO

1000 MOE 2000.00 99

2000 LARRY 2000.00 10

3000 CURLY 3000.00 20

4000 SHEMP 500.00 40

5000 JOE 400.00 10

6000 GEORGE 9000.00 -

Figure 16.3a:

Design-3 Sample Data

{Same DEPARTMENT table}

CREATE TABLE EMPLOYEE3

(ENO CHAR (4) NOT NULL,

 ENAME VARCHAR(25) NOT NULL,

 SALARY DECIMAL(7,2) NOT NULL,

 DNO INTEGER,

 PRIMARY KEY (ENO));

Figure 16.3:

Design-3

Free SQL Book, Tim Martyn 399 Copyright Pending, 2022

Join DEPARTMENT and EMPLOYEE3

This example joins the DEPARTMENT and EMPLOYEE3 tables by

specifying a join-condition that matches on the DNO columns

in both tables. However, this join-condition is not based

upon a PK-FK relationship. In such circumstances, it is

possible that both tables may contain rows that do not match

the join-condition.

Sample Query 16.9: For each employee who is assigned to some

“real” department, display all information about the

employee and all information about the department he

works in. (I.e., Join the DEPARTMENT and EMPLOYEE3

tables matching on their DNO columns.)

ENO ENAME SALARY DNO DNO1 DNAME BUDGET

 2000 LARRY 2000.00 10 10 ACCOUNTING 75000.00

 3000 CURLY 3000.00 20 20 INFO. SYS. 20000.00

 4000 SHEMP 500.00 40 40 ENGINEERING 25000.00

 5000 JOE 400.00 10 10 ACCOUNTING 75000.00

Syntax: Nothing new.

Logic: Notice that the result table does not contain rows for

Employee 1000 (because its DNO value of 99 does not match)

and Employee 6000 (because its DNO value is null).

Again, we observe there is no row corresponding to the

PRODUCTION department (DNO value of 30).

Know-your-data: You must be aware that: (1) Some

EMPLOYEE3.DNO values might not match any DEPARTMENT.DNO

value, and (2) some EMPLOYEE3.DNO values may be null.

SELECT *

FROM EMPLOYEE3, DEPARTMENT

WHERE EMPLOYEE3.DNO = DEPARTMENT.DNO

Free SQL Book, Tim Martyn 400 Copyright Pending, 2022

Exercises

16A. What result tables are produced by executing the

following statements?

a. SELECT ENAME, DNAME

 FROM EMPLOYEE, DEPARTMENT

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

 AND BUDGET <= 50000.00

 ORDER BY ENAME

b. SELECT ENAME, DNAME

 FROM EMPLOYEE2, DEPARTMENT

 WHERE EMPLOYEE2.DNO = DEPARTMENT.DNO

 AND BUDGET <= 50000.00

c. SELECT ENAME, DNAME

 FROM EMPLOYEE3, DEPARTMENT

 WHERE EMPLOYEE3.DNO = DEPARTMENT.DNO

 AND BUDGET <= 50000.00

16B. What result tables are produced by executing the

following statements?

a. SELECT DEPARTMENT.DNO, DNAME, ENO, ENAME

 FROM DEPARTMENT, EMPLOYEE

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

 AND ENAME NOT LIKE '%O%E%'

 ORDER BY DEPARTMENT.DNO, ENAME

b. SELECT DEPARTMENT.DNO, DNAME, ENO, ENAME

 FROM DEPARTMENT, EMPLOYEE2

 WHERE EMPLOYEE2.DNO = DEPARTMENT.DNO

 AND ENAME NOT LIKE '%O%E%'

 ORDER BY DEPARTMENT.DNO, ENAME

 c. SELECT DEPARTMENT.DNO, DNAME, ENO, ENAME

 FROM DEPARTMENT, EMPLOYEE3

 WHERE EMPLOYEE3.DNO = DEPARTMENT.DNO

 AND ENAME NOT LIKE '%O%E%'

 ORDER BY DEPARTMENT.DNO, ENAME

Free SQL Book, Tim Martyn 401 Copyright Pending, 2022

The next three exercises reference Design-1 (DEPARTMENT and

EMPLOYEE tables).

16C. Display every employee’s name, salary, and the name of

the department he works in. Sort the result table by

employee name.

16D. Display the employee number and name of any employee who

works for a department having a budget that is greater

than $24,000.00. Sort the result table by employee

number.

16E. Display the department numbers and names of all

departments that have at least one employee earning a

salary that is greater than $1,000.00. Sort the result

table by department numbers.

Free SQL Book, Tim Martyn 402 Copyright Pending, 2022

Variations in Join Syntax

There are multiple ways to code the same inner-join operation.

The following Figure 16.4 shows four equivalent methods for

coding a SELECT statement for Sample Query 16.1.

1. Old-Syntax (Sample Query 16.1)

SELECT *

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

2. Old-Syntax with Table Alias

SELECT *

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DNO = D.DNO

3. JOIN-ON-Syntax

SELECT *

FROM EMPLOYEE INNER JOIN DEPARTMENT

ON EMPLOYEE.DNO = DEPARTMENT.DNO

4. JOIN-ON-Syntax with Table Alias

SELECT *

FROM EMPLOYEE E INNER JOIN DEPARTMENT D

ON E.DNO = D.DNO

Figure 16.4: Variations in Inner-Join Syntax

Free SQL Book, Tim Martyn 403 Copyright Pending, 2022

1. Old-Syntax: Sample Queries 16.1-16.9 demonstrated this

syntax. This syntax was part of the first (1970’s)

version of SQL.

2. Old-Syntax with Table Alias: This syntax was also part of

the first version of SQL and is very popular. A table is

assigned a table alias within the FROM-clause to

temporarily rename the table. The following FROM clause

specifies E as an alias for EMPLOYEE and D as an alias

for DEPARTMENT.

 FROM EMPLOYEE E, DEPARTMENT D

 WHERE E.DNO = D.DNO

3. JOIN-ON-Syntax: In the 1990s, the SQL Standards Committee

introduced the JOIN-ON syntax. Today, all major vendors

support this syntax. Within the FROM-clause, INNER JOIN

is placed between the table-names, and the keyword ON is

used to specify the join-condition.

 FROM EMPLOYEE INNER JOIN DEPARTMENT

 ON EMPLOYEE.DNO = DEPARTMENT.DNO

4. JOIN-ON-Syntax with Table Alias: The JOIN-ON syntax can

also specify a table alias.

 FROM EMPLOYEE E INNER JOIN DEPARTMENT D

 ON E.DNO = D.DNO

Note: The keyword INNER is optional when using the JOIN-ON

syntax. For example:

 FROM EMPLOYEE INNER JOIN DEPARTMENT

 Can be rewritten as:

FROM EMPLOYEE JOIN DEPARTMENT

We recommend coding INNER to explicitly distinguish an INNER

JOIN from an OUTER JOIN (to be introduced in Chapter 19).

Free SQL Book, Tim Martyn 404 Copyright Pending, 2022

Examples

The SELECT statement for Sample Query 16.5 is shown below.

SELECT DEPARTMENT.DNO, BUDGET, ENAME, SALARY

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND SALARY < 999.00

AND BUDGET <=75000.00

 ORDER BY DEPARTMENT.DNO

This statement can be rewritten as:

Old-Syntax with Table Aliases

JOIN-ON Syntax

JOIN-ON Syntax with Table Aliases

SELECT D.DNO, D.BUDGET, E.ENAME, E.SALARY

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

AND D.BUDGET <=75000.00

AND E.SALARY < 999.00

ORDER BY D.DNO

SELECT DEPARTMENT.DNO, DEPARTMENT.BUDGET,

 EMPLOYEE.ENAME, EMPLOYEE.SALARY

FROM DEPARTMENT INNER JOIN EMPLOYEE

ON DEPARTMENT.DNO = EMPLOYEE.DNO

WHERE DEPARTMENT.BUDGET <=75000.00

AND EMPLOYEE.SALARY < 999.00

ORDER BY DEPARTMENT.DNO

SELECT D.DNO, D.BUDGET, E.ENAME, E.SALARY

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON D.DNO = E.DNO

WHERE D.BUDGET <=75000.00

AND E.SALARY < 999.00

ORDER BY D.DNO

Free SQL Book, Tim Martyn 405 Copyright Pending, 2022

Advantages of JOIN-ON Syntax

The JOIN-ON syntax has two advantages.

First, Chapter 19 will show that the JOIN-ON syntax is used

to code outer-join operations.

The second advantage pertains to conceptual tidiness. It is

easier to learn a computer language if a given buzzword is

associated with just one concept, and vice versa. It can be

confusing if the same concept is implemented by multiple

buzzwords. Conversely, it can be confusing if the same

buzzword is applied to multiple concepts where you must rely

on context to deduce the proper meaning. This criticism

applies to the keyword WHERE.

• WHERE is used to specify restriction (select some subset

of rows).

• WHERE is also used to specify a join-condition.

The JOIN-ON syntax is conceptually cleaner.

• INNER JOIN explicitly indicates that you want to execute

an inner-join operation.

• ON is used to specify the join-condition.

• WHERE is used to specify a restriction.

Consider the statement:

SELECT DEPARTMENT.DEPT, DEPARTMENT.BUDGET,

 EMPLOYEE.ENAME, EMPLOYEE.SALARY

FROM DEPARTMENT INNER JOIN EMPLOYEE

ON DEPARTMENT.DEPT = EMPLOYEE.DEPT

WHERE DEPARTMENT.BUDGET <=75000.00

AND EMPLOYEE.SALARY < 999.00

ORDER BY DEPARTMENT.DEPT

In this example, the WHERE-clause specifies a restriction

that is applied to the intermediate result produced by the

inner-join operation.

 join-operation

 restriction

Free SQL Book, Tim Martyn 406 Copyright Pending, 2022

Exercises

16F. Rewrite the following SELECT statement using:

 (a) Alias D for DEPARTMENT and alias E for EMPLOYEE

(b) The JOIN-ON syntax without table aliases

 (c) The JOIN-ON syntax with table aliases

 SELECT ENO, ENAME, SALARY,

 DEPARTMENT.DNO, DNAME, BUDGET

FROM EMPLOYEE, DEPARTMENT

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

16G. Rewrite the following SELECT statement using:

(a) Alias DP for DEPARTMENT and alias EMP for EMPLOYEE

(b) The JOIN-ON syntax without table aliases

 (c) The JOIN-ON syntax with table aliases

 SELECT DEPARTMENT.DNO, ENAME

FROM DEPARTMENT, EMPLOYEE

 WHERE DEPARTMENT.DNO = EMPLOYEE.DNO

 AND BUDGET > 21000

ORDER BY DEPARTMENT.DNO, ENAME

Free SQL Book, Tim Martyn 407 Copyright Pending, 2022

Estimating Size of Join-Result

Before executing a SELECT statement, it can be helpful to

have some ballpark estimate of the size of your result table.

If, after executing a SELECT statement, the result appears to

have too few or too many rows, you should suspect that

something may be wrong with your logic.

Example: Assume Table T1 has 1,000 rows and

 Table T2 has 9,998 rows.

Estimate the number of rows in the result table produced by

joining tables T1 and T2.

 SELECT *

 FROM T1, T2

 WHERE T1.A = T2.B

Scenario-1: Assume there is no PK-FK relationship between T1

and T2. In this circumstance, deriving an accurate estimate

may not be possible. Without additional information, the best

we can say is:

 Smallest size = 0 (no rows match)

 Largest size = 9,998,000 (every row matches every row)

Scenario-2 (PK-FK): Assume there is a PK-FK relationship

where Column T1.A is a primary-key column that is referenced

by the non-null foreign-key column, T2.B. In this

circumstance, we can conclude that:

 The result table has exactly 9,998 rows.

This 9,998 rows corresponds to the number of rows in T2, the

child-table. Recall that each row in the child-table (T2)

must match exactly one row in the parent-table (T1).

Conclusion: Knowledge of a PK-FK relationships can help you

estimate the number of rows in an inner-join result.

Free SQL Book, Tim Martyn 408 Copyright Pending, 2022

Inner-Join and Restriction

Sample Query 16.5 noted that the same result is returned if

(1) the inner-join is executed before restriction, or if

(2) restriction is executed before the inner-join. Consider

the following tables and SELECT statement.

 MAN DOG

 MNO MNAME DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 3000 ROVER 77

 99 CURLY 2000 WALLY 99

 4000 SPIKE -

 SELECT *

 FROM MAN INNER JOIN DOG ON MAN.MNO = DOG.MNO

 WHERE DOG.DNAME LIKE 'S%'

The following examples illustrate that an inner-join

operation can be executed either before or after the

restriction. Both examples produce the same one-row result.

First Join,

Then Restrict

1. MAN INNER JOIN DOG ON MAN.MNO = DOG.MNO

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

2. WHERE DOG.DNAME LIKE 'S%'

MNO MNAME DNO DNAME MNO1

99 CURLY 1000 SPOT 99

1. WHERE DOG.DNAME LIKE 'S%'

 MAN DOG

 MNO MNAME DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 4000 SPIKE -

 99 CURLY

2. MAN INNER JOIN DOG ON MAN.MNO = DOG.MNO

MNO MNAME DNO DNAME MNO1

99 CURLY 1000 SPOT 99

First Restrict,

Then Join

Free SQL Book, Tim Martyn 409 Copyright Pending, 2022

INNER JOIN-ON Syntax: WHERE versus AND

This page makes a simple observation. If you are coding an

inner-join operation using the JOIN-ON syntax, you can

substitute the keyword AND for WHERE as illustrated by the

following two statements. Both of these statements produce

the same result table.

Statement-1

SELECT *

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON D.DNO = E.DNO

 → WHERE E.SALARY < 1000.00

Statement-2

SELECT *

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON D.DNO = E.DNO

→ AND E.SALARY < 1000.00

Ignoring the SELECT-clause, note that Statement-1 specifies

two operations: (i) an inner-join and (ii) a restriction.

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON D.DNO = E.DNO

 WHERE E.SALARY < 1000.00

However, notice that Statement-2 only specifies one

operation, an inner-join with a compound join-condition. (To

emphasize this point we move “AND E.SALARY < 1000.00” up to

the end of the ON-clause.)

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND E.SALARY < 1000.00

Again, Statement-1 and Statement-2 produce the same result.

(The author believes that Statement-1 may be friendlier, but

this is a personal bias.)

*** This substitution of AND for WHERE has been presented as

a mere “mechanical rewrite” of a SELECT statement. However,

this issue requires more explanation that is delayed until

Chapter 19. There we will see that, when specifying an outer-

join, you cannot arbitrarily replace WHERE with AND.

Inner-join

Restriction

Inner-join

Free SQL Book, Tim Martyn 410 Copyright Pending, 2022

Naming Foreign-Key Columns

The EMPLOYEE table has a foreign-key column (DNO) with the

same name as the corresponding primary-key column (DNO) in

the DEPARTMENT table. Many database designers follow this

naming pattern. However, corresponding primary-key and

foreign-key columns are not required to have the same name.

Consider the following CREATE table statement for the

EMPLOYEE4 table.

CREATE TABLE EMPLOYEE4

(ENO CHAR (4) NOT NULL PRIMARY KEY,

 ENAME VARCHAR(25) NOT NULL,

 SALARY DECIMAL(7,2) NOT NULL,

 DEPTNUM INTEGER NOT NULL,

 FOREIGN KEY (DEPTNUM) REFERENCES DEPARTMENT);

This table has the same structure as the EMPLOYEE table with

one difference. The fourth column is named DEPTNUM. This means

that coding a join of DEPARTMENT and EMPLOYEE requires a

change in the join-condition as illustrated by the following

equivalent statements.

SELECT *

FROM DEPARTMENT, EMPLOYEE

WHERE DEPARTMENT.DNO = EMPLOYEE.DEPTNUM;

SELECT *

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DEPTNUM;

SELECT *

FROM DEPARTMENT, EMPLOYEE

WHERE DNO = DEPTNUM;

Notice, the last statement does not need to specify table

aliases because the PK-FK column-names are different. Someone

might consider this to be an advantage, but most users prefer

PK-FK columns to have the same name.

Free SQL Book, Tim Martyn 411 Copyright Pending, 2022

Common Conceptual Error

Consider the following result table.

 DNO DNAME BUDGET ENO ENAME SALARY

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00

 10 ACCOUNTING 75000.00 5000 JOE 400.00

 20 INFO. SYS. 20000.00 1000 MOE 2000.00

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00

 40 ENGINEERING 25000.00 4000 SHEMP 500.00

Do not attempt to modify a SELECT statement to display the

above result table so that it looks like the following report.

10 ACCOUNTING 75000.00

2000 LARRY 2000.00

5000 JOE 400.00

20 INFO. SYS. 20000.00

1000 MOE 2000.00

 3000 CURLY 3000.00

 6000 GEORGE 9000.00

40 ENGINEERING 25000.00

4000 SHEM 500.00

This is a report formatting issue. As previously stated,

formatting issues should not influence the coding of a SELECT

statement. Your front-end query/reporting tool should be able

to transform the above tabular result into some desired

report-format.

Summary

This chapter introduced the inner-join operation. The basic

logic for this operation is straightforward. However, perhaps

unfortunately, there are many different ways to code an inner-

join operation.

This chapter presented three similar, but different versions

of a table about employees (EMPLOYEE, EMPLOYEE2, and

EMPLOYEE3). After joining each of these tables with the

DEPARTMENT table, we observed small differences in the result

table. Again, know-your-data!

Free SQL Book, Tim Martyn 412 Copyright Pending, 2022

Summary Exercises

These exercises reference Design-1 (DEPARTMENT and EMPLOYEE

tables). Do not display duplicate rows in any result table.

Produce two solutions using the FROM-WHERE syntax and the

JOIN-ON syntax. Both solutions should specify table aliases.

16H. Display every employee’s number, department number, and

the name of the department he works in. Sort the result

table by employee number. The result should look like:

ENO DNO DNAME

 1000 20 INFO. SYS.

 2000 10 ACCOUNTING

 3000 20 INFO. SYS.

 4000 40 ENGINEERING

 5000 10 ACCOUNTING

 6000 20 INFO. SYS.

16I. Display the employee name and salary of any employee who

works for a department having a budget that is less than

$25,000.00. Sort the result table by employee name. The

result should look like:

ENAME SALARY

CURLY 3000.00

GEORGE 9000.00

MOE 2000.00

16J. Display the department numbers and budgets of all

departments that have at least one employee earning a

salary that is greater than $1,000.00. Sort the result

table by department number. The result should look like:

DNO DNAME BUDGET

 10 ACCOUNTING 75000.00

40 ENGINEERING 25000.00

Free SQL Book, Tim Martyn 413 Copyright Pending, 2022

Appendix 16A: De-Normalized Tables

Thus far, every table presented in this book has been

“normalized.” This means the table’s design is “good”

according to criteria to be (informally) described below. A

“de-normalized” table is a table that is not normalized, and

therefore may be considered to be “not-so-good.”

This appendix presents a short, informal, and very practical

look at one de-normalized table, DNEMPLOYEE, illustrated

below.

Sample data for DNEMPLOYEE are shown below.

CREATE TABLE DNEMPLOYEE

(ENO CHAR (4) NOT NULL PRIMARY KEY,

 ENAME VARCHAR (25) NOT NULL,

 SALARY DECIMAL (7,2) NOT NULL,

 DNO CHAR (2) NOT NULL,

 DNAME VARCHAR (20) NOT NULL,

 BUDGET DECIMAL (9,2) NOT NULL);

Figure A16.1: DNEMPLOYEE – De-Normalized Table

ENO ENAME SALARY DNO DNAME BUDGET

1000 MOE 2000.00 20 INFO. SYS. 20000.00

2000 LARRY 2000.00 10 ACCOUNTING 75000.00

3000 CURLY 3000.00 20 INFO. SYS. 20000.00

4000 SHEMP 500.00 40 ENGINEERING 25000.00

5000 JOE 400.00 10 ACCOUNTING 75000.00

6000 GEORGE 9000.00 20 INFO. SYS. 20000.00

Figure A16.2: Sample Data for DNEMPLOYEE
DNEMPLOYEE

Free SQL Book, Tim Martyn 414 Copyright Pending, 2022

Normalized Tables

Appendix 13B introduced some basic concepts of database

analysis and design. This process almost always produces

multiple tables because database analysis almost always

discovers multiple types of objects (entities). For example,

the Appendix 13B case study produced four tables (Figure

13.12), including the DEPARTMENT and EMPLOYEE tables. We will

note that both the DEPARTMENT and EMPLOYEE tables are

normalized (i.e., good). We also note that DNEMPLOYEE is de-

normalized (i.e., not–so-good).

Casually speaking, all columns in a normalized table describe

just one type of object (entity). Notice that all DEPARTMENT

columns only describe departments; and, all EMPLOYEE columns

only describe employees.

De-Normalized Tables

Joining two tables requires some query analysis, and the

system might have to do a lot of work to join large tables.

For these reasons, a reasonable person might ask: Why not

store data about departments and employees in a single table

(DNEMPLOYEE)? Maybe the DBA should “pre-join” the DEPARTMENT

and EMPLOYEE tables, store the result in the DNEMPLOYEE table,

and allow users access to this table.

Advantages of DNEMPLOYEE: Many (but not all) SELECT

statements that reference the DNEMPLOYEE table will be “fast

and friendly.” For example, Sample Query 16.2 could be coded

as:

 SELECT * FROM DNEMPLOYEE

Coding this query is simpler because you do not have to code

a join-operation; and, this query executes faster because the

system does not have to execute a potentially costly join-

operation. Based upon these observations, creating DNEMPLOYEE

appears to be a good idea. However, it might be a very bad

idea. The following pages address this issue by presenting an

informal and incomplete description of normalized versus de-

normalized tables.

Free SQL Book, Tim Martyn 415 Copyright Pending, 2022

We begin by making three observations (not definitions) about

de-normalized tables.

• Within a de-normalized table, columns may describe

different types of objects. For example, within

DNEMPLOYEE, the SALARY column describes employees, and

the BUDGET column describes departments.

• As previous noted, a de-normalized table may be produced

by “pre-joining” two or more tables.

• As with any join-result, a de-normalized table may have

considerable redundancy. For example, within DNEMPLOYEE,

the same DNAME and BUDGET values for Department 20 appear

in three rows.

DML Disadvantages of DNEMPLOYEE: Although queries against

DNEMPLOYEE may be “fast and friendly,” there are two

significant disadvantages associated with the DNEMPLOYEE

table.

1. “Lost Information:” Examination of the DNEMPLOYEE table
(Figure 16A.2) shows that we have lost information about

Department 30. The row with a DNO value of 30 did not

match any EMPLOYEE row during the join-operation that

produced the DNEMPLOYEE table. The DBA might not tell

users about the underlying DEPARTMENT table. However,

assume the DBA allowed users access to the DEPARTMENT,

EMPLOYEE, and DNEMPLOYEE tables. This could work.

However, users would then encounter a potential know-

your-data problem associated with finding the same

employee data in two tables (EMPLOYEE and DNEMPLOYEE).

2. Problems with DML Operations: The following page

describes potential problems associated with the INSERT,

UPDATE, and DELETE statements.

Free SQL Book, Tim Martyn 416 Copyright Pending, 2022

Problems with DML Operations on De-Normalized Tables

INSERT Rows in DNEMPLOYEE

 Note that ENO would be designated as the primary key of

DNEMPLOYEE implying that every INSERT operation must

specify some non-null ENO value. Therefore, a row cannot be

inserted into DNEMPLOYEE describing a new department that

does not have at least one employee. (This is why

information about Department 30 does not appear in the

DNEMPLOYEE table.)

DELETE Rows from DNEMPLOYEE

 Assume all employees in Department 20 quit, and you execute

the following statement:

 DELETE

 FROM DNEMPLOYEE

 WHERE DNO = 20

 This statement will successfully delete all employees in

Department 20. However, you will also lose information

about Department 20! The DNAME (INFO. SYS.) and BUDGET

(20000.00) values are lost.

UPDATE Rows in DNEMPLOYEE

 Assume you want to change some DNO, DNAME, or BUDGET values

in DNEMPLOYEE. These columns contain redundant values for

any department that has multiple employees. For example, if

you want to change the BUDGET value for Department 20, you

will have to update three rows. This may not be a problem

if you execute an UPDATE statement with “WHERE DNO = 20”.

However, this does not help an applications developer who

executes an UPDATE-Cursor operation within embedded-SQL (a

topic not covered in this book).

We emphasize that these DML problems do not apply to the

normalized DEPARTMENT and EMPLOYEE tables.

Conclusion: You must know-your-data if you are asked to modify

data in a de-normalized table.

Comment: Despite these problems, many real-world systems

contain a few de-normalized tables. Also, some specialized

applications, especially data warehouse applications, will

contain many de-normalized tables.

Free SQL Book, Tim Martyn 417 Copyright Pending, 2022

Chapter

 17
 More about Inner-Join

This chapter’s sample queries do not introduce any new syntax

or logic. Instead, these sample queries integrate two-table

inner-join operations with SQL concepts that were presented

earlier in this book. Sample queries will address the

following topics:

• Cross Product Operations

• Arithmetic Expressions with Join

• Aggregate Functions with Join

• Grouping with Join

• Error: Accidental Cross Product

• Joining on Non-Key Columns

• Theta-Joins

• Arithmetic Expressions in Join-Conditions

• Compound Join-Conditions

• Joining a Table with Itself

SELECT statements presented in this chapter will specify

inner-join operations using the FROM-WHERE syntax with table

aliases.

Free SQL Book, Tim Martyn 418 Copyright Pending, 2022

Cross Product

Before continuing our discussion of the inner-join, we

discuss an operation called the “Cross Product” (or

“Cartesian Product”). This operation can be considered to be

a special variation of an inner-join. (Appendix 17B presents

a more formal observation about the relationship between

inner-join and cross product.)

The cross product matches every row in the first table with

every row in the second table. The following statement

produces the cross product of the DEPARTMENT and EMPLOYEE

tables.

SELECT *

 FROM DEPARTMENT, EMPLOYEE

This statement was introduced as a “common error” in the

preceding chapter. In that chapter, our intention was to

emphasize the importance of the join-condition. The above

SELECT statement was considered to be an error because, by

omitting the join-condition, it failed to satisfy the query

objective. However, sometimes (but not very often) you might

wish to produce a cross product as an intermediate or final

result.

Sample Query 17.1: Display the cross product of the

DEPARTMENT and EMPLOYEE tables.

 {Result table on following page.}

Syntax: Observe the absence of a WHERE-clause.

Logic: Every row in the DEPARTMENT table matches with every

row in the EMPLOYEE table.

SELECT *

FROM DEPARTMENT, EMPLOYEE

Free SQL Book, Tim Martyn 419 Copyright Pending, 2022

DNO DNAME BUDGET ENO ENAME SALARY DNO1

10 ACCOUNTING 75000.00 1000 MOE 2000.00 20

20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

30 PRODUCTION 80000.00 1000 MOE 2000.00 20

 40 ENGINEERING 25000.00 1000 MOE 2000.00 20

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

20 INFO. SYS. 20000.00 2000 LARRY 2000.00 10

 30 PRODUCTION 80000.00 2000 LARRY 2000.00 10

 40 ENGINEERING 25000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 30 PRODUCTION 80000.00 3000 CURLY 3000.00 20

 40 ENGINEERING 25000.00 3000 CURLY 3000.00 20

10 ACCOUNTING 75000.00 4000 SHEMP 500.00 40

 20 INFO. SYS. 20000.00 4000 SHEMP 500.00 40

 30 PRODUCTION 80000.00 4000 SHEMP 500.00 40

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 5000 JOE 400.00 10

 30 PRODUCTION 80000.00 5000 JOE 400.00 10

 40 ENGINEERING 25000.00 5000 JOE 400.00 10

 10 ACCOUNTING 75000.00 6000 GEORGE 9000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 80000.00 6000 GEORGE 9000.00 20

 40 ENGINEERING 25000.00 6000 GEORGE 9000.00 20

Size of Result Table: The DEPARTMENT table has 4 rows, and

the EMPLOYEE table has 6 rows. Hence, this cross product will

have 24 (4x6) rows. In some circumstances, a cross product

might produce a very large result. For example, if both tables

contain a million rows, the result table will contain a

trillion rows!

Careful! If you intend to code a join, but accidentally code

a cross product, an unexpectedly large final result may

indicate that something is wrong. However, if the cross

product is an intermediate result, it may be difficult to

make this observation. Sample Query 17.5 will illustrate this

kind of error.

Free SQL Book, Tim Martyn 420 Copyright Pending, 2022

Arithmetic Expression with Join

Arithmetic expressions were introduced in Chapter 7. This

sample query shows that an arithmetic expression can reference

columns from different tables after the tables have been joined

to form an intermediate join-result.

Sample Query 17.2: For all employees, display their ENO and

SALARY values along with the DNO and BUDGET values of

the department they work for. Also, display the ratio of

each employee’s salary to his department’s budget.

 ENO SALARY DNO BUDGET SALARY/BUDGET

1000 2000.00 20 20000.00 0.10000

2000 2000.00 10 75000.00 0.02666

3000 3000.00 20 20000.00 0.15000

4000 500.00 40 25000.00 0.02000

5000 400.00 10 75000.00 0.00533

6000 9000.00 20 20000.00 0.45000

Syntax: Nothing new.

Logic: The join-operation produces an intermediate join-

result where each row contains a SALARY value and BUDGET

value. The arithmetic expression (E.SALARY/D.BUDGET) is

evaluated, and the desired columns are displayed.

Exercise:

17A. Modify this Sample Query 17.2 to express each ratio as

a percentage.

SELECT E.ENO, E.SALARY, D.DNO, D.BUDGET,

 E.SALARY/D.BUDGET

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

Free SQL Book, Tim Martyn 421 Copyright Pending, 2022

Aggregate Functions with Join

Functions can be specified in statements that involve join-

operations. The tables are joined to form an intermediate join-

result before the functions operate on the data.

Sample Query 17.3.1: Display the total salary of those

employees who work for a department with a budget that

is less than or equal to $50,000.00.

 SUM (E.SALARY)

 14500.00

Logic: We join the DEPARTMENT and EMPLOYEE tables because we

want to summarize SALARY values (from the EMPLOYEE table) and

specify a restriction on the BUDGET column (from the

DEPARTMENT table). The join and restriction operations

produce an intermediate result. The SUM function is applied

to the SALARY column in this intermediate result.

Cautionary Question and a Suggestion: Does your intuition

tell you that the final result is a reasonable value? If you

cannot provide an affirmative answer to this question, you

might consider executing a preliminary statement similar to

the following statement that displays relevant intermediate

result data.

SELECT E.ENO, E.SALARY

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

AND D.BUDGET <= 50000.00

Exercise:

17B. Display the average salary of employees who work for a

department with a budget that is greater than

$20,000.00.

SELECT SUM (E.SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

AND D.BUDGET <= 50000.00

Free SQL Book, Tim Martyn 422 Copyright Pending, 2022

Careful! Summarizing over Columns from a Parent-Table

The following sample query has a query objective that is very

similar to the previous sample query. Here, the result “happens

to be” correct, by “good luck.” To understand this situation,

note that the previous Sample Query 17.3.1 applied the SUM

function to the SALARY column, a column in the child-table.

The following sample query applies the SUM function to the

BUDGET column, a column in the parent-table.

Sample Query 17.3.2: Only consider departments that have at

least one employee and have a budget that is less than

or equal to $50,000.00. Display the summary total budget

for these departments. [The following SELECT statement

is “almost correct” (i.e., wrong). Try to detect the

error before reading the commentary.]

 Error

 SUM (DISTINCT D.BUDGET)

 45000.00

Logic: We want to summarize over the BUDGET column from the

DEPARTMENT table. However, we must join DEPARTMENT with

EMPLOYEE because we want to eliminate from consideration any

department (e.g., Department 30) without employees.

Applying the suggestion from the previous page, we display

the intermediate result before applying the SUM function.

SELECT D.DNO, D.BUDGET

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

AND D.BUDGET <= 50000.00

DNO BUDGET

20 20000.00

20 20000.00

20 20000.00

40 25000.00

SELECT SUM (DISTINCT D.BUDGET)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

AND D.BUDGET <= 50000.00

Free SQL Book, Tim Martyn 423 Copyright Pending, 2022

Examination of this intermediate result leads to an important

observation. Data for Department 20 appears three times

because this department has three employees. This observation

motivates us to specify DISTINCT within the SUM function.

Then just one of the 20000.00 values is added to the 25000.00

value to produce the final total of 45000.00.

To generalize from this example, you must be aware that,

whenever you join a parent-table (DEPARTMENT) and a child-

table (EMPLOYEE), some data from the parent-table may appear

redundantly in the join-result. Data from the child-table do

not appear redundantly. Hence, with the previous sample

query, we specified SUM (E.SALARY) because the SALARY column

resides in the child-table; but we specified SUM (DISTINCT

D.BUDGET) because BUDGET resides in the parent table.

However!

Almost Correct! This SELECT statement got lucky (not really)!

Today, it happens to produce the correct answer, but it might

produce a wrong answer tomorrow. From a business perspective

you should ask yourself: Can two or more departments have the

exact same budget? If yes, the current SELECT statement would

produce an incorrect result. For example, assume Department

40 has its budget changed to 20,000. Then the intermediate

result would be:

DNO BUDGET

20 20000.00

20 20000.00

20 20000.00

40 20000.00

Then the SUM (DISTINCT D.BUDGET) produces a result of 20000.00

which is wrong.

Correct Solution: We need to introduce Sub-SELECTs before we

can present a correct solution. (See Exercise 23I and its

solution.)

Free SQL Book, Tim Martyn 424 Copyright Pending, 2022

Grouping with Join

The next three sample queries join the DEPARTMENT and EMPLOYEE

tables, group by column(s) from the parent-table (DEPARTMENT),

and summarize a column from the child-table (EMPLOYEE).

Sample Query 17.4.1: Reference the DEPARTMENT and EMPLOYEE

tables. For each department with at least one employee,

display the department number and total salary of all

employees who work in the department.

DNO SUM (SALARY)

10 2400.00

20 500.00

40 14000.00

Logic: After joining the DEPARTMENT and EMPLOYEE tables, groups

are formed, and group summaries are calculated. Note that the

join-operation eliminated Department 30, the only department

without employees

Better Solution: The following statement (without a join-

operation) is a better solution because the join-operation is

unnecessary.

 SELECT DNO, SUM (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO

This alternative solution requires that EMPLOYEE.DNO is a non-

null foreign key that references DEPARTMENT. If the SELECT

statement referenced the EMPLOYEE2 or EMPLOYEE3 tables, the

result would be wrong. Verify by executing the following

statements.

SELECT D.DNO, SUM (E.SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

GROUP BY D.DNO

SELECT DNO, SUM (SALARY)

FROM EMPLOYEE2

GROUP BY DNO

SELECT DNO, SUM (SALARY)

FROM EMPLOYEE3

GROUP BY DNO

Free SQL Book, Tim Martyn 425 Copyright Pending, 2022

The next sample query is similar to the previous example. The

only difference is that we group by DNAME instead of DNO.

Sample Query 17.4.2: Reference the DEPARTMENT and EMPLOYEE

tables. For each department with at least one employee,

display the department name and total salary of all

employees who work in the department.

DNAME SUM (SALARY)

ACCOUNTING 2400.00

ENGINEERING 500.00

INFO. SYS. 14000.00

Syntax & Logic: Nothing new.

Know-your-data: It is important to know that DNAME is unique.

Otherwise, if two departments could have the same name, then

employee salaries from both departments would be summarized

within the same group. (If DEPARTMENT could contain duplicate

DNAME values, it would be a good idea to revise the query

objective to group by and display both the DNO and DNAME

columns. See the following sample query.)

SELECT D.DNAME, SUM (E.SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

GROUP BY D.DNAME

Free SQL Book, Tim Martyn 426 Copyright Pending, 2022

The next sample query requires that you group by multiple

columns. (You may wish to review Sample Query 9.12 in Chapter

9.5.)

Sample Query 17.4.3: Reference the DEPARTMENT and EMPLOYEE

tables. For each department with at least one employee,

display the department number, department name, and

total salary of all employees who work in the department.

DNO DNAME SUM (SALARY)

10 ACCOUNTING 2400.00

20 ENGINEERING 500.00

40 INFO. SYS. 14000.00

Logic: Nothing new. Note that this SELECT statement obeys the

following syntax rule (introduced in Chapter 9.5).

Exercises:

17Ca. Reference the DEPARTMENT and EMPLOYEE tables. For each

department that has employees, display the department

name along with the maximum departmental salary for

employees who work in the department.

17Cb. Reference the DEPARTMENT and EMPLOYEE tables. For each

department with at least one employee, display the

department number, department name, department budget,

maximum salary, and minimum salary of all employees who

work in the department.

SELECT D.DNO, D.DNAME, SUM (E.SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

GROUP BY D.DNO, D.DNAME

GROUP BY Syntax Rule: Whenever a SELECT-clause specifies

one or more aggregate functions, if this SELECT-clause

also specifies a column without an aggregate function,

this column must be specified within a GROUP BY clause.

Free SQL Book, Tim Martyn 427 Copyright Pending, 2022

Error: Accidental Cross Product

The following SELECT statement incorrectly generates a cross

product as an intermediate result. This is not observable in

the final result which is a statistical summary.

Sample Query 17.5: We are only interested in those departments

that have employees and have a department name that

begins with the letter A. Display the department names

and average salaries of all employees who work in such

departments. The following statement produces a wrong

answer.

 Error

 DNAME AVG (SALARY)

 ACCOUNTING 2816.66

Logic: The absence of a join-condition produced a cross

product as the intermediate result. This intermediate result

contained duplicate SALARY values that were used to calculate

an incorrect average. The correct AVG (SALARY) is: 1200.00.

The correct SELECT statement is:

SELECT D.DNAME, AVG (E.SALARY)

FROM DEPARTMENT D, EMPLOYEE E

➔ WHERE D.DNO = E.DNO

AND D.DNAME LIKE ‘A%’

GROUP BY D.DNAME

Observation: Because the cross-product intermediate result

will contain duplicate SALARY values (see Sample Query 17.1),

the above result is wrong. If you do not have good intuition

about SALARY values, you may not detect that the incorrect

result is unreasonable.

SELECT D.DNAME, AVG (E.SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNAME LIKE 'A%'

GROUP BY D.DNAME

Free SQL Book, Tim Martyn 428 Copyright Pending, 2022

Join on Non-key Columns

All previous joins of the DEPARTMENT and EMPLOYEE tables were

based upon their PK-FK relationship. The next sample query

specifies a query objective that requires the join-condition

to compare on non-key columns. The following query objective,

which is not very realistic, is presented for tutorial purposes

only.

Sample Query 17.6: Does any department have a name that is

the same as some employee name? If yes, then display the

department name.

 DNAME

 (No rows returned)

Syntax: The syntax is valid. The join-condition satisfies

the requirement that the columns being compared have

compatible data-types.

Logic: Execution of this statement produces an empty result

table because no DNAME value matches any ENAME value.

The following sample query presents a more realistic query

objective that requires joining on non-key columns.

SELECT D.DNAME

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNAME = E.ENAME

Free SQL Book, Tim Martyn 429 Copyright Pending, 2022

Theta-Join

Previous join-operations implicitly assumed that “matching”

means “equals.” The next sample query illustrates that a join-

condition can specify any of the conventional comparison

operations (=, <>, >, >=, <, <=).

“Theta-join” is a generic term used to designate a join-

operation based upon any comparison operation. The next

sample query performs a “greater-than-join.” Notice that the

join-condition compares two non-key columns, EMPLOYEE.SALARY

and DEPARTMENT.BUDGET.

Sample Query 17.7: Does any employee have such a large salary

that it exceeds the budget of some department? If yes,

display the employee’s name, salary, and department

number, followed by the corresponding department number

and budget.

ENAME SALARY EMPDNO DEPTDNO BUDGET

GEORGE 9000.00 20 30 7000.00

Syntax: This join-condition (E.SALARY > D.BUDGET) specifies

a greater-than (>) operator. Again, note that neither SALARY

nor BUDGET is a key-column.

Logic: Every SALARY value is compared to every BUDGET value.

Only one comparison found a SALARY value that was greater

than a BUDGET value.

SELECT E.ENAME, E.SALARY, E.DNO EMPDNO,

 D.DNO DEPTDNO, D.BUDGET

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.SALARY > D.BUDGET

Free SQL Book, Tim Martyn 430 Copyright Pending, 2022

Join-Condition Contains an Arithmetic Expression

The following sample query specifies a greater-than-or-equal-

to (>=) join-condition that compares a non-key column to an

arithmetic expression.

Sample Query 17.8: Does any employee have a salary that is

greater than or equal to one third of any departmental

budget? If yes, display the employee’s name, salary and

department number, followed by the corresponding

department number and budget.

ENAME SALARY EMPDNO DEPTDNO BUDGET

CURLY 3000.00 20 30 7000.00

GEORGE 9000.00 20 20 20000.00

GEORGE 9000.00 20 30 7000.00

GEORGE 9000.00 20 40 25000.00

Syntax: This WHERE-clause illustrates that an arithmetic

expression can be specified within a join-condition.

Logic: Each SALARY value is compared to 1/3 of every BUDGET

value. Observe that only one row (the second row) in the

result table has the same EMPDNO and DEPTDNO values (20)

indicating that the employee’s salary was greater than 1/3 of

his own departmental budget. This observation motivates the

next sample query.

SELECT E.ENAME, E.SALARY, E.DNO EMPDNO,

 D.DNO DEPTDNO, D.BUDGET

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.SALARY >= (D.BUDGET * 0.333)

Free SQL Book, Tim Martyn 431 Copyright Pending, 2022

Compound Join-Conditions

A join-operation can specify a compound join-condition.

Sample Query 17.9: Does any employee have a salary that

exceeds one third of his own departmental budget? If

yes, display the employee’s name, salary, and department

number, followed by the budget amount for his

department.

 ENAME SALARY DNO BUDGET

GEORGE 9000.00 20 20000.00

Syntax & Logic: There are two valid interpretations of this

SELECT statement.

First, the join-operation specifies a join-condition, E.DNO

= D.DNO, that produces an intermediate join-result. The AND-

condition, E.SALARY > (D.BUDGET*0.333) specifies a

restriction on this intermediate join-result.

Second, the join-operation specifies a compound join-

condition. The first component of the join-condition is E.DNO

= D.DNO, and the second component of the join-condition is

E.SALARY > (D.BUDGET*0.333). Two rows match if (1) the

corresponding DNO values are equal, and (2) the SALARY value

is greater than 1/3 of the BUDGET value.

Exercise:

17D. Assume every employee is given a $20,000.00 raise. Under

this circumstance, does any employee have a salary that

exceeds the budget of his own department? If yes, display

the employee’s name, old salary, and new salary.

SELECT E.ENAME, E.SALARY, E.DNO, D.BUDGET

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DNO = D.DNO

AND E.SALARY > (D.BUDGET*0.333)

Free SQL Book, Tim Martyn 432 Copyright Pending, 2022

Join Table with Itself

Sometimes we want to join a table with itself. This may seem

unusual. However, there are circumstances where such a join

can be very useful. (Chapter 30 on recursive queries will

illustrate such a circumstance.) Although the following

sample query is rather contrived, it illustrates the basic

idea.

Sample Query 17.10.1: Display the ENO, ENAME, and SALARY

values for each pair of employees that have the same

SALARY value. The following statement produces a

correct, but imperfect result.

ENO1 ENAME1 SALARY1 ENO2 ENAME2 SALARY2

1000 MOE 2000.00 1000 MOE 2000.00

1000 MOE 2000.00 2000 LARRY 2000.00

2000 LARRY 2000.00 1000 MOE 2000.00

2000 LARRY 2000.00 2000 LARRY 2000.00

3000 CURLY 3000.00 3000 CURLY 3000.00

4000 SHEMP 500.00 4000 SHEMP 500.00

5000 JOE 400.00 5000 JOE 400.00

6000 GEORGE 9000.00 6000 GEORGE 9000.00

Syntax: The EMPLOYEE table is specified twice in the FROM-

clause. If a FROM-clause references the same table twice, a

table alias must be associated with at least one of the table-

names. This example specifies two aliases, E1 and E2.

Logic: Conceptually, we have two tables, E1 and E2, which

happen to contain the same data. This result is correct.

However, observe that every employee matches himself! (For

example, the first row shows MOE matching with MOE.) The

following sample query eliminates self-matching rows from the

result.

SELECT E1.ENO ENO1, E1.ENAME ENAME1, E1.SALARY SALARY1,

 E2.ENO ENO2, E2.ENAME ENAME2, E2.SALARY SALARY2

FROM EMPLOYEE E1, EMPLOYEE E2

WHERE E1.SALARY = E2.SALARY

Free SQL Book, Tim Martyn 433 Copyright Pending, 2022

Sample Query 17.10.2: Modify the preceding statement to

eliminate self-matching rows. This statement produces a

better, but still imperfect result.

ENO1 ENAME1 SALARY1 ENO2 ENAME2 SALARY2

 1000 MOE 2000.00 2000 LARRY 2000.00

 2000 LARRY 2000.00 1000 MOE 2000.00

Logic: Referencing the primary-key column (ENO) uniquely

identifies each row. Therefore, the second join-condition

(E1.ENO <> E2.ENO) eliminates self-matching rows. This result

is better than the previous result, but it is not perfect.

Examination of the result table shows MOE matches LARRY, and

LARRY matches MOE! We would like to display just one of these

rows.

Sample Query 17.10.3: One more modification.

 ENO1 ENAME1 SALARY1 ENO2 ENAME2 SALARY2

 1000 MOE 2000.00 2000 LARRY 2000.00

Logic: Specify < instead of <>. The result shows the E1.ENO

value (1000) is less than the E2.ENO value (2000).

SELECT E1.ENO E1ENO, E1.ENAME E1ENAME, E1.SALARY E1SALARY,

 E2.ENO E2ENO, E2.ENAME E2ENAME, E2.SALARY E2SALARY

FROM EMPLOYEE E1, EMPLOYEE E2

WHERE E1.SALARY = E2.SALARY

AND E1.ENO <> E2.ENO

SELECT E1.ENO E1ENO, E1.ENAME E1ENAME, E1.SALARY E1SALARY,

 E2.ENO E2ENO, E2.ENAME E2ENAME, E2.SALARY E2SALARY

FROM EMPLOYEE E1, EMPLOYEE E2

WHERE E1.SALARY = E2.SALARY

AND E1.ENO < E2.ENO

Free SQL Book, Tim Martyn 434 Copyright Pending, 2022

Summary

This chapter did not introduce any new SQL syntax or logic.

Sample queries implemented two-table inner-join operations to

produce an intermediate join-result. Then additional

processing (e.g., restriction, grouping, or summarization)

produced a final result.

Summary Exercises

17E. Assume that every employee is given a raise equal to 5%

of the employee’s departmental budget. Display every

employee’s name, old salary, and new salary.

17F. Only consider departments that have employees. How many

of these departments have a budget that exceeds

$20,000.00? And, what is the total number of employees

hired by these departments?

17G. Extend the previous exercise. Calculate a third column

by dividing the second column (number of employees) by

the first value (number of departments) to determine the

overall average of employees per department.

17H. Only consider departments that have employees. Display

the department name and the average departmental salary

for each department.

17I. Modify the previous exercise. Display the department name

and the average departmental salary if that average is

less than $1,000.00

17J. Only consider departments that have employees. For each

such department, display the department name and the

minimum salary paid to an employee who works in the

department.

17K. Modify the previous exercise. We want to display the

department name and the smallest salary paid to some

employee who works in the department only if that minimum

salary value is less than $1,000.00.

Free SQL Book, Tim Martyn 435 Copyright Pending, 2022

Appendix 17A: Efficiency

Whenever a SELECT statement asks the system to join two

tables, the system uses some internal method to implement the

join-operation. All systems support multiple methods for

implementing this operation. The optimizer determines which

internal method is the most efficient.

We briefly outline two basic join methods, the Nested-Loop

method and Sort-Merge method. Assume that we are joining two

tables, T1 and T2, where the join-condition is T1.X = T2.Y.

Columns X and Y may or may not be key-columns. With all

methods, whenever a match on the join-condition occurs, the

matching rows are merged and saved for further processing.

Nested-Loop: The basic row comparison logic is:

• Read the first row in T1. Then read all rows in T2,

comparing the first T1.X value to each T2.Y value.

• Read the second row in T1. Then (again) read all rows in
T2, comparing the second T1.X value to each T2.Y value.

• Read the third row in T1. Then (again) read all rows in T2,
comparing the third T1.X value to each T2.Y value.

• Etc.

Sort-Merge: The basic row comparison logic is:

• Sort table T1 by column X.

• Sort table T2 by column Y.

• The system can now compare T1.X and T2.Y by making a single
synchronized pass over each table.

Neither of these methods appears to be very efficient. In the

Nested-Loop method, the repeated reading of T2 could be

costly. And, in the Sort—Merge method, the sorting of both T1

and T2 could be costly. However, there are more efficient

variations of each method. These variations are only relevant

in special circumstances, such as when a table is already

sorted or a potentially useful index has been created.

Free SQL Book, Tim Martyn 436 Copyright Pending, 2022

More Efficient Nested-Loop: Assume the optimizer knows there

is an index on column Y in T2. Then the basic logic is modified

to:

• Read the first row in T1. Use the index to search T2 for
rows where the T2.Y value equals the first T1.X value.

• Read the second row in T1. Use the index to search T2 for
rows where the T2.Y value equals the second T1.X value.

• Read the third row in T1. Use the index to search T2 for
rows where the T2.Y value equals the third T1.X value.

• Etc.

This variation of the Nested-Loop method depends on the

presence of the T2.Y index. Assume the join-operation is based

on a PK-FK relationship (as it usually is). If T2.Y is a

foreign key, it may or may not have an index. However, as

mentioned earlier, many designers create indexes on foreign

keys. Under this circumstance, the optimizer might be

inclined to use this variation of the Nested-Loop method.

Also, note that T1 was the “first” table in our description of

the Nested-Loop join. In this context, T1 is called the “outer-

table” (or the “driving table”), and T2 is called the “inner-

table.” Logically, either table can be designated as the outer-

table because (T1 inner-join T2) = (T2 inner-join T1). The

optimizer may find some advantage by designating a specific

table, T1 or T2, as the outer-table.

More Efficient Sort-Merge: Assume T1 is already sorted by

column X. Assume T2 is small and it is not sorted. The basic

logic is modified as shown below.

• Sort T2 by column Y (cheap sort for small table)

• The system can now make a single synchronized pass over
each table as it compares T1.X and T2.Y values.

Observation: This join-method could produce an incidentally

sorted join-result.

Optimization Challenges: Your system’s optimizer attempts to

determine the most efficient way to perform the join-

operation. The optimizer considers the size of the tables,

the presence or absence of indexes, possible sort sequences,

and tradeoffs between different join-methods. Appendix 17.C

will say more about optimizing join-operations.

Free SQL Book, Tim Martyn 437 Copyright Pending, 2022

Appendix 17B: Theory

Relational Database Languages: In Appendix 1B we noted that

Codd’s first query language for relational databases was the

Relational Calculus. (If you have taken a course in discrete

mathematics, you may have encountered the predicate calculus.

The predicate calculus provides the mathematical foundation

for Codd’s relational calculus.) Shortly after defining his

relational calculus, Codd defined a second query language

called the Relational Algebra. This language was equivalent

to the calculus in the sense that any statement written in

the calculus could be rewritten in the algebra, and vice

versa. Most students feel that Codd’s algebra is simpler than

his calculus. Within SQL, the SELECT statement has features

that are derived from both the relational calculus and

relational algebra. This appendix will take a closer look at

Codd’s relational algebra.

Relational Algebra: Codd’s original algebra has eight

operations. You have already encountered four of these

operations. These are:

1. RESTRICT (Sample Queries 1.2, 1.3 & Appendix 1B)

2. PROJECT (Sample Query 1.4 & Appendix 1B)

3. INNER JOIN (Sample Query 16.1)

4. CROSS PRODUCT (Sample Query 17.1)

We review each operation and present a pseudo-code algebraic

notation for each operation. Our discussion will reference

relations (tables) T1 and T2 with the following attributes

(columns).

 T1 (A, B, C, D)

 T2 (W, X, Y, Z)

1. RESTRICT

 SQL: SELECT * FROM T1 WHERE A = 44

 Algebra: RESTRICT T1 where A = 44

Free SQL Book, Tim Martyn 438 Copyright Pending, 2022

2. PROJECT

 SQL: SELECT A, C, D FROM T1

Algebra: PROJECT T1 [A, C, D]

3. CROSS PRODUCT

 SQL: SELECT * FROM T1, T2

Algebra: CROSS (T1, T2)

4. JOIN

 SQL: SELECT * FROM T1, T2 WHERE T1.A = T2.Z

Algebra: T1 JOIN T2 where T1.A = T2.Z

Appendix 21B will present three more algebraic operations

(UNION, INTERSECT, and EXCEPT).

The following Appendix 17C will describe a useful application

of the relational algebra. For the moment, we note that you

(and your system’s optimizer) can rewrite a SELECT statement

as an equivalent sequence of algebraic operations. For example,

consider the following statement.

 SELECT A, C, D

 FROM T1

 WHERE T1.A = 44

The following sequence of algebraic operations produces the

same result.

 TEMP RESTRICT T1 where T1.A = 44

 RESULT PROJECT TEMP [A, C, D]

The arrow () represents the assignment of a result to a

temporary result (TEMP) or a final result (RESULT).

These RESTRICT and PROJECT operations can be represented in a

single line of code as shown below.

RESULT PROJECT (RESTRICT T1 where T1.A = 44) [A, C, D]

Free SQL Book, Tim Martyn 439 Copyright Pending, 2022

Primitive Algebraic Operations: As stated above, Codd’s algebra

defined eight operations. Five of these operations are

“primitive” in the sense that they are necessary. These

primitive operations produce results that cannot be produced

by using some combination of the other primitive operations.

Non-primitive operations are logically superfluous. They

produce results that can be produced by using the primitive

operations. Although these non-primitive operations are

unnecessary, they are useful. Otherwise, Codd would not have

included them in his Relational Algebra.

Of the four algebraic operations presented above, RESTRICT,

PROJECT, and CROSS are primitive. JOIN is not primitive. Join

is useful, but we really don’t need it. To illustrate this

point, we will present two algebraic expressions that are

equivalent to the following SELECT statement.

 SELECT *

 FROM DEPARTMENT, EMPLOYEE

 WHERE DEPARTMENT.DNO = EMPLOYEE.DNO

AlgebraProc-1 specifies a JOIN to produce the desired result.

AlgebraProc-2 specifies the CROSS and RESTRICT operations to

produce the same result.

AlgebraProc-1

 RESULT DEPARTMENT JOIN EMPLOYEE

 where DEPARTMENT.DNO = EMPLOYEE.DNO

AlgebraProc-2

 TEMP CROSS (DEPARTMENT, EMPLOYEE)

 RESULT RESTRICT TEMP where TEMP.DNO1 = TEMP.DNO2

You can make the same observation by considering the SQL

syntax for join.

 SELECT * cross product

 FROM T1, T2

 WHERE T1.A = T2.Z restriction

The first two lines (SELECT * FROM T1, T2) correspond to CROSS.

The last line (WHERE T1.A = T2.Z) corresponds to RESTRICT.

Free SQL Book, Tim Martyn 440 Copyright Pending, 2022

Appendix 17C: Theory & Efficiency

This appendix adds more substance to our previous introduction

to query optimization.

We have shown that a SELECT statement can be expressed using

Codd’s relational algebra. In the previous Appendix 17B, we

considered four of Codd’s eight algebraic operations: RESTRICT,

PROJECT, CROSS, and JOIN. In this appendix we utilize these

operations to demonstrate the role the relational algebra plays

within query optimization.

Caveat: Not all SELECT statements can be expressed in Codd’s

algebra. Many SELECT statements include arithmetic expressions,

built-in functions, grouping, and sorting. These operations

involve computing and manipulating data after is has been

retrieved. Codd’s algebra did not include these operations. His

algebra focused on retrieving data from relations (tables).

Therefore, all commercial optimizers utilize other operations

in addition to the algebraic operations.

The optimizer begins by validating the syntax of the SELECT

statement. If valid, the optimizer translates the SELECT

statement into a sequence of lower-level procedures. Some of

these procedures correspond to the algebraic operations. From

an overly simplified perspective, you can think of the system

having an internal procedure called RESTRICT, another procedure

called JOIN, etc. These procedures do the real work. We present

an example using the following statement.

SELECT DEPARTMENT.DNO, BUDGET, ENAME, SALARY

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND SALARY < 999.00

AND BUDGET <=75000.00

This optimizer translates this statement into sequence of

algebraic operations such as: JOIN EMPLOYEE and DEPARTMENT to

form an intermediate result. Then, RESTRICT this result to rows

where SALARY < 1000.00 and BUDGET <= 75000.00. Then PROJECT

the desired columns (DNO, BUDGET, ENAME, SALARY). Using this

algebraic pseudo-code, we have a sequence of operations that

we call the JOIN-First Procedure.

Free SQL Book, Tim Martyn 441 Copyright Pending, 2022

JOIN-First Procedure

TEMP1 (EMPLOYEE JOIN DEPARTMENT)

 where EMPLOYEE.DNO = DEPARTMENT.DNO

TEMP2 RESTRICT TEMP1

 where SALARY < 1000.00 AND BUDGET <=75000.00

 RESULT PROJECT TEMP2 [DNAME, ENAME, SALARY]

The optimizer could direct the system to execute this

procedure. However, it might decide to generate another

logically equivalent sequence of algebraic operations that may

be more efficient.

Alternative sequences of operations are generated by applying

heuristic rules like: “Executing RESTRICT before JOIN is

usually more efficient than executing JOIN before RESTRICT.

Either way, you get the same result.” (A visual illustration

of this rule is shown in Figure 17C.1 at the end of this

appendix.) By applying this rule, the optimizer can derive

another sequence of operations that we call RESTRICT-PROJECT-

First Procedure.

RESTRICT-PROJECT-First Procedure

Generate an intermediate result by restricting EMPLOYEE (SALARY

< 1000.00) and projecting the relevant columns (ENAME, SALARY,

DNO). Next, generate a second intermediate result by

restricting DEPARTMENT (BUDGET <=75000.00) and projecting the

relevant columns (DNO, BUDGET). Then join the two intermediate

results. The algebraic pseudo-code is:

TEMP1 PROJECT (RESTRICT EMPLOYEE where SALARY < 1000)

 [ENAME, SALARY, DNO]

TEMP2 PROJECT (RESTRICT DEPARTMENT where BUDGET <= 75000)

 [DNO, BUDGET]

RESULT (TEMP1 JOIN TEMP2) where TEMP1.DNO = TEMP2.DNO

Free SQL Book, Tim Martyn 442 Copyright Pending, 2022

For the sake of simplicity, assume your system only supports

two internal procedures that implement the RESTRICT operation

on a table (T).

 RS(T): RESTRICT-BY-SCAN procedure

 RI(T): RESTRICT-USING-INDEX procedure

Also, assume that both RS and RI perform both RESTRICT and

PROJECT. When the procedure retrieves a row, it only saves

values for those columns that are relevant to the query.

Likewise, assume your system only has two procedures, JNL and

JSM, that implement the JOIN operation for tables (T1, T2)

where T1 is the outer table.

 JNL(T1,T2): JOIN-BY-NESTED-LOOP procedure

 JSM(T1,T2): JOIN-BY-SORT-MERGE procedure

Considering the above procedures, the optimizer generates more

detail plans. For example, if the SALARY column has an index,

and there is no index on the BUDGET column, the optimizer

considers the following plan which adds details to RESTRICT-

PROJECT-First sequence and the join-operation.

 TEMP1 RI (EMPLOYEE where SALARY < 1000)) [ENAME, SALARY, DNO]

 TEMP2 RS (DEPARTMENT where BUDGET <= 75000) [DNO, BUDGET]

 RESULT (TEMP2 JNL TEMP1) where TEMP1.DNO = TEMP2.DNO

Many Possible Application Plans

It becomes evident that an optimizer must “do a lot of

thinking” when it examines a SELECT statement and attempts to

formulate an efficient application plan. For example,

reconsider the preceding SELECT statement.

SELECT DEPARTMENT.DNO, BUDGET, ENAME, SALARY

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND SALARY < 999.00

AND BUDGET <= 75000.00

Free SQL Book, Tim Martyn 443 Copyright Pending, 2022

Below, we focus on the JOIN and RESTRICT operations. (We

assume that PROJECT is usually implemented within the

RESTRICT operation).

For the JOIN operation, the optimizer must:

• Determine the overall logic.

(JOIN-FIRST versus RESTRICT-PROJECT-First)

• Determine the driving (outer) table.

(T1 JOIN T2 versus T2 JOIN T1).

• Determine the join-method.

(E.g., Nested-loop versus sort-merge).

For the RESTICT operations, the optimizer must:

• Determine the fastest way (scan or use an index) to

retrieve EMPLOYEE rows where SALARY < 999.00

• Determine the fastest way (scan or use an index) to

retrieve DEPARTMENT rows where BUDGET <= 75000.00.

You can see that an optimizer has many options when

formulating an application plan. In fact, there may be too

many options. (This SELECT statement is relatively simple.

The following chapter will present SELECT statements that

join seven tables.) We also note that some optimizer decisions

are not independent. For example, the presence of a relevant

index could influence decisions about both the JOIN and

RESTRICTION operations.

The optimizer considers most (maybe all) possible applications

plans, evaluates the cost of each plan, and chooses the plan

with the lowest cost. When you consider all possible plans

involving the number of tables, the size of each table, the

number and type of indexes, the type of join-methods, and the

type of restriction-methods, you should realize that the

optimizer frequently has to evaluate many different query

plans.

Summary - Appreciate Your Optimizer: The optimizer does the

heavy lifting. Your job is to write correct SQL. Note the

role played by the relational algebra. Again, we quote C. J.

Date: “Theory is practical.”

Free SQL Book, Tim Martyn 444 Copyright Pending, 2022

Figure 17C.1: Equivalent Sequences of Algebraic Operations

 JOIN-First Procedure RESTRICT-PROJECT-First Procedure

We do not prove that both join-procedures always produce the same result.

(Trust me - they do.) We note that the RESTRICT-PROJECT-First procedure

usually performs better because JOIN-First could generate a very large

intermediate result. If this result does not fit into main memory, it

has to be written to disk and then reread from disk for subsequent the

RESTRICT+PROJECT operation. Alternatively, with the JOIN-First

procedure, by initially executing the two RESTRICT+PROJECT operations,

smaller intermediate results are produced and the subsequent JOIN

operation is applied to these smaller intermediate results.

However, with the RESTRICT-PROJECT-FIRST Procedure, if one or both of

the RESTRICT or PROJECT operations produce a very large intermediate

result, the optimizer may choose the JOIN-FIRST Procedure.

RESTRICT

 +
PROJECT

JOIN

RESTRICT

 +
PROJECT

JOIN

RESTRICT

 +
PROJECT

Free SQL Book, Tim Martyn 445 Copyright Pending, 2022

Chapter

 18

 Multi-Table Inner-Joins

This chapter introduces three-table, four-table, five-table

etc. inner-join operations. It also introduces the MTPC Data

Model that will be referenced throughout the remainder of

this book. This is a large chapter that is organized into the

following sections.

A. Sample Tables: This chapter’s sample queries reference

a database design consisting of eight tables that are

described in this section.

B. Getting Started: Joining Three Tables. The basic syntax

and logic of a three-table join are introduced.

C. Joining Four or More Tables: A three-table join is

extended to a four-table join, followed by a five-table

join, etc., to an eight-table join.

D. Query Analysis and Coding Guidelines: The previous

Sections B and C introduced a rather “mechanical”

approach to coding multi-table inner-join operations.

This section presents a conceptual framework where a

multi-table SELECT statement is derived by mapping a

query objective to a logical data model.

E. Join with Other Operations: Sample queries incorporate

restriction and grouping within multi-table joins.

F. JOIN-ON Syntax: Examples illustrate multi-table joins

that are coded using the JOIN-ON syntax.

This chapter concludes with six optional appendices that

address data modeling and efficiency considerations.

Free SQL Book, Tim Martyn 446 Copyright Pending, 2022

A. Sample Tables – The MTPCH Database

TPC Council: The Transaction Processing Council (TPC) is an

organization that defines benchmarks used within the database

community to evaluate the performance of commercial database

systems. [Visit: www.tpc.org.] This organization has

published documentation on the TPC-H database that is used to

evaluate database performance within the context of decision

support systems.

TPC-H Database: The following data model (Figure 18.1),

copied from the TPC website, represents the TPC-H database.

This model uses an arrowhead to designate the many-side of a

one-to-many relationship. The following data model (Figure

18.2) is equivalent to the above data model. Here, a circle

is used to designate the many-side of a one-to-many

relationship. This notation will be used throughout the

remainder of this book.

PARTSUPP LINEITEM PART

PUR_ORDER SUPPLIER CUSTOMER

STATE REGION
Figure 18.1:

TPC-H Data Model

Figure 18.2:

TPC-H Data Model

PARTSUPP LINEITEM PART

PUR_ORDER SUPPLIER CUSTOMER

STATE REGION

Free SQL Book, Tim Martyn 447 Copyright Pending, 2022

Semantics of TPC-H Data Model: This model assumes that you

(the user) work for a company that purchases parts from

suppliers for resale to customers. Data about parts,

suppliers, and customers are stored in the PART, SUPPLIER,

and CUSTOMER tables. Each customer is located in one state,

and each supplier is also located in one state. Each state is

located in one geographic region. The regions and states are

described by the REGION and STATE tables.

Each supplier may sell many parts, and each part may be

purchased from many suppliers. However, a given part cannot

always be purchased from any supplier who happens to sell

that part. The PARTSUPP table specifies all acceptable part-

supplier combinations, indicating which parts can be

purchased from which suppliers. The PARTSUPP table also

indicates the price that your company pays the supplier for

the part.

Your company’s customers complete purchase-orders with one or

more line-items. This information is stored in the PUR_ORDER

and LINEITEM tables. Each row in the LINEITEM table is

associated with one part and indicates the quantity and price

the customer paid to your company for the part. We note that

the same part may be sold for different prices in different

line-items.

Finally, we note that each LINEITEM must be associated with

some valid part-supplier (PNO, SNO) combination found in the

PARTSUPP table. This assures that every purchase of a part is

associated with some acceptable supplier of the part.

Modified TPC-H (MTPCH) Database: This chapter’s sample

queries will reference a database called the MTPCH Database

which is a modification of the TPC-H database. (The author

decided to utilize the TPC-H model because its semantics

reflect the design complexity of a real-world database.) We

emphasize that the MTPCH Database has the same data model as

the TPC-H data model shown in Figure 18.2. However, for

tutorial purposes, each table has fewer columns and rows, and

the column-names have been simplified.

Free SQL Book, Tim Martyn 448 Copyright Pending, 2022

The MTPCH Data Model

The following Figure 18.3 adds detail to Figure 18.2. This

figure includes column-names and designates each primary-key

(underlined) and foreign-key (FK). Also, this figure is

hierarchically orientated (parent-over-child). (Note: Our

designation “hierarchical orientation” does not strictly

conform to a “hierarchical graph” as defined in graph theory.)

PUR_ORDER

PONO

PODATE

POSTATUS

CNO (FK)

PARTSUPP

PNO (FK1)

SNO (FK2)

PSPRICE

PART

PNO

PNAME

PCOLOR

PWT

CUSTOMER

CNO

CNAME

CPHONE

STCODE (FK)

SUPPLIER

SNO

SNAME

SPHONE

SSTATUS

STCODE (FK)

LINEITEM

PONO (FK1)

LINE

PNO (FK2)

SNO (FK2)

QTY

LIPRICE

STATE

STCODE

STNAME

POPULATION

RNO (FK)

REGION

RNO

RNAME

CLIMATE

Figure 18.3: MTPCH Data Model

Free SQL Book, Tim Martyn 449 Copyright Pending, 2022

Detailed MTPCH Model

The following figure enhances Figure 18.3 by including column

data-types, table aliases, and join-conditions for PK-FK

relationships. This model will facilitate the coding of

SELECT statements. (You might want to print a copy of this

page and the next two pages to reference when you work on

this chapter’s exercises.)

Figure 18.4: Detailed MTPCH Data Model

REGION (R)

RNO [INT]

RNAME [CHAR]

CLIMATE [CHAR]

STATE (ST)

STCODE [CHAR]

STNAME [CHAR]

POPULATION [INT]

RNO (FK) [CHAR]

ST.STCODE=C.STCODE

R.RNO=ST.RNO

ST.STCODE=S.STCODE

PART (P)

PNO [CHAR]

PNAME [CHAR]

PCOLOR [CHAR]

PWT [INT]

CUSTOMER (C)

CNO [CHAR]

CNAME [CHAR]

CPHONE [CHAR]

STCODE (FK) [CHAR]

SUPPLIER (S)

SNO [CHAR]

SNAME [CHAR]

SPHONE [CHAR]

SSTATUS [CHAR]

STCODE (FK) [CHAR]

PO.PONO=LI.PONO PS.PNO=LI.PNO and PS.SNO=LI.SNO

S.SNO= PS.SNO C.CNO=PO.CNO P.PNO=PS.PNO

PUR_ORDER (PO)

PONO [CHAR]

PODATE [INT]

POSTATUS [CHAR]

CNO (FK) [CHAR]

PARTSUPP (PS)

PNO (FK1) [CHAR]
SNO (FK2) [CHAR]

PSPRICE [DEC]

LINEITEM (LI)

PONO (FK1) [CHAR]

LINE [INT]

PNO (FK2) [CHAR]

SNO (FK2) [CHAR]

QTY [INT]

PRICE [DEC]

Free SQL Book, Tim Martyn 450 Copyright Pending, 2022

Sample Data for MTPCH Model

For the sake of readability, rows in the following tables are

displayed in primary-key sequence. This may or may not conform

to any physical sequence (or absence of sequence) in the

stored tables.

PART

PNO PNAME PCOLOR PWT

P1 PART1 RED 20

P2 PART2 BLUE 10

P3 PART3 PINK 20

P4 PART4 YELLOW 10

P5 PART5 RED 20

P6 PART6 BLUE 12

P7 PART7 PINK 20

P8 PART8 PINK 15

SUPPLIER

SNO SNAME SPHONE SSTATUS STCODE

S1 SUPPLIER1 888-999-9999 S MA

S2 SUPPLIER2 888-999-1111 P MA

S3 SUPPLIER3 888-999-3333 S CT

S4 SUPPLIER4 888-999-4444 S FL

S5 SUPPLIER5 888-999-6666 S GE

S6 SUPPLIER6 889-888-9999 S WA

S7 SUPPLIER7 889-888-3333 P OR

S8 SUPPLIER8 889-888-2222 S OR

PARTSUPP

PNO SNO PSPRICE

P1 S2 10.50

P1 S4 11.00

P3 S3 12.00

P3 S4 12.50

P4 S4 12.00

P5 S1 10.00

P5 S2 10.00

P5 S4 11.00

P6 S4 4.00

P6 S6 4.00

P6 S8 4.00

P7 S2 2.00

P7 S4 3.00

P7 S5 3.50

P7 S6 3.50

P8 S4 5.00

P8 S6 4.00

P8 S8 3.00

REGION

RNO RNAME CLIMATE

1 NORTHEAST Cold

2 NORTHWEST Cold

3 SOUTHEAST Hot

4 SOUTHWEST Hot

5 MIDWEST Empty

STATE

STCODE STNAME POPULATION RNO

AZ ARIZONA 6339000 4

CT CONNECTICUT 3502000 1

FL FLORIDA 18251000 3

GE GEORGIA 9545000 3

MA MASSACHUSETTS 6450000 1

NM NEW MEXICO 1970000 4

OR OREGON 3747000 2

WA WASHINGTON 6468000 2

CUSTOMER

CNO CNAME CPHONE STCODE

100 PYTHAGORAS 800-999-9999 MA

110 EUCLID 800-999-8888 MA

200 HYPATIA 800-888-9999 MA

220 ZENO 800-888-8888 MA

230 BOLYAI 800-888-7777 MA

300 NEWTON 800-777-9999 OR

330 LEIBNIZ 800-777-8888 OR

400 DECARTES 800-666-9999 WA

440 PASCAL 800-666-8888 WA

500 HILBERT 877-999-1234 MA

600 BOOLE 877-888-4321 FL

660 CANTOR 877-888-8765 FL

700 RUSSELL 877-777-1235 GE

770 GODEL 877-777-5321 GE

780 CHURCH 877-777-6321 NM

800 VON NEUMANN 877-666-9123 NM

880 TURING 877-666-3219 AZ

890 MANDELBROT 877-666-5219 AZ

Free SQL Book, Tim Martyn 451 Copyright Pending, 2022

PUR_ORDER

PONO PODATE POSTATUS CNO

11101 1 C 100

11102 3 P 100

11108 47 C 110

11109 49 P 110

11110 20 C 200

11111 21 P 200

11120 22 C 220

11121 23 C 220

11122 5 P 220

11124 6 P 230

11130 7 C 300

11133 8 P 300

11139 9 C 330

11141 61 P 330

11142 62 C 400

11144 63 P 400

11146 64 C 440

11148 65 C 440

11149 71 P 440

11150 72 P 500

11152 73 C 600

11153 74 P 600

11154 75 C 660

11155 1 P 660

11156 1 C 700

11157 3 P 770

11158 3 C 800

11159 3 C 880

11160 4 P 880

11170 10 P 880

11198 10 P 880

LINEITEM

PONO LINE PNO SNO QTY LIPRICE

11101 1 P1 S2 10 11.50

11101 2 P3 S3 10 12.00

11102 1 P3 S3 20 13.00

11102 2 P4 S4 20 13.00

11108 1 P5 S1 10 11.00

11108 2 P6 S4 10 5.00

11109 1 P1 S2 10 11.50

11109 2 P7 S2 20 3.00

11109 3 P8 S4 20 6.00

11110 1 P8 S4 30 6.00

11111 1 P1 S4 10 12.00

11111 2 P3 S4 10 13.50

11120 1 P4 S4 20 13.00

11120 2 P5 S2 20 11.00

11121 1 P6 S6 20 5.00

11121 2 P7 S4 20 4.00

11122 1 P1 S2 10 11.50

11122 2 P3 S3 10 13.00

11124 3 P4 S4 10 13.00

11124 4 P5 S1 10 11.00

11130 1 P6 S4 5 5.00

11130 2 P7 S2 5 3.00

11130 3 P5 S4 10 12.00

11133 1 P1 S4 10 12.00

11139 1 P3 S4 20 13.50

11139 2 P5 S2 20 11.00

11141 1 P5 S4 10 12.00

11141 2 P6 S4 10 5.00

11142 1 P6 S8 10 5.00

11142 2 P7 S2 20 3.00

11144 1 P7 S4 20 4.00

11144 2 P8 S6 10 5.00

11146 1 P7 S5 10 4.50

11146 2 P8 S6 10 5.00

11148 1 P1 S2 10 11.50

11148 2 P8 S4 10 6.00

11149 1 P7 S5 40 4.50

11149 2 P8 S8 40 4.00

11150 1 P3 S4 20 13.50

11150 2 P6 S4 10 5.00

11152 1 P5 S4 10 12.00

11152 2 P7 S2 5 3.00

11152 3 P8 S8 40 4.00

11153 1 P8 S8 40 4.00

11154 1 P1 S2 10 11.50

11154 2 P3 S4 20 14.50

11154 3 P4 S4 10 13.00

11154 4 P5 S1 10 11.00

11155 1 P8 S8 40 4.50

11156 1 P1 S2 10 11.50

11156 2 P3 S4 20 13.50

11156 3 P5 S1 10 11.00

11157 1 P3 S4 20 13.50

11157 2 P5 S1 10 11.00

11158 1 P1 S2 10 11.50

11158 2 P3 S4 20 13.50

11159 1 P6 S4 10 5.00

11159 2 P7 S2 5 3.00

11160 1 P1 S2 10 12.50

11160 2 P7 S2 5 3.00

11170 1 P3 S4 20 12.50

11170 2 P4 S4 10 13.00

Free SQL Book, Tim Martyn 452 Copyright Pending, 2022

B. Getting Started: Joining Three Tables

Review: This section begins with two sample queries that only

require two-table join-operations. Thereafter, the query

objectives for these sample queries are extended such that

they require three-table join-operations.

Sample Query 18.1: Access the REGION and STATE tables. For

every state, display its STCODE and STNAME values along

with its region’s RNO and RNAME values. Display these

columns in the following left-to-right sequence: RNO,

RNAME, STCODE, and STNAME. Sort the result by STCODE

within RNO.

 RNO RNAME STCODE STNAME

 1 NORTHEAST CT CONNECTICUT

 1 NORTHEAST MA MASSACHUSETTS

 2 NORTHWEST OR OREGON

 2 NORTHWEST WA WASHINGTON

 3 SOUTHEAST FL FLORIDA

 3 SOUTHEAST GE GEORGIA

 4 SOUTHWEST AZ ARIZONA

 4 SOUTHWEST NM NEW MEXICO

Syntax & Logic: Nothing new. Examine Figure 18.4. Observe

that REGION is the parent-table, and STATE is the child-

table. Therefore, all STATE rows appear in this result, and

any non-matching REGION row (e.g., the MIDWEST region with a

RNO value of 5) does not appear in this result.

Also, note that the join-condition (R.RNO = ST.RNO) is

specified in Figure 18.4.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME

FROM REGION R,

 STATE ST

WHERE R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE

Free SQL Book, Tim Martyn 453 Copyright Pending, 2022

 Sample Query 18.2: Access the PART and PARTSUPP tables. For

every part that you can purchase from some supplier,

display the part’s PNO and PNAME values, the supplier’s

SNO value, and the price (PSPRICE) paid to the supplier

for the part. Display these columns in the following

left-to-right sequence: PNO, PNAME, SNO, and PSPRICE.

Sort the result by SNO within PNO.

 PNO PNAME SNO SPRICE

 P1 PART1 S2 10.50

 P1 PART1 S4 11.00

 P3 PART3 S3 12.00

 P3 PART3 S4 12.50

 P4 PART4 S4 12.00

 P5 PART5 S1 10.00

 P5 PART5 S2 10.00

 P5 PART5 S4 11.00

 P6 PART6 S4 4.00

 P6 PART6 S6 4.00

 P6 PART6 S8 4.00

 P7 PART7 S2 2.00

 P7 PART7 S4 3.00

 P7 PART7 S5 3.50

 P7 PART7 S6 3.50

 P8 PART8 S4 5.00

 P8 PART8 S6 4.00

 P8 PART8 S8 3.00

Syntax & Logic: Nothing new. Examine Figure 18.4. Observe

that PART is the parent-table, and PARTSUPP is the child-

table. Therefore, all PARTSUPP rows appear in this result,

and any non-matching PART rows (e.g., Part P2) do not appear

in this result.

Also, note that the join-condition (P.PNO = PS.PNO) is

specified in Figure 18.4.

SELECT P.PNO, P.PNAME, PS.SNO, PS.PSPRICE

FROM PART P,

 PARTSUPP PS

WHERE P.PNO = PS.PNO

ORDER BY P.PNO, PS.SNO

Free SQL Book, Tim Martyn 454 Copyright Pending, 2022

Three-Table Join

The following sample query extends Sample Query 18.1 from a

two-table join into a three-table join in order to display a

customer’s number (CNO) and name (CNAME) values.

Sample Query 18.3: Access the REGION, STATE, and CUSTOMER

tables. For all customers, display their CNO and CNAME

values, along with their state’s STCODE and STNAME

values, along with their region’s RNO and RNAME values.

Display these columns in the following left-to-right

sequence: RNO, RNAME, STCODE, STNAME, CNO and CNAME.

Sort the result by CNO within STCODE within RNO.

 RNO RNAME STCODE STNAME CNO CNAME

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID

1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA

1 NORTHEAST MA MASSACHUSETTS 220 ZENO

1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI

1 NORTHEAST MA MASSACHUSETTS 500 HILBERT

2 NORTHWEST OR OREGON 300 NEWTON

2 NORTHWEST OR OREGON 330 LEIBNIZ

2 NORTHWEST WA WASHINGTON 400 DECARTES

2 NORTHWEST WA WASHINGTON 440 PASCAL

3 SOUTHEAST FL FLORIDA 600 BOOLE

3 SOUTHEAST FL FLORIDA 660 CANTOR

3 SOUTHEAST GE GEORGIA 700 RUSSELL

3 SOUTHEAST GE GEORGIA 770 GODEL

4 SOUTHWEST AZ ARIZONA 880 TURING

4 SOUTHWEST AZ ARIZONA 890 MANDELBROT

4 SOUTHWEST NM NEW MEXICO 780 CHURCH

4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN

SELECT R.RNO, R.RNAME,

 ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R,

 STATE ST,

 CUSTOMER C new table

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE new join-condition

ORDER BY R.RNO, ST.STCODE, C.CNO

Free SQL Book, Tim Martyn 455 Copyright Pending, 2022

Again, Syntax & Logic: Alternatively, if we do not consider

this sample query to be an extension of Sample Query 18.1,

query analysis begins with: “What tables do I need?” Here, we

want to display data from columns found in the REGION, STATE,

and CUSTOMER tables. Hence, you must reference these three

tables in the FROM-clause and specify two join-conditions.

(It is not always this simple. Sample Query 18.5 will access

three tables, but only display columns from two tables.)

Also, as with any inner-join, you must ask: “What rows might

not appear in the join result?” In this example, we get all

rows from the CUSTOMER table because all its foreign-keys

must match. However, there may be rows in the STATE table

(e.g., CONNECTICUT) that do not match the CUSTOMER table

(i.e., states without customers); and, there may be rows in

a REGION table (e.g., MIDWEST region) that do not match the

STATE table (i.e., regions without states).

Syntax & Logic: Nothing new.

Considering this sample query as an

extension of Sample Query 18.1 (which

accessed the REGION and STATE tables),

we see that we have to include another

table, the CUSTOMER table.

Looking at the MTPCH model (Figure 18.4)

makes this easy. We simply append the

new table (CUSTOMER) to the FROM-

clause, and AND-connect the new join-

condition (ST.STCODE=C.STCODE) to the

WHERE-clause.

REGION (R)

RNO

RNAME

CLIMATE

ST.STCODE=C.STCODE

R.RNO=ST.RNO

STATE (ST)

STCODE

STNAME

POPULATION

RNO (FK)

CUSTOMER (C)

CNO

CNAME

CPHONE

STCODE (FK)

Free SQL Book, Tim Martyn 456 Copyright Pending, 2022

The following sample query extends Sample Query 18.2 from a

two-table join to a three-table join in order to access

supplier names (SNAME). This query objective requires access

to the SUPPLIER table which contains the required SNAME

values.

Sample Query 18.4: Access the PART, SUPPLIER, and PARTSUPP

tables. For every part that you can purchase from some

supplier, display the part’s PNO and PNAME values, the

supplier’s SNO and SNAME values, and the price (PSPRICE)

paid to the supplier for the part. Display these columns

in the following left-to-right sequence: PNO, PNAME,

SNO, SNAME, and PSPRICE. Sort the result by SNO within

PNO.

PNO PNAME SNO SNAME PSPRICE

P1 PART1 S2 SUPPLIER2 10.50

P1 PART1 S4 SUPPLIER4 11.00

P3 PART3 S3 SUPPLIER3 12.00

P3 PART3 S4 SUPPLIER4 12.50

P4 PART4 S4 SUPPLIER4 12.00

P5 PART5 S1 SUPPLIER1 10.00

P5 PART5 S2 SUPPLIER2 10.00

P5 PART5 S4 SUPPLIER4 11.00

P6 PART6 S4 SUPPLIER4 4.00

P6 PART6 S6 SUPPLIER6 4.00

P6 PART6 S8 SUPPLIER8 4.00

P7 PART7 S2 SUPPLIER2 2.00

P7 PART7 S4 SUPPLIER4 3.00

P7 PART7 S5 SUPPLIER5 3.50

P7 PART7 S6 SUPPLIER6 3.50

P8 PART8 S4 SUPPLIER4 5.00

P8 PART8 S6 SUPPLIER6 4.00

P8 PART8 S8 SUPPLIER8 3.00

SELECT P.PNO, P.PNAME,

 S.SNO, S.SNAME,

 PS.PSPRICE

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S new table

WHERE P.PNO = PS.PNO

AND S.SNO = PS.SNO new join-condition

ORDER BY P.PNO, S.SNO

Free SQL Book, Tim Martyn 457 Copyright Pending, 2022

Syntax & Logic: Alternatively, if we do not consider this

sample query to be an extension of Sample Query 18.2, query

analysis begins with: “What tables do I need?” Here, we want

to display data found in PART, SUPPLIER, and PARTSUPP tables.

Hence, you must reference these tables in the FROM-clause and

specify the join-conditions.

Also, as with any inner-join, you must ask: “What rows might

not appear in the join result?” In this example, we get all

rows from the PARTSUPP table. However, there may be rows in

a PART table (e.g., Part P2) that do not match PARTSUPP table;

and there may be rows in the SUPPLIER table (e.g., Supplier

S7) that do not match PARTSUPP.

* Terminology - “Three-Table Join”: We have used (and will

continue to use) the term “three-table join,” even though it

is not very accurate. More precisely, a three-table join

involves two two-table join-operations. From a logical

perspective, this sample query initially joins the PART and

PARTSUPP tables to produce an intermediate join-result. Then

the second two-table join-operation joins this intermediate

result with the SUPPLIER table to produce the final join-

result. (Likewise, for a “four-table join”, “five-table

join,” etc.)

Syntax & Logic: Nothing new.

Considering this sample query as an

extension of Sample Query 18.2 (which

accessed the PART and PARTSUPP tables),

we see that we have to include another

table, the SUPPLIER table.

Looking at Figure 18.4 makes this easy.

We append the new table (SUPPLIER) to

the FROM-clause, and AND-connect

another join-condition (S.SNO = PS.SNO)

to the WHERE-clause.

PART (P)

PNO

PNAME

PCOLOR

PWT

SUPPLIER (S)

SNO

SNAME

SPHONE

SSTATUS

STCODE (FK)

S.SNO= PS.SNO

PARTSUPP (PS)

PNO (FK)

SNO (FK)

PSPRICE

P.PNO=PS.PNO

Free SQL Book, Tim Martyn 458 Copyright Pending, 2022

“Link” Table

The following sample query makes a minor adjustment to Sample

Query 18.3. It does not display any columns from the STATE

table. However, the SELECT statement must still access the

STATE table to provide a path from REGION to CUSTOMER. In

this circumstance, the STATE table is sometimes called a

“link” table.

Sample Query 18.5: For all customers, display their CNO and

CNAME values, along with their region’s RNO and RNAME

values. Display these columns in the following left-to-

right sequence: RNO, RNAME, CNO and CNAME. Sort the

result by CNO within RNO.

 RNO RNAME CNO CNAME

 1 NORTHEAST 100 PYTHAGORAS

 1 NORTHEAST 110 EUCLID

 1 NORTHEAST 200 HYPATIA

 1 NORTHEAST 220 ZENO

 1 NORTHEAST 230 BOLYAI

 1 NORTHEAST 500 HILBERT

 2 NORTHWEST 300 NEWTON

 2 NORTHWEST 330 LEIBNIZ

 2 NORTHWEST 400 DECARTES

 2 NORTHWEST 440 PASCAL

 3 SOUTHEAST 600 BOOLE

 3 SOUTHEAST 660 CANTOR

 3 SOUTHEAST 700 RUSSELL

 3 SOUTHEAST 770 GODEL

 4 SOUTHWEST 780 CHURCH

 4 SOUTHWEST 800 VON NEUMANN

 4 SOUTHWEST 880 TURING

 4 SOUTHWEST 890 MANDELBROT

SELECT R.RNO, R.RNAME,

 C.CNO, C.CNAME

FROM REGION R,

 STATE ST, link table

 CUSTOMER C

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

ORDER BY R.RNO, C.CNO

R.RNO=ST.RNO

REGION (R)

RNO

RNAME

CLIMATE

ST.STCODE=C.STCODE

STATE (ST)

STCODE

STNAME

POPULATION

RNO (FK)

CUSTOMER (C)

CNO

CNAME

CPHONE

STCODE (FK)

Free SQL Book, Tim Martyn 459 Copyright Pending, 2022

The following sample query makes a minor adjustment to the

previous Sample Query 18.5. It only displays columns from the

REGION table. It does not display any columns from the STATE

table; and it does not display any columns from the CUSTOMER

table. However, the query objective requires the SELECT

statement to access the STATE and CUSTOMER tables.

Sample Query 18.6: For any region which has at least one

customer, display the region’s RNO and RNAME values.

Sort the result by RNO.

 RNO RNAME

 1 NORTHEAST

 2 NORTHWEST

 3 SOUTHEAST

 4 SOUTHWEST

Syntax Nothing new.

Logic: The keyword DISTINCT was specified because REGION is

a parent-table and some parent-rows (e.g., NORTHEAST) could

match on multiple states.

Suggestion: Execute this statement after removing the

DISTINCT keyword. Observe the duplicate rows. Understand why

these duplicates appeared in the result.

SELECT DISTINCT R.RNO, R.RNAME

FROM REGION R,

 STATE ST,

 CUSTOMER C

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

ORDER BY R.RNO

Free SQL Book, Tim Martyn 460 Copyright Pending, 2022

C. Joining Four or More Tables

Sample Query 18.7: Extend Sample Query 18.4 to display one

more column that resides in the STATE table: For every

part that you can purchase from some supplier, display

the part’s PNO and PNAME values, the supplier’s SNO and

SNAME values, and the price (PSPRICE) you pay the

supplier for the part. Also display the name of the state

where the supplier is located. Display these columns in

the following left-to-right sequence: STNAME, SNO,

SNAME, PNO, PNAME, and PSPRICE. Sort the result by PNO

within SNO within STNAME.

STNAME SNO SNAME PNO PNAME PSPRICE

CONNECTICUT S3 SUPPLIER3 P3 PART3 12.00

 FLORIDA S4 SUPPLIER4 P1 PART1 11.00

 FLORIDA S4 SUPPLIER4 P3 PART3 12.50

 FLORIDA S4 SUPPLIER4 P4 PART4 12.00

 FLORIDA S4 SUPPLIER4 P5 PART5 11.00

 FLORIDA S4 SUPPLIER4 P6 PART6 4.00

 FLORIDA S4 SUPPLIER4 P7 PART7 3.00

 FLORIDA S4 SUPPLIER4 P8 PART8 5.00

 GEORIGA S5 SUPPLIER5 P7 PART7 3.50

 MASSACHUSETTS S1 SUPPLIER1 P5 PART5 10.00

 MASSACHUSETTS S2 SUPPLIER2 P1 PART1 10.50

 MASSACHUSETTS S2 SUPPLIER2 P5 PART5 10.00

 MASSACHUSETTS S2 SUPPLIER2 P7 PART7 2.00

 OREGON S8 SUPPLIER8 P6 PART6 4.00

 OREGON S8 SUPPLIER8 P8 PART8 3.00

 WASHINGTON S6 SUPPLIER6 P6 PART6 4.00

 WASHINGTON S6 SUPPLIER6 P7 PART7 3.50

 WASHINGTON S6 SUPPLIER6 P8 PART8 4.00

SELECT ST.STNAME, S.SNO, S.SNAME,

 P.PNO, P.PNAME, PS.PSPRICE

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S,

 STATE ST new table

WHERE P.PNO = PS.PNO

AND PS.SNO = S.SNO

AND ST.STCODE = S.STCODE new join-condition

ORDER BY ST.STNAME, S.SNO, P.PNO

Free SQL Book, Tim Martyn 461 Copyright Pending, 2022

Again, Syntax & Logic: Alternatively, if we do not consider

this sample query to be an extension of Sample Query 18.4,

query analysis begins with: “What tables do I need?” Here, we

want to display data found in the STATE, PART, SUPPLIER, and

PARTSUPP tables. Hence, you must reference these tables in

the FROM-clause and specify the corresponding join-

conditions.

Again, consider non-matching rows. We only want information

about those parts and suppliers referenced by PARTSUPP.

Joining PART and SUPPLIER with PARTSUPP will exclude Part P2

and Supplier S7. Also, the final result excludes data about

those states (New Mexico and Arizona) that do not have

suppliers.

Syntax & Logic: Nothing new.

Considering this sample query as an

extension of Sample Query 18.4 (which

accessed the SUPPLIER, PART, and

PARTSUPP tables), we see that we have

to include another table, the STATE

table.

Looking at Figure 18.4 makes this easy.

We append the new table (STATE) to the

FROM-clause, and AND-connect join-

condition (ST.STCODE = S.STCODE) to the

WHERE-clause.

P.PNO = PS.PNO

ST.STCODE = S.STCODE

PART(P)

PNO

PNAME

PCOLOR

PWT

SUPPLIER (S)

SNO

SNAME

SPHONE

SSTATUS

STCODE (FK)

S.SNO = PS.SNO

PARTSUPP (PS)

PNO (FK1)

SNO (FK2)

PSPRICE

STATE (ST)

STCODE

STNAME

POPULATION

RNO (FK)

Free SQL Book, Tim Martyn 462 Copyright Pending, 2022

Five-Table Join

Sample Query 18.8: Extend the previous Sample Query 18.7 to

display one more column that resides in the REGION table.

Include the name of the region (RNAME) where each supplier

is located. Display the columns in the following left-to-

right sequence: RNAME, STNAME, SNO, SNAME, PNO, PNAME, and

PSPRICE. Sort the result by PNO within SNO within STNAME,

within RNAME.

RNAME STNAME SNO SNAME PNO PNAME PSPRICE

NORTHEAST CONNECTICUT S3 SUPPLIER3 P3 PART3 12.00

NORTHEAST MASSACHUSETTS S1 SUPPLIER1 P5 PART5 10.00

NORTHEAST MASSACHUSETTS S2 SUPPLIER2 P1 PART1 10.50

NORTHEAST MASSACHUSETTS S2 SUPPLIER2 P5 PART5 10.00

NORTHEAST MASSACHUSETTS S2 SUPPLIER2 P7 PART7 2.00

NORTHWEST OREGON S8 SUPPLIER8 P6 PART6 4.00

NORTHWEST OREGON S8 SUPPLIER8 P8 PART8 3.00

NORTHWEST WASHINGTON S6 SUPPLIER6 P6 PART6 4.00

NORTHWEST WASHINGTON S6 SUPPLIER6 P7 PART7 3.50

NORTHWEST WASHINGTON S6 SUPPLIER6 P8 PART8 4.00

SOUTHEAST FLORIDA S4 SUPPLIER4 P1 PART1 11.00

SOUTHEAST FLORIDA S4 SUPPLIER4 P3 PART3 12.50

SOUTHEAST FLORIDA S4 SUPPLIER4 P4 PART4 12.00

SOUTHEAST FLORIDA S4 SUPPLIER4 P5 PART5 11.00

SOUTHEAST FLORIDA S4 SUPPLIER4 P6 PART6 4.00

SOUTHEAST FLORIDA S4 SUPPLIER4 P7 PART7 3.00

SOUTHEAST FLORIDA S4 SUPPLIER4 P8 PART8 5.00

SOUTHEAST GEORGIA S5 SUPPLIER5 P7 PART7 3.50

SELECT R.RNAME, ST.STNAME,

 S.SNO, S.SNAME, P.PNO, P.PNAME, PS.PSPRICE

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S,

 STATE ST,

 REGION R new table

WHERE P.PNO = PS.PNO

AND PS.SNO = S.SNO

AND ST.STCODE = S.STCODE

AND R.RNO = ST.RNO new join-condition

ORDER BY R.RNAME, ST.STNAME, S.SNO, P.PNO

Free SQL Book, Tim Martyn 463 Copyright Pending, 2022

Again, consider non-matching rows. We only want information

about those parts and suppliers referenced by PARTSUPP.

Joining PART and SUPPLIER with PARTSUPP will exclude Part P2

and Supplier S7. Also, the final result excludes data about

those states (New Mexico and Arizona) that do not have

suppliers; and it excludes data about those regions (MIDWEST)

that do not have any states.

Atomic & Composite Primary Keys: Consider the above data model

that represents the tables accessed in this query. Observe

that the primary-keys for the REGION, STATE, SUPPLIER, and

PART tables are “atomic” keys. This means that the primary-

key consists of just one column. Only the PARTSUPP table has

a multi-column (composite) primary-key (PNO, SNO). This

observation becomes relevant in the next sample query.

Syntax & Logic: Nothing new.

Considering this sample query as an

extension of Sample Query 18.7 (which

accessed the STATE, SUPPLIER, PART, and

PARTSUPP tables), we have to include

another table, the REGION table.

Looking at Figure 18.4 makes this easy.

We append the new table (REGION) to the

FROM-clause, and AND-connect the new

join-condition (R.RNO = ST.RNO) to the

WHERE-clause.

Again, Syntax & Logic: Alternatively,

if we do not consider this sample query

to be an extension of Sample Query 18.7,

query analysis begins with: “What

tables do I need?” Here, the goal is to

display data found in the REGION, STATE,

PART, SUPPLIER, and PARTSUPP tables.

Hence, you must reference these tables

in the FROM-clause and specify the

corresponding join-conditions.

PARTSUPP (PS)

PNO (FK1)

SNO (FK2)

PSPRICE

R.RNO= ST.RNO

REGION (R)

RNO

RNAME

CLIMATE

P.PNO=PS.PNO

ST.STCODE= S.STCODE

PART(P)

PNO

PNAME

PCOLOR

PWT

SUPPLIER (S)

SNO

SNAME

SPHONE

SSTATUS

STCODE (FK)

S.SNO= PS.SNO

STATE (ST)

STCODE

STNAME

POPULATION

RNO (FK)

Free SQL Book, Tim Martyn 464 Copyright Pending, 2022

Six-Table Join: Composite Join-Condition

Sample Query 18.9: Extend the previous Sample Query 18.8.

Only consider parts that have been purchased. These are

parts that are referenced in some line-item of some purchase

order. Display these part names, the names of their

suppliers, and related purchase-order numbers that are

stored in the LINEITEM table. Also include the region name

and state name of each supplier’s location. Display these

columns in the following left-to-right sequence: RNAME,

STNAME, PNAME, SNAME, and PONO. Sort the result by LIPONO

within PNAME within SNAME within STNAME within RNAME.

Syntax & Logic: Nothing new. It is important to note that the

new table (LINEITEM) is related to the PARTSUPP table via a

composite (compound) join-condition.

PS.PNO = LI.PNO AND PS.SNO = LI.SNO

Examine Figure 18.4 to verify this fact. Failure to specify

both components of the composite key in the join-condition

will generate incorrect results.

Also note that no PARTSUPP columns were displayed. PARTSUPP

was included as a link table between the PART and SUPPLIER

tables.

SELECT R.RNAME, ST.STNAME, S.SNAME, P.PNAME, LI.PONO

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S,

 STATE ST,

 REGION R,

 LINEITEM LI new table

WHERE PS.PNO = P.PNO

AND PS.SNO = S.SNO

AND S.STCODE = ST.STCODE

AND ST.RNO = R.RNO

AND PS.PNO = LI.PNO AND PS.SNO = LI.SNO new join-condition

ORDER BY R.RNAME, ST.STNAME, S.SNAME, P.PNAME, LI.PONO

Free SQL Book, Tim Martyn 465 Copyright Pending, 2022

RNAME STNAME SNAME PNAME PONO

NORTHEAST CONNECTICUT SUPPLIER3 PART3 11101

NORTHEAST CONNECTICUT SUPPLIER3 PART3 11102

NORTHEAST CONNECTICUT SUPPLIER3 PART3 11122

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11108

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11124

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11154

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11156

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11157

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11101

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11109

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11122

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11148

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11154

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11156

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11158

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11160

NORTHEAST MASSACHUSETTS SUPPLIER2 PART5 11120

NORTHEAST MASSACHUSETTS SUPPLIER2 PART5 11139

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11109

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11130

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11142

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11152

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11159

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11160

NORTHWEST OREGON SUPPLIER8 PART6 11142

NORTHWEST OREGON SUPPLIER8 PART8 11149

NORTHWEST OREGON SUPPLIER8 PART8 11152

NORTHWEST OREGON SUPPLIER8 PART8 11153

NORTHWEST OREGON SUPPLIER8 PART8 11155

NORTHWEST WASHINGTON SUPPLIER6 PART6 11121

NORTHWEST WASHINGTON SUPPLIER6 PART8 11144

NORTHWEST WASHINGTON SUPPLIER6 PART8 11146

SOUTHEAST FLORIDA SUPPLIER4 PART1 11111

SOUTHEAST FLORIDA SUPPLIER4 PART1 11133

SOUTHEAST FLORIDA SUPPLIER4 PART3 11111

SOUTHEAST FLORIDA SUPPLIER4 PART3 11139

SOUTHEAST FLORIDA SUPPLIER4 PART3 11150

SOUTHEAST FLORIDA SUPPLIER4 PART3 11154

SOUTHEAST FLORIDA SUPPLIER4 PART3 11156

SOUTHEAST FLORIDA SUPPLIER4 PART3 11157

SOUTHEAST FLORIDA SUPPLIER4 PART3 11158

SOUTHEAST FLORIDA SUPPLIER4 PART3 11170

SOUTHEAST FLORIDA SUPPLIER4 PART4 11102

SOUTHEAST FLORIDA SUPPLIER4 PART4 11120

SOUTHEAST FLORIDA SUPPLIER4 PART4 11124

SOUTHEAST FLORIDA SUPPLIER4 PART4 11154

SOUTHEAST FLORIDA SUPPLIER4 PART4 11170

SOUTHEAST FLORIDA SUPPLIER4 PART5 11130

SOUTHEAST FLORIDA SUPPLIER4 PART5 11141

SOUTHEAST FLORIDA SUPPLIER4 PART5 11152

SOUTHEAST FLORIDA SUPPLIER4 PART6 11108

SOUTHEAST FLORIDA SUPPLIER4 PART6 11130

SOUTHEAST FLORIDA SUPPLIER4 PART6 11141

SOUTHEAST FLORIDA SUPPLIER4 PART6 11150

SOUTHEAST FLORIDA SUPPLIER4 PART6 11159

SOUTHEAST FLORIDA SUPPLIER4 PART7 11121

SOUTHEAST FLORIDA SUPPLIER4 PART7 11144

SOUTHEAST FLORIDA SUPPLIER4 PART8 11109

SOUTHEAST FLORIDA SUPPLIER4 PART8 11110

SOUTHEAST FLORIDA SUPPLIER4 PART8 11148

SOUTHEAST GEORGIA SUPPLIER5 PART7 11146

SOUTHEAST GEORGIA SUPPLIER5 PART7 11149

Free SQL Book, Tim Martyn 466 Copyright Pending, 2022

Seven-Table Join

Sample Query 18.10: Extend the preceding Sample Query 18.9 to

display the POSTATUS column in the PUR_ORDER table. Display

the columns in the following left-to-right sequence: RNAME,

STNAME, SNAME, PNAME, PONO, and POSTATUS. Sort the result

by LI.PONO within PNAME within SNAME within STNAME within

RNAME.

Syntax: Nothing new. The FROM-clause references seven tables,

and the WHERE-clause specifies six join-conditions.

Logic: Nothing new. To access the POSTATUS column, we include

the PUR_ORDER table and the corresponding join-condition

(LI.PONO = PO.PONO).

Again, we did not display any columns from the PARTSUPP table

which serves as a link table between the PART and SUPPLIER

tables.

SELECT R.RNAME, ST.STNAME, S.SNAME, P.PNAME,

 LI.PONO, PO.POSTATUS

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S,

 STATE ST,

 REGION R,

 LINEITEM LI,

 PUR_ORDER PO new table

WHERE PS.PNO = P.PNO

AND PS.SNO = S.SNO

AND S.STCODE = ST.STCODE

AND ST.RNO = R.RNO

AND PS.PNO = LI.PNO AND PS.SNO = LI.SNO

AND LI.PONO = PO.PONO new join-condition

ORDER BY R.RNAME, ST.STNAME, S.SNAME, P.PNAME, LI.PONO

Free SQL Book, Tim Martyn 467 Copyright Pending, 2022

RNAME STNAME SNAME PNAME PONO POSTATUS

NORTHEAST CONNECTICUT SUPPLIER3 PART3 11101 C

NORTHEAST CONNECTICUT SUPPLIER3 PART3 11102 P

NORTHEAST CONNECTICUT SUPPLIER3 PART3 11122 P

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11108 C

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11124 P

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11154 C

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11156 C

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 11157 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11101 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11109 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11122 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11148 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11154 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11156 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11158 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 11160 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART5 11120 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART5 11139 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11109 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11130 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11142 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11152 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11159 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 11160 P

NORTHWEST OREGON SUPPLIER8 PART6 11142 C

NORTHWEST OREGON SUPPLIER8 PART8 11149 P

NORTHWEST OREGON SUPPLIER8 PART8 11152 C

NORTHWEST OREGON SUPPLIER8 PART8 11153 P

NORTHWEST OREGON SUPPLIER8 PART8 11155 P

NORTHWEST WASHINGTON SUPPLIER6 PART6 11121 C

NORTHWEST WASHINGTON SUPPLIER6 PART8 11144 P

NORTHWEST WASHINGTON SUPPLIER6 PART8 11146 C

SOUTHEAST FLORIDA SUPPLIER4 PART1 11111 P

SOUTHEAST FLORIDA SUPPLIER4 PART1 11133 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 11111 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 11139 C

SOUTHEAST FLORIDA SUPPLIER4 PART3 11150 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 11154 C

SOUTHEAST FLORIDA SUPPLIER4 PART3 11156 C

SOUTHEAST FLORIDA SUPPLIER4 PART3 11157 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 11158 C

SOUTHEAST FLORIDA SUPPLIER4 PART3 11170 P

SOUTHEAST FLORIDA SUPPLIER4 PART4 11102 P

SOUTHEAST FLORIDA SUPPLIER4 PART4 11120 C

SOUTHEAST FLORIDA SUPPLIER4 PART4 11124 P

SOUTHEAST FLORIDA SUPPLIER4 PART4 11154 C

SOUTHEAST FLORIDA SUPPLIER4 PART4 11170 P

SOUTHEAST FLORIDA SUPPLIER4 PART5 11130 C

SOUTHEAST FLORIDA SUPPLIER4 PART5 11141 P

SOUTHEAST FLORIDA SUPPLIER4 PART5 11152 C

SOUTHEAST FLORIDA SUPPLIER4 PART6 11108 C

SOUTHEAST FLORIDA SUPPLIER4 PART6 11130 C

SOUTHEAST FLORIDA SUPPLIER4 PART6 11141 P

SOUTHEAST FLORIDA SUPPLIER4 PART6 11150 P

SOUTHEAST FLORIDA SUPPLIER4 PART6 11159 C

SOUTHEAST FLORIDA SUPPLIER4 PART7 11121 C

SOUTHEAST FLORIDA SUPPLIER4 PART7 11144 P

SOUTHEAST FLORIDA SUPPLIER4 PART8 11109 P

SOUTHEAST FLORIDA SUPPLIER4 PART8 11110 C

SOUTHEAST FLORIDA SUPPLIER4 PART8 11148 C

SOUTHEAST GEORGIA SUPPLIER5 PART7 11146 C

SOUTHEAST GEORGIA SUPPLIER5 PART7 11149 P

Free SQL Book, Tim Martyn 468 Copyright Pending, 2022

Eight-Table Join

One last time!

Sample Query 18.11: Extend the preceding Sample Query 18.10.

Also display the name of the customer (CNAME) who completed

each purchase order. Display the columns in the following

left-to-right sequence: RNAME, STNAME, SNAME, PNAME, CNAME,

PONO, and POSTATUS. Sort the result by LIPONO within CNAME

within PNAME within SNAME within STNAME within RNAME.

Syntax & Logic: Nothing new. The FROM-clause references eight

tables; the WHERE-clause specifies seven join-conditions.

CUSTOMER is the new table, and the corresponding join-

condition is PO.CNO = C.CNO.

*** “Mechanical” SQL: The previous sample queries are

intended to describe the “mechanics” of using PK-FK

relationships to “follow the yellow brick road” when joining

multiple tables. The following Section D presents a more

conceptual framework for query analysis and related coding

guidelines.

SELECT R.RNAME, ST.STNAME, S.SNAME, P.PNAME, C.CNAME,

 LI.PONO, PO.POSTATUS

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S,

 STATE ST,

 REGION R,

 LINEITEM LI,

 PUR_ORDER PO,

 CUSTOMER C new table

WHERE PS.PNO = P.PNO

AND PS.SNO = S.SNO

AND S.STCODE = ST.STCODE

AND ST.RNO = R.RNO

AND PS.PNO = LI.PNO AND PS.SNO = LI.SNO

AND LI.PONO = PO.PONO

AND PO.CNO = C.CNO new join-condition

ORDER BY R.RNAME, ST.STNAME, S.SNAME, P.PNAME,

 C.CNAME, LI.PONO

Free SQL Book, Tim Martyn 469 Copyright Pending, 2022

RNAME STNAME SNAME PNAME CNAME PONO POSTATUS
NORTHEAST CONNECTICUT SUPPLIER3 PART3 PYTHAGORAS 11101 C

NORTHEAST CONNECTICUT SUPPLIER3 PART3 PYTHAGORAS 11102 P

NORTHEAST CONNECTICUT SUPPLIER3 PART3 ZENO 11122 P

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 BOLYAI 11124 P

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 CANTOR 11154 C

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 EUCLID 11108 C

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 GODEL 11157 P

NORTHEAST MASSACHUSETTS SUPPLIER1 PART5 RUSSELL 11156 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 CANTOR 11154 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 EUCLID 11109 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 PASCAL 11148 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 PYTHAGORAS 11101 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 RUSSELL 11156 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 TURING 11160 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 VON NEUMANN 11158 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART1 ZENO 11122 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART5 LEIBNIZ 11139 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART5 ZENO 11120 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 BOOLE 11152 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 DECARTES 11142 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 EUCLID 11109 P

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 NEWTON 11130 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 TURING 11159 C

NORTHEAST MASSACHUSETTS SUPPLIER2 PART7 TURING 11160 P

NORTHWEST OREGON SUPPLIER8 PART6 DECARTES 11142 C

NORTHWEST OREGON SUPPLIER8 PART8 BOOLE 11152 C

NORTHWEST OREGON SUPPLIER8 PART8 BOOLE 11153 P

NORTHWEST OREGON SUPPLIER8 PART8 CANTOR 11155 P

NORTHWEST OREGON SUPPLIER8 PART8 PASCAL 11149 P

NORTHWEST WASHINGTON SUPPLIER6 PART6 ZENO 11121 C

NORTHWEST WASHINGTON SUPPLIER6 PART8 DECARTES 11144 P

NORTHWEST WASHINGTON SUPPLIER6 PART8 PASCAL 11146 C

SOUTHEAST FLORIDA SUPPLIER4 PART1 HYPATIA 11111 P

SOUTHEAST FLORIDA SUPPLIER4 PART1 NEWTON 11133 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 CANTOR 11154 C

SOUTHEAST FLORIDA SUPPLIER4 PART3 GODEL 11157 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 HILBERT 11150 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 HYPATIA 11111 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 LEIBNIZ 11139 C

SOUTHEAST FLORIDA SUPPLIER4 PART3 RUSSELL 11156 C

SOUTHEAST FLORIDA SUPPLIER4 PART3 TURING 11170 P

SOUTHEAST FLORIDA SUPPLIER4 PART3 VON NEUMANN 11158 C

SOUTHEAST FLORIDA SUPPLIER4 PART4 BOLYAI 11124 P

SOUTHEAST FLORIDA SUPPLIER4 PART4 CANTOR 11154 C

SOUTHEAST FLORIDA SUPPLIER4 PART4 PYTHAGORAS 11102 P

SOUTHEAST FLORIDA SUPPLIER4 PART4 TURING 11170 P

SOUTHEAST FLORIDA SUPPLIER4 PART4 ZENO 11120 C

SOUTHEAST FLORIDA SUPPLIER4 PART5 BOOLE 11152 C

SOUTHEAST FLORIDA SUPPLIER4 PART5 LEIBNIZ 11141 P

SOUTHEAST FLORIDA SUPPLIER4 PART5 NEWTON 11130 C

SOUTHEAST FLORIDA SUPPLIER4 PART6 EUCLID 11108 C

SOUTHEAST FLORIDA SUPPLIER4 PART6 HILBERT 11150 P

SOUTHEAST FLORIDA SUPPLIER4 PART6 LEIBNIZ 11141 P

SOUTHEAST FLORIDA SUPPLIER4 PART6 NEWTON 11130 C

SOUTHEAST FLORIDA SUPPLIER4 PART6 TURING 11159 C

SOUTHEAST FLORIDA SUPPLIER4 PART7 DECARTES 11144 P

SOUTHEAST FLORIDA SUPPLIER4 PART7 ZENO 11121 C

SOUTHEAST FLORIDA SUPPLIER4 PART8 EUCLID 11109 P

SOUTHEAST FLORIDA SUPPLIER4 PART8 HYPATIA 11110 C

SOUTHEAST FLORIDA SUPPLIER4 PART8 PASCAL 11148 C

SOUTHEAST GEORGIA SUPPLIER5 PART7 PASCAL 11146 C

SOUTHEAST GEORGIA SUPPLIER5 PART7 PASCAL 11149 P

Free SQL Book, Tim Martyn 470 Copyright Pending, 2022

D. Query Analysis & Coding Guidelines

Consistent with the tutorial theme of this book, we have

presented sample queries before describing general concepts.

Having presenting examples of multi-table inner-join

operations, we can now offer some general advice about

analyzing and coding such queries. This section attempts to

generalize the query analysis and coding techniques

illustrated by the previous sample queries.

Getting Started: Access & Understand your Data Model

Find your data model. If it exits, Appendix 18D can help you

find it.

No data model? Can’t find your data model? Maybe it’s a big

secret, or maybe it doesn’t exist. Then Appendix 18E (Reverse

Engineering) will help you build it.

Your data model is not hierarchical orientated: If, after

finding/building your data model, it looks like a spaghetti

model (i.e., similar to Figure 18.2), Appendix 18F will show

you how to redraw this model in a hierarchal form (similar to

Figure 18.3).

Understand your data model: Understand the semantics of your

data model, especially as it relates to your query objective.

Hopefully, you have access to documentation that offers a

“business perspective” of your model.

Understand your query objective: Sometimes, articulating a

query objective is not easy. Technical people frequently

criticize business users for failing to articulate precise,

concise, and complete descriptions of their query objectives.

However, this can be difficult. Sometimes, it can be helpful

to present and explain your data model to the business user.

It is very important that you describe this model as a

“business” model which is the foundation of your database

design. Hopefully, this will help you and the business user

to collectively formulate a valid query objective.

Free SQL Book, Tim Martyn 471 Copyright Pending, 2022

“Cookbook” Method for Coding SELECT Statements

This section is overkill for experienced SQL users who already

know their data. However, rookies should read this section.

Here we make explicit some ideas that were implicit in

previous sample queries. The following query objective is

used as an example

For every part that can be purchased from some supplier,

display the part’s number and name, the supplier’s

number and name, and the name of the region where each

supplier resides. Display the columns in a left-to-right

sequence as PNO, PNAME, SNO, SNAME, RNAME. Sort the

result by SNO within PNO.

For tutorial purposes, this query objective does not require

any restrictions, grouping, or summarizing.

Phase-I: Query Analysis

Step-1: Reference your data model. Check off tables that are

relevant to your query objective. This query objective wants

to display the following columns.

RNAME from the REGION table.

PNO and PNAME from the PART table.

SNO and SNAME from the SUPPLIER table.

Hence, we check the REGION, SUPPLIER and PART tables

PARTSUPP

LINEITEM

PART SUPPLIER CUSTOMER

PUR_ORDER

REGION

STATE

Free SQL Book, Tim Martyn 472 Copyright Pending, 2022

Step-2: Identify and check off link tables: Here the STATE

and PARTSUPP tables are link tables.

Preview: Each checkmark indicates that the table will be

referenced in the FROM-clause.

Step-3: Simplify the data model. Only display relevant tables

and relationships. Optionally reposition tables to highlight

hierarchal orientation.

PARTSUPP

PART SUPPLIER

REGION

STATE

PARTSUPP

LINEITEM

PART SUPPLIER CUSTOMER

PUR_ORDER

REGION

STATE

Free SQL Book, Tim Martyn 473 Copyright Pending, 2022

Step-4: Reference your data model (Figure 18.4) to include

details about:

• table aliases

• primary-keys

• relevant columns

• join-conditions

ST.STCODE = S.STCODE

R.RNO = ST.RNO

P.PNO = PS.PNO S.SNO = PS.SNO

PNO

SNO

RNO

RNAME

STCODE

SNO

SNAME

PNO

PNAME

PARTSUPP(PS)

PART (P) SUPPLIER

(S)

REGION (R)

STATE (ST)

Free SQL Book, Tim Martyn 474 Copyright Pending, 2022

Phase-II: Coding SELECT Statement

Code FROM-clause: Try to follow some hierarchical or near-

hierarchical coding pattern.

FROM REGION R,

STATE ST,

SUPPLIER S,

PARTSUPP PS,

PART P

Code Join-Conditions: Specify join-conditions in same order

as tables specified in FROM-clause.

WHERE R.RNO = ST.RNO

AND ST.STCODE = S.STCODE

AND S.SNO = PS.SNO

AND PS.PNO = P.PNO

Code SELECT-clause:

SELECT P.PNO, P.PNAME, S.SNO, S.SNAME, R.RNAME

Code ORDER BY clause:

ORDER BY P.PNO, S.SNO

Assemble the above code fragments:

SELECT P.PNO, P.PNAME, S.SNO, S.SNAME, R.RNAME

FROM REGION R,

STATE ST,

SUPPLIER S,

PARTSUPP PS,

PART P

WHERE R.RNO = ST.RNO

AND ST.STCODE = S.STCODE

AND S.SNO = PS.SNO

AND PS.PNO = P.PNO

ORDER BY P.PNO, S.SNO

Note: This join-result could serve as an intermediate result

for a more complex query objective that requires you to

specify built-in functions, restrictions, grouping, or

summarizing. See the following Section-E.

Free SQL Book, Tim Martyn 475 Copyright Pending, 2022

Exercises

3-Table Join Operations

18A. Display the name of every customer, followed by the name

of the state, and the name of the region where the

customer is located. Display the result in ascending

sequence by customer name

18B. Display the name of every supplier, followed by the names

of the region and state where the supplier is located.

Display the result in ascending sequence by supplier

name.

18C. For every supplier who can sell your organization some

part, display the supplier number and name, the part

number and name, and the price you will pay to the

supplier for the part. Display the columns in the

following left-to-right sequence: SNO, SNAME, PNO,

PNAME, and PSPRICE. Sort the result by SNO, PNO.

4-Table Join Operations

18D. We are only interested in customers who have one or more

purchase orders. Display the customer’s number and name,

followed by the name of the state and the name of the

region where the customer is located, followed by the

date of the purchase order. Display the result in

ascending sequence by purchase order date within

customer number.

18E. For every part that you can purchase from some supplier,

display the part number and name, followed by the

supplier number and name, followed by the name of the

state where the supplier is located, followed by the

price you will pay (PSPRICE) to the supplier for the

part. Sort the result by PNO, SNO.

Free SQL Book, Tim Martyn 476 Copyright Pending, 2022

5-Table Join Operations

18F. We are only interested in customers who have purchased

parts. (These are customers who have completed a

purchase order with line items. Recall that some

purchase orders may not have any line items.) Display

the customer’s name, followed by the name of the state

and the name of the region where the customer is located,

followed by the date of the purchase order, followed by

the part number of the purchased part. Display the result

in ascending sequence by CNAME, PODATE, PNO.

18G. We are only interested in parts that you can purchase

from some supplier. For these parts, display the part

number and name, followed by the price you will pay of

the part, followed by the number and name of the supplier

who will sell you this part at this price. Also include

the names of the state and region where the supplier is

located. Display the result in ascending sequence by

price with part number.

Free SQL Book, Tim Martyn 477 Copyright Pending, 2022

6-Table and 7-Table Join Operations

18H. We are only interested in customers who have purchased

parts. (These are customers who have completed a

purchase order with line items. Recall that some

purchase orders may not have any line items.) Display

the customer’s name, followed by the names of the state

and region where the customer is located, followed by

the purchase order number, followed by the part number,

line-item price (LIPRICE) and purchase price (PSPRICE)

of the part. Display the result in ascending sequence by

CNAME, PONO, PNO.

18I. This example extends the previous Exercise 18H. We are

only interested in customers who have purchased parts.

(These are customers who have completed a purchase order

with line items. Recall that some purchase orders may

not have any line items.) Display the customer’s name,

followed by the names of the state and region where the

customer is located, followed by the purchase order

number, followed by the part number and name, followed

by the line-item price (LIPRICE) and purchase price

(PSPRICE) of the part. Display the result in ascending

sequence by CNAME, PONO, PNO.

Free SQL Book, Tim Martyn 478 Copyright Pending, 2022

E. Join with Other Operations

Previous sample queries and exercises that specified multi-

table join-operations did not include any restriction,

grouping, or summary operations. Sample queries presented in

this section include these operations. The following sample

query joins three tables and specifies a restriction.

Sample Query 18.12: We are only interested in parts with a

PSPRICE value that exceeds $10.00. For every such part

that you can purchase from some supplier, display the

part’s number and name, the supplier’s number and name,

and the supplier’s price for the part. Display the

columns in the following left-to-right sequence: PNO,

PNAME, SNO, SNAME, and PSPRICE. Sort the result by SNO

within PNO.

PNO PNAME SNO SNAME PSPRICE

P1 PART1 S2 SUPPLIER2 10.50

P1 PART1 S4 SUPPLIER4 11.00

P3 PART3 S3 SUPPLIER3 12.00

P3 PART3 S4 SUPPLIER4 12.50

P4 PART4 S4 SUPPLIER4 12.00

P5 PART5 S4 SUPPLIER4 11.00

Syntax: Nothing new. The restriction (PS.PSPRICE > 10.00) is

AND-connected to the join-conditions.

Logic: Logically, the system performs the three-table join to

form an intermediate join-result. Then it applies the

restriction operation to this intermediate result to produce

the final result.

SELECT P.PNO, P.PNAME,

 S.SNO, S.SNAME,

 PS.PSPRICE

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S

WHERE P.PNO = PS.PNO

AND PS.SNO = S.SNO

AND PS.PSPRICE > 10.00

ORDER BY P.PNO, S.SNO

S P

SP

 join-conditions

 restriction

Free SQL Book, Tim Martyn 479 Copyright Pending, 2022

The following sample query executes four join-operations to

join five tables, followed by two restriction-operations.

Sample Query 18.13: We are only interested in pink parts that

you can purchase from some supplier located in the

Northeast Region. Display the part number and name, the

supplier number and name, and the price you will pay to

the supplier for the part. Also display the name of the

state where the supplier is located. Display the columns

in the following left-to-right sequence: STNAME, SNO,

SNAME, PNO, PNAME, and PSPRICE. Sort the result by PNO

within SNO within STNAME.

STNAME SNO SNAME, PNO PNAME PSPRICE

CONNECTICUT S3 SUPPLIER3 P3 PART3 12.00

MASSCHUSETTS S2 SUPPLIER2 P7 PART7 2.00

Syntax & Logic: Nothing new. Notice that the query objective

did not ask you to display RNAME and PCOLOR values. This means

that you cannot “eyeball” the result table to verify that you

only selected pink parts from the Northeast Region. When

testing your statement, consider displaying the RNAME and

PCOLOR columns. You can easily remove them after you are

satisfied that your logic is correct. Also, many front-end

query/reporting tools allow you to remove columns from a

report without re-executing the SELECT statement.

SELECT ST.STNAME, S.SNO, S.SNAME,

 P.PNO, P.PNAME, PS.PSPRICE

FROM REGION R, STATE ST, SUPPLIER S,

 PARTSUPP PS, PART P

WHERE R.RNO = ST.RNO

AND ST.STCODE = S.STCODE

AND S.SNO = PS.SNO

AND PS.PNO = P.PNO

AND P.PCOLOR = 'PINK '

AND R.RNAME = 'NORTHEAST '

ORDER BY ST.STNAME, S.SNO, P.PNO

 join-conditions

 restrictions

R

ST

S P

SP

Free SQL Book, Tim Martyn 480 Copyright Pending, 2022

Restriction, Grouping, and Summarizing on Join Result

The following sample query performs a five-table join, but

only displays data from two tables. It also forms groups and

calculates group averages.

Sample Query 18.14: Exclude from consideration any pink part

where the supplier’s price exceeds $11.00. For each region

with a supplier who supplies at least one part, display the

region number and name, followed by the average price you

pay for parts available in that region.

RNO RNAME AVG(PSPRICE)

1 NORTHEAST 8.12

2 NORTHWEST 3.70

3 SOUTHEAST 7.07

Syntax: Nothing New.

Logic: This modestly complex query entails a five-table join.

Region numbers and names are in REGION. Supplier prices

(PSPRICE) are in PARTSUPP. Figure 18.4 shows that the query

path from REGION to PARTSUPP travels through STATE and

SUPPLIER. Hence, we must access REGION, STATE, SUPPLIER, and

PARTSUPP. Then, our navigational logic requires “one more

hop” to PART because the restriction references PCOLOR.

After the applying the join and restriction operations, the

system groups by RNO and RNAME and calculates the average

PSPRICE for each group.

SELECT R.RNO, R.RNAME, AVG (PS.PSPRICE)

FROM REGION R, STATE ST, SUPPLIER S,

 PARTSUPP PS, PART P

WHERE R.RNO = ST.RNO

AND ST.STCODE = S.STCODE

AND S.SNO = PS.SNO

AND P.PNO = PS.PNO

AND NOT (P.PCOLOR = 'PINK' AND PS.PSPRICE > 11.00)

GROUP BY R.RNO, R.RNAME

R

ST

S P

PS

Free SQL Book, Tim Martyn 481 Copyright Pending, 2022

Exercises

Begin each exercise by determining which tables your SELECT

statement must reference. Then draw a skeleton data model

that represents these tables.

18J. We are only interested in customers having names that

begin with the letter “B”. Display the customers’ name,

followed by the name of the state and the name of the

region where the customer is located. Display the result

in ascending sequence by customer name.

18K. We are only interested in suppliers who are located in

Florida (STCODE = ‘FL’) who sell parts having a weight

(PWT) that is less than 20 pounds. Display each

supplier’s number and name, followed by the part number,

name, and weight, followed by the price you will pay to

the supplier for the part. Sort the result by SNO, PNO.

18L. The basic objective is to determine total number of parts

each customer has purchased. This amount is equal to sum

of the LINEITEM.QTY values for each customer. Display

the customer’s number followed by the total number of

parts purchased. Sort the result in ascending sequence

by customer number.

18M. This example is a minor modification to the previous

exercise (18L). Along with the customer number, we also

want to display the customer name and state code. (This

exercise is really a review of grouping.)

18N. This example extends the previous exercise (18M). We

only want to display information about those customers

who have purchased a total of more than 100 parts.

Free SQL Book, Tim Martyn 482 Copyright Pending, 2022

Join on Non-PK-FK Relationship

The following sample query executes a two-table join-

operation that is not based a primary-key/foreign-key

relationship. (This kind of join-operation is illustrated by

a dashed-line in the following data model.)

Sample Query 18.15.1: What customers and suppliers reside in

the same state? For each pair of co-located customers and

suppliers, display the state code, followed by the

customer’s number and name, followed by the supplier’s

number and name. Sort the result by SNO within CNO within

STCODE.

STCODE CNO CNAME SNO SNAME

FL 600 BOOLE S4 SUPPLIER4

FL 660 CANTOR S4 SUPPLIER4

GE 700 RUSSELL S5 SUPPLIER5

GE 770 GODEL S5 SUPPLIER5

MA 100 PYTHAGORAS S1 SUPPLIER1

MA 100 PYTHAGORAS S2 SUPPLIER2

MA 110 EUCLID S1 SUPPLIER1

MA 110 EUCLID S2 SUPPLIER2

MA 200 HYPATIA S1 SUPPLIER1

MA 200 HYPATIA S2 SUPPLIER2

MA 220 ZENO S1 SUPPLIER1

MA 220 ZENO S2 SUPPLIER2

 {another 10 rows for a total of 22 rows}

Syntax and Logic: Nothing new. Note that the MTPCH data model

(Figure 18.4) does not show any direct relationship between

the CUSTOMER and SUPPLIER tables. Also, neither C.STCODE nor

S.STCODE is the primary-key of its table.

The following Sample Query 18.15.2 extends this sample query

into a three-table join-operation.

SELECT C.STCODE, C.CNO, C.CNAME,

 S.SNO, S.SNAME

FROM CUSTOMER C, SUPPLIER S

WHERE C.STCODE = S.STCODE

ORDER BY C.STCODE, C.CNO, S.SNO

 join-condition

C S

Free SQL Book, Tim Martyn 483 Copyright Pending, 2022

The following sample query enhances the previous Sample Query

18.15.1 to display state names instead of state codes. This

requires a three-table join.

Sample Query 18.15.2: What customers and suppliers reside in

the same state? For each pair of collocated customers and

suppliers, display the state’s name, followed by the

customer’s number and name, followed by the supplier’s

number and name. Sort the result by SNO within CNO within

STNAME.

 STNAME CNO CNAME SNO SNAME

 FLORIDA 600 BOOLE S4 SUPPLIER4

 FLORIDA 660 CANTOR S4 SUPPLIER4

 GEORGIA 700 RUSSELL S5 SUPPLIER5

 GEORGIA 770 GODEL S5 SUPPLIER5

 MASSACHUSETTS 100 PYTHAGORAS S1 SUPPLIER1

 MASSACHUSETTS 100 PYTHAGORAS S2 SUPPLIER2

 MASSACHUSETTS 110 EUCLID S1 SUPPLIER1

 MASSACHUSETTS 110 EUCLID S2 SUPPLIER2

 MASSACHUSETTS 200 HYPATIA S1 SUPPLIER1

 MASSACHUSETTS 200 HYPATIA S2 SUPPLIER2

 MASSACHUSETTS 220 ZENO S1 SUPPLIER1

 MASSACHUSETTS 220 ZENO S2 SUPPLIER2

 {another 10 rows for a total of 22 rows}

Syntax and Logic: This statement references the STATE table

to access the STNAME column. It joins the STATE and CUSTOMER

on their PK-FK relationship, and joins CUSTOMER and SUPPLIER

and its common column (STCODE).

SELECT ST.STNAME, C.CNO, C.CNAME, S.SNO, S.SNAME

FROM STATE ST, CUSTOMER C, SUPPLIER S

WHERE ST.STCODE = C.STCODE

AND C.STCODE = S.STCODE

ORDER BY ST.STNAME, C.CNO, S.SNO

C S

ST

Free SQL Book, Tim Martyn 484 Copyright Pending, 2022

Each result table row in Sample Queries 18.15.1 and 18.15.2

displayed information about a customer and a supplier who

reside in the same state. Some of these co-located pairs of

customers and suppliers included a customer who never

purchased a part from the supplier. The following sample query

excludes such pairs of customers and suppliers.

Sample Query 18.16: Which customers have purchased at least

one part that was sold by a supplier who resides in the

same state as the customer? For each such pair of co-located

customers and suppliers, display the state code, followed

by the customer’s number and name, followed by the

supplier’s number and name. Sort the result by SNO within

CNO within STCODE.

///////

STCODE CNO CNAME SNO SNAME

FL 600 BOOLE S4 SUPPLIER4

FL 660 CANTOR S4 SUPPLIER4

MA 100 PYTHAGORAS S2 SUPPLIER2

MA 110 EUCLID S1 SUPPLIER1

MA 110 EUCLID S2 SUPPLIER2

MA 220 ZENO S2 SUPPLIER2

MA 230 BOLYAI S1 SUPPLIER1

WA 400 DECARTES S6 SUPPLIER6

WA 440 PASCAL S6 SUPPLIER6

SELECT DISTINCT C.STCODE,

 C.CNO, C.CNAME, S.SNO, S.SNAME

FROM CUSTOMER C,

 PUR_ORDER PO,

 LINEITEM LI,

 SUPPLIER S

WHERE C.CNO = PO.CNO

AND PO.PONO = LI.PONO

AND LI.SNO = S.SNO

AND C.STCODE = S.STCODE

ORDER BY C.STCODE, C.CNO, S.SNO

Free SQL Book, Tim Martyn 485 Copyright Pending, 2022

Logic: Query analysis is described by referencing the

following data model. Consider a single customer (CUSTOMER)

who resides in some state (identified by a STCODE value). If

this customer issued a purchase-order (PUR_ORDER) with a

line-item (LINEITEM) that specifies a combination of PNO-SNO

values where the SNO value identifies a supplier (SUPPLER)

with the same STCODE value, then this customer purchased a

part from a collocated supplier. Therefore, join-operations

must traverse following tables

Notice there is no direct PK-FK relationship between the

LINEITEM and SUPPLIER tables. The join-condition (AND LI.SNO

= S.SNO) is based upon a valid indirect relationship between

these tables. The arrow in the above figure represents this

coding “shortcut” which bypasses the PARTSUPP table that is

not referenced in the SELECT statement.

Be careful with shortcuts. This shortcut is valid because:

 LINEITEM.SNO matches PARTSUPP.SNO which matches SUPPLIER.SNO

Also, notice that we must specify DISTINCT because the

customer could make multiple purchases from the same co-

located supplier.

SUPPLIER (S)

SNO

SNAME

...

STCODE (FK)

CUSTOMER (C)

CNO

CNAME

...

STCODE (FK)

PO.PONO=LI.PONO

LI.SNO and S.SNO

C.CNO=PO.CNO

PUR_ORDER (PO)

PONO

...

CNO (FK)

PARTSUPP (PS)

PNO (FK)
SNO (FK)

...

LINEITEM (LI)

PONO (FK)

LINE

PNO (FK)

SNO (FK)

...

Free SQL Book, Tim Martyn 486 Copyright Pending, 2022

F. JOIN-ON Syntax

We review the JOIN-ON syntax by joining the PART and PARTSUPP

tables.

 SELECT *

 FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

The JOIN-ON syntax can join any number of tables. The

following statement extends the above statement to include

the SUPPLIER table within a three-table join.

 SELECT *

 FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

Also, parentheses can be specified to enhance readability.

 SELECT *

 FROM (PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO)

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

Below, we rewrite Sample Queries 18.7 (four-table join) and

18.8 (five-table join) using the JOIN-ON syntax.

Exercise:

18O. Rewrite Sample Queries 18.9 and 18.10 using the JOIN-ON

syntax.

Sample Query 18.8

SELECT R.RNAME, ST.STNAME, S.SNO, S.SNAME,

 P.PNO, P.PNAME, PS.PSPRICE

FROM PARTSUPP PS INNER JOIN PART P ON PS.PNO = P.PNO

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

 INNER JOIN STATE ST ON S.STCODE = ST.STCODE

 INNER JOIN REGION R ON ST.RNO = R.RNO

ORDER BY R.RNAME, ST.STNAME, S.SNO, P.PNO

Sample Query 18.7

SELECT ST.STNAME, S.SNO, S.SNAME, P.PNO, P.PNAME, PS.PSPRICE

FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

 INNER JOIN STATE ST ON S.STCODE = ST.STCODE

ORDER BY ST.STNAME, S.SNO, P.PNO

Free SQL Book, Tim Martyn 487 Copyright Pending, 2022

Inner-Join with Restriction

The previous chapter discussed inner-join and restriction

within the context of two-table join-operations. Here we

extend the same concepts to multi-table join-operations.

The following four statements are equivalent. They use the

JOIN-ON syntax to satisfy Sample Query 18.12. Statement-

18.12a rewrites the original FROM-WHERE statement using the

JOIN-ON syntax. Statement-18.12b specifies the restriction

(PS.PSPRICE > 10.00) using AND instead of WHERE. Statement-

18.12c moves the restriction immediately after the join-

condition for PART and PARTSUPP to “visually associate” the

restriction on PARTSUPP with this join-operation. (This is

more than a mere visual association. See the next page.)

Statement-18.12d adds parentheses to Statement 18.12c.

Statement-18.12a

SELECT P.PNO, P.PNAME, S.SNO, S.SNAME, PS.PSPRICE

FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

WHERE PS.PSPRICE > 10.00

ORDER BY P.PNO, S.SNO

Statement-18.12b

SELECT P.PNO, P.PNAME, S.SNO, S.SNAME, PS.PSPRICE

FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

AND PS.PSPRICE > 10.00

ORDER BY P.PNO, S.SNO

Statement-18.12c

SELECT P.PNO, P.PNAME, S.SNO, S.SNAME, PS.PSPRICE

FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

 AND PS.PSPRICE > 10.00

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

ORDER BY P.PNO, S.SNO

Statement-18.12d

SELECT P.PNO, P.PNAME, S.SNO, S.SNAME, PS.PSPRICE

FROM (PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

 AND PS.PSPRICE > 10.00)

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

ORDER BY P.PNO, S.SNO

Free SQL Book, Tim Martyn 488 Copyright Pending, 2022

ON-CLAUSE with Compound Join-Condition

The FROM-clause in the preceding Statement-18.12c specified

AND PS.PSPRICE > 10.00 immediately after ON P.PNO = PS.PNO.

 FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

 AND PS.PSPRICE > 10.00

 INNER JOIN SUPPLIER S ON PS.SNO = S.SNO

On the preceding page, we stated that AND PS.PSPRICE > 10.00

is visually associated with the join of PART and PARTSUPP.

This is true. However, this is more than visual association.

To be precise, the ON-clause for the join of PART and PARTSUPP

is a compound join-condition.

 PART P INNER JOIN PARTSUPP PS

 ON P.PNO = PS.PNO AND PS.PSPRICE > 10.00

This means that the PSPRICE > 10.00 comparison is implemented

during the join-operation. This differs from Statements

18.12a and 18.12b where the PSPRICE > 10.00 comparison is

(logically) executed after the PART, PARTSUPP, and SUPPLIER

tables have been joined.

Efficiency Observation (Optional Reading): Again, Statements

18-12a, 18-12b, 18-12c, and 18-12d are all equivalent.

However, you might observe that Statements 18.12c and 18.12d

could be more efficient than Statements 18.12a and 18.12b

because they execute of the PS.PSPRICE > 10.00 condition

earlier, and hence they would return a smaller join-result

for the join of the PART and PARTSUPP tables. A detail

discussion of this efficiency consideration was presented in

Appendix 17C.

Free SQL Book, Tim Martyn 489 Copyright Pending, 2022

Another Example: The following four statements are

equivalent. They use the JOIN-ON syntax to satisfy Sample

Query 18.13.

Statement-18.13a

SELECT R.RNAME, ST.STNAME, S.SNO, S.SNAME,

 P.PNO, P.PNAME, PS.PSPRICE

FROM REGION R INNER JOIN STATE ST ON R.RNO = ST.RNO

 INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

 INNER JOIN PARTSUPP PS ON S.SNO = PS.SNO

INNER JOIN PART P ON PS.PNO = P.PNO

WHERE P.PCOLOR = 'PINK'

AND R.RNAME = 'NORTHEAST'

ORDER BY R.RNAME, ST.STNAME, S.SNO, P.PNO

Statement-18.13b

SELECT R.RNAME, ST.STNAME, S.SNO, S.SNAME,

 P.PNO, P.PNAME, PS.PSPRICE

FROM REGION R INNER JOIN STATE ST ON R.RNO = ST.RNO

 INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

 INNER JOIN PARTSUPP PS ON S.SNO = PS.SNO

INNER JOIN PART P ON PS.PNO = P.PNO

AND P.PCOLOR = 'PINK'

AND R.RNAME = 'NORTHEAST'

ORDER BY R.RNAME, ST.STNAME, S.SNO, P.PNO

Statement-18.13c

SELECT R.RNAME, ST.STNAME, S.SNO, S.SNAME,

 P.PNO, P.PNAME, PS.PSPRICE

FROM REGION R INNER JOIN STATE ST ON R.RNO = ST.RNO

 AND R.RNAME = 'NORTHEAST'
 INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

 INNER JOIN PARTSUPP PS ON S.SNO = PS.SNO

INNER JOIN PART P ON PS.PNO = P.PNO

 AND P.PCOLOR = 'PINK'

ORDER BY R.RNAME, ST.STNAME, S.SNO, P.PNO

Statement-18.13d

SELECT R.RNAME, ST.STNAME, S.SNO, S.SNAME,

 P.PNO, P.PNAME, PS.PSPRICE

FROM (((REGION R INNER JOIN STATE ST ON R.RNO = ST.RNO

 AND R.RNAME = 'NORTHEAST')

 INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE)

 INNER JOIN PARTSUPP PS ON S.SNO = PS.SNO)

INNER JOIN PART P ON PS.PNO = P.PNO

 AND P.PCOLOR = 'PINK'

ORDER BY R.RNAME, ST.STNAME, S.SNO, P.PNO

Free SQL Book, Tim Martyn 490 Copyright Pending, 2022

SUMMARY

This chapter did not introduce any new SQL keywords or

techniques. All examples merely extended two-table join

concepts and techniques to satisfy queries that required

joining three or more tables.

SQL Redundancy: This chapter demonstrated that, given a query

objective, you may be able to code many different SELECT

statements to satisfy the query objective. Future chapters

will present even more ways to satisfy many of this chapter’s

sample queries. This “SQL redundancy” can lead to maintenance

problems. You will use your preferred coding style when

writing your own SELECT statements. However, you might be

asked to change statements written by other users. Therefore,

you should understand all variations of coding SELECT

statements.

Summary Exercises

18P. Consider all customers. Display each customer’s location

(region name and state name) followed by the customer’s

name. Display the result in ascending sequence by

customer name within region name.

18Q. Only consider regions that have suppliers. Display the

name of the region name followed by the name of the

supplier. Display the result in ascending sequence by

supplier name within region name.

18R. Only consider Massachusetts (STCODE=‘MA’) customers that

have completed a purchase order. For each such customer,

display the customer’s name, and the number of purchase

orders the customer has completed. (This only requires

a two-table join. This exercise sets the stage for the

next two exercises.)

Free SQL Book, Tim Martyn 491 Copyright Pending, 2022

18S. Only consider customers located in Region 3 (RNO=3) that

have completed a purchase order. For each such customer,

display the customer’s name, and the number of purchase

orders the customer has completed.

18T. Reconsider the preceding exercise. You realize that

customer names (CNAME values) are not necessarily

unique. Revise the query objective to state: Only

consider customers located in Region 3 (RNO=3) that have

completed a purchase order. For each such customer,

display the customer’s number and name, followed by the

number of purchase orders the customer has completed.

18U. How many parts were sold in states that are located in

the Northeast or Southeast regions? Display the region

name, followed by the state name, followed by the total

quantity of parts sold in the state. Sort the result in

ascending sequence by state name within region name.

18V. Display the region name and state name, followed by the

total quantity of parts sold in the state if that

quantity exceeds 100. Sort the result in ascending

sequence by state name within region name.

18W. Extend Sample Query 18.16 to display state names instead

of state codes: What customers have purchased parts

that were sold to your company by a supplier who resides

in the same state as the customer? For each such pair of

co-located customers and suppliers, display the state

name, followed by the customer’s number and name,

followed by the supplier’s number and name. Sort the

result by SNO within CNO within STCODE.

Free SQL Book, Tim Martyn 492 Copyright Pending, 2022

Overview of Chapter 18 Appendices

SQL Efficiency

Appendix 18A: Efficiency – More about Optimization

Appendix 18B: Theory

Appendix 18C: Theory & Efficiency

Accessing Data Models

Appendix 18D: Finding Your Data Model

Appendix 18E: Reverse Engineering

Appendix 18F: Hierarchically Oriented Data Models

Free SQL Book, Tim Martyn 493 Copyright Pending, 2022

Appendix 18A: Efficiency – More about Optimization

Join-Sequence: Assume the system must join three tables (T1,

T2, and T3) that lie on a hierarchical path. (I.e., T2 has a

foreign-key that reference T1, and T3 has a foreign-key that

references T2.)

Regardless of the join-syntax, the optimizer must decide

which two tables to join first. The basic efficiency strategy

is to initially generate the smaller intermediate join-result

by selecting the most efficient join-sequence. Here, the join-

sequence question is: Should the optimizer tell the system to

initially join tables T1 and T2, and then join table T3; or,

should the optimizer tell the system to initially join tables

T2 and T3, and then join table T1.

Below we consider two possible scenarios that do not involve

any restriction operations. We also assume there is no

significant difference in the length of the rows in the three

tables.

Scenrio-1: Assume that, for some unknown reason, the data

dictionary does not contain statistics about the size of the

tables. In this circumstance, T1 (the parent-table) will

usually have fewer rows than T2 (the child table) unless there

are many T1 parent rows without children. Likewise, T2 will

usually have fewer rows than T3 unless there are many T2

parent rows without children. Hence, the optimizer favors

initially joining the smaller tables, T1 and T2.

T1

T2

T3

Join first?

Join first?

Free SQL Book, Tim Martyn 494 Copyright Pending, 2022

Scenario-2: Assume the optimizer knows the row count for each

table. In this circumstance, because of the PK-FK

relationships, the optimizer knows the exact size of both

join-results.

 Row Count for (T1 join T2) = Row count of T2

 Row Count for (T2 join T3) = Row count of T3

The optimizer will start with the join-operation associated

with the smaller row count.

Join Methods: The optimizer must choose a join-method for

each join-operation. (Appendix 17A discussed the Nested-Loop

and the Sort-Merge methods.) For example, given a three-table

join, the optimizer might decide to use the Nested-Loop Method

for the first join-operation and the Sort-Merge Method for

the second join-operation.

Most systems support at least four join methods. Consider a

six-table join involving five join-operations. Assuming the

choice of 4 methods for each of the five join-operations, the

number of possible options is 20 (5*4).

More Complexity: The above query analysis is overly

simplified. When the optimizer considers join-sequence and

join-methods, it also considers restrictions against any of

the tables. (We ignored these considerations.) The optimizer

will also consider possible indexes that could possibly help

some restriction-operations and join-operations. (We ignored

these considerations.)

Free SQL Book, Tim Martyn 495 Copyright Pending, 2022

Appendix 18B: Theory

We take you back to junior high school to review some

mathematical buzzwords that you may not have not heard in a

long time. These buzzwords are “commutative,” “associative,”

and “transitive.” Before discussing these terms in the context

of SQL, we review each term in the context of everyday

arithmetic.

1. Commutative Law of Addition: Example - If you know that

2+3 equals some value, then you can conclude that 3+2

equals the same value.

 2 + 3 = 3 + 2

 Generally: a + b = b + a

 Multiplication is also commutative. But subtraction and

division are not commutative.

2. Associative Law of Addition: Example - Assume you

calculate (23+1) and add 99 to obtain a result. The

associative law says you will get the same result if you

add 23 to (1+99).

 (23 + 1) + 99 = 23 + (1 + 99)

 Generally: (a + b) + c = a + (b + c)

 Multiplication is also associative. But subtraction and

division are not associative.

3. Transitive Law of Equality: Example - If you know that

Albert (A) weighs the same as Bob (B), and Bob weighs that

same as Charlie (C), then you can conclude that Albert

weighs the same as Charlie.

 If A = B and B = C then A = C

 Greater-than (>) and Less-than (<) are also transitive.

But not-equal (<>) is not transitive.

The following page will apply these mathematical concepts to

the inner-join operation.

Free SQL Book, Tim Martyn 496 Copyright Pending, 2022

Inner-Join is Commutative: In Appendix 17A, we noted that, when

joining tables T1 and T2, the optimizer could designate either

table as the driving table. More formally, this means that the

inner-join obeys the Commutative Law.

 (T1 JOIN T2) = (T2 JOIN T1)

The equals (=) sign means the join operations produce the same

result set (ignoring any differences in row or column

sequence.)

Inner-Join is Associative: In the previous Appendix 18A, we

noted that, when joining tables T1, T2, and T3 that lie along

a hierarchy, the optimizer could initially join T1 and T2.

Alternatively, the optimizer could initially join T2 and T3.

More formally, this means that the inner-join obeys the

Associative Law.

 (T1 JOIN T2) JOIN T3 = T1 JOIN (T2 JOIN T3)

AND-Conditions of Equality obey the Transitive Law: Assume your

SELECT statement contained the following two join-conditions.

 SELECT *

 FROM T1, T2, T3

 WHERE T1.A = T2.B

 AND T2.B = T3.C

The optimizer could apply the transitive law to deduce that:

 T1.A = T3.C

The following Appendix 18C will discuss the advantage of this

kind of logical deduction.

Free SQL Book, Tim Martyn 497 Copyright Pending, 2022

Appendix 18C: Theory & Efficiency

This appendix shows how the optimizer can capitalize on the

Transitive Law. Consider the join-conditions in the WHERE-

clause for Sample Query 18.15.2.

WHERE ST.STCODE = C.STCODE

AND C.STCODE = S.STCODE

The optimizer applies the Transitive Law to conclude that:

ST.STCODE = S.STCODE

This allows the optimizer to replace the original WHERE-

clause with one of the following equivalent WHERE-clauses.

WHERE ST.STCODE = C.STCODE

AND ST.STCODE = S.STCODE

WHERE C.STCODE = S.STCODE

AND ST.STCODE = S.STCODE

This could be beneficial if the new condition (ST.STCODE =

S.STCODE) produces a smaller intermediate join-result.

Author Comment: Discussion of this example has motivated some

students to ask: “Should I include a redundant a join-

condition in my WHERE-clause, as illustrated below?“

WHERE ST.STCODE = C.STCODE

AND C.STCODE = S.STCODE

AND ST.STCODE = S.STCODE

Many years ago, when optimizers were not so smart, I answered

“yes-maybe”. Today, with smarter optimizers, I answer “no”

because logically redundant code can be confusing, and we can

assume optimizers will apply the Transitive Law to make the

same deduction shown above.

Free SQL Book, Tim Martyn 498 Copyright Pending, 2022

 Example: Given the following statement.

 SELECT ENAME, DNAME

 FROM EMPLOYEE E, DEPARTMENT D

 WHERE D.DNO = E.DNO

 AND E.DNO = 20

 AND E.SALARY > 2500

The algebraic operations for this statement are:

 TEMP1 RESTRICT EMPLOYEE WHERE DNO = 20 AND SALARY > 2500

 [ENAME, DNO]

 TEMP2 DEPARTMENT JOIN TEMP1

 RESULT TEMP2 [ENAME, DNAME]

Notice that the JOIN operation compares on all rows in the

DEPARTMENT table. A more efficient plan is described below.

- - - - - - - - - - - - - - - - - -

The optimizer applies the Transitive Law to deduce that D.DNO

= 20, and enhances the WHERE-clause such that it looks like:

 SELECT ENAME, DNAME

 FROM EMPLOYEE E, DEPARTMENT D

 WHERE E.DNO = E.DNO

 AND E.DNO = 20

 AND E.SALARY > 2500.00

 AND D.DNO = 20

The algebraic operations for this statement are:

 TEMP1 RESTRICT EMPLOYEE WHERE DNO = 20 AND SALARY > 2500

 [ENAME]

 TEMP2 RESTRICT DEPARTMENT WHERE DNO = 20 [DNAME]

 RESULT TEMP1 CROSS TEMP2

Notice that TEMP2 has just one row because DNO is the primary

key of DEPARTMENT. (Also, the search of DEPARTMENT is fast

because it uses the primary-key index.) Hence the subsequent

CROSS operation involves just one TEMP2 row, and there is no

need to compare on DNO values.

Free SQL Book, Tim Martyn 499 Copyright Pending, 2022

Appendix 18D: Finding Your Data Model

Assume it is your first day on the job, or your first day as

a consultant at some job site. Before you code your first SQL

statement, you should find the relevant data model. How do

you do this?

Ask someone (a colleague, supervisor, or DBA). You could be

told to:

• Examine relevant “paper” documentation. Or,

• Access the database design tool that was used to design

and create the database. Then print a screenshot of the

data model. Or,

• Use your front-end query tool to “reverse engineer”

tabular metadata into a graphical data model.

However, sometimes none of the above methods are available.

The paper data model never existed or has become obsolete, or

the database was not designed using a database design tool,

or your query tool does not support reverse engineering. In

this case you should try some do-it-yourself reverse

engineering as described in the following Appendix 18E.

Free SQL Book, Tim Martyn 500 Copyright Pending, 2022

Appendix 18E: Reverse Engineering

Objective: Follow some reverse engineering process to build

a valid data model that represents a given set of database

tables. Reverse engineering usually produces a spaghetti

model that looks like Figure 18.2. The following Appendix 18F

shows how to transform this spaghetti model into a

hierarchical model.

Preliminary Step: Access the metadata that describes your

database tables. Today, most front-end query tools provide

some kind of “Metadata Panel” as described back in Chapter 1.

Alternatively, if available, you could use the metadata

embodied within the CREATE TABLE statements that created the

database tables. We outline both methods.

A. Reverse Engineering using Query Tool Meta-Data

The Metadata Panel allows you to discover the names of all

tables in the database, the column-names and data-types of all

columns in these tables, and other relevant information,

especially information about primary-keys and foreign-keys.

Some metadata panels, like the following Frame-1, will list

all types of database objects (e.g., tables, users, indexes,

stored procedures, etc.).

Because we are interested in tables, you would click of the

TABLES item. This would trigger the display of Frame-2 which

shows a list of all table-names (or maybe just the names of

tables that you can access). This list of tables includes the

CUSTOMER table and other relevant tables in MTPC database.

This list could also include the names of some irrelevant

tables (e.g., BIRD, FISH, REPTILE) that were created in this

database; or it could include some other important tables

(e.g., DEPARTMENT, EMPLOYEE, PROJECT) that are not

immediately relevant for your query objectives. This list of

table-names is probably displayed in alphabetical sequence.

Frame-1
Frame-2

Frame-3

USERS

TABLES

PROCEDURES

. . .

BIRD

CUSTOMER

FISH

LINEITEM

REPTILE

. . .

...

CNO CHAR (3) NOT NULL PRIMARY KEY

CNAME CHAR(15) NOT NULL

CPHONE CHAR(12)

STCODE CHAR(2) NOT NULL

 FOREIGN KEY REFERENCES STATE

Free SQL Book, Tim Martyn 501 Copyright Pending, 2022

Using the above information, we start to build our data model.

(Note: Reverse engineering is the inverse of the “forward

engineering” design steps presented in Appendix 13B.)

Step-1: Draw rectangles. Select the desired table-names from

Frame-2. Each table-name implies the designation of a

corresponding rectangle.

Next, in Frame-2, you click on the name of each desired table.

For example, if you click on CUSTOMER, Frame-3 appears with

a list of CUSTOMER’s column-names, corresponding data-types,

NOT NULL indicators, and maybe PRIMARY KEY and FOREIGN KEY

designations. (We said “maybe” because PRIMARY KEY and

FOREIGN KEY information could be stored elsewhere. More on

that below.) For the moment, we will assume that Frame-3

identifies PRIMARY KEY and FOREIGN KEY columns.

Step-2: For each table, designate its primary-key and a few

popular columns. Also, include foreign-key columns without

designating the tables they reference.

PARTSUPP

LINEITEM

PART

PUR_ORDER

SUPPLIER

CUSTOMER

STATE

REGION

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

REGION

RNO (PK)

RNAME

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

CUSTOMER

CNO (PK)

CNAME

. . .

STCODE (FK)

LINEITEM

PONO (PK1) (FK)

LINE (PK2)

PNO (FK1)

SNO (FK2)

. . .

PUR_ORDER

PONO (PK)

. . .

CNO (FK)

PART

PNO (PK)

PNAME

. . .

PARTSUPP

PNO (PK1)

SNO (PK2)

. . .

Free SQL Book, Tim Martyn 502 Copyright Pending, 2022

Step-3: Draw lines for one-to-many relationships.

Relationship lines are derived from foreign-key information

located in somewhere in the Metadata Panel. You will probably

have to move some rectangles around to avoid intersecting

lines. There is no immediate need to build a hierarchical

model. (Hierarchical models are generated in the following

Appendix 18F.)

Aside: Your Metadata Panel may be organized such that foreign-

key information is located in a different frame as illustrated

below.

REGION

RNO (PK)

RNAME

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

CUSTOMER

CNO (PK)

CNAME

. . .

STCODE (FK)

LINEITEM

PONO (PK1) (FK)

LINE (PK2)

PNO (FK1)

SNO (FK2)

. . .

PUR_ORDER

PONO (PK)

. . .

CNO (FK)

PART

PNO (PK)

PNAME

. . .

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

Frame-1

Frame-2

Frame-4

USERS

TABLES

PROCEDURES

. . .

BIRD

 COLUMNS

 PRIMARY-KEY

 FOREIGN-KEYS

CUSTOMER

 COLUMNS

 PRIMARY-KEY

 FOREIGN-KEYS

. . .

STCODE CHAR(2) NOT NULL

 FOREIGN KEY REFERENCES STATE

Free SQL Book, Tim Martyn 503 Copyright Pending, 2022

B. Reverse Engineering using CREATE TABLE statements

Assume you can access the CREATE TABLE statements used to

create your tables. (The CREATE-ALL-TABLE file includes the

CREATE TABLE statements for the MTPCH database.) The

following steps will reverse engineer a collection of CREATE

TABLE statements into a data model.

• For each CREATE TABLE statement, draw a rectangle to

represent the table.

• Columns in this statement become attributes in the

corresponding rectangle.

• The PRIMARY KEY clause designates the primary-key

column.

• Draw a one-to-many relationship line to represent each

FOREIGN KEY clause in the statement.

Careful! This process assumes that accurate CREATE TABLE

statements are available. Unfortunately, your CREATE TABLE

statements may have become obsolete because of changes made

by creating or dropping tables, or adding new columns via

ALTER TABLE statements.

Finally, as previously stated, reverse engineering usually

generates a spaghetti data model. There following Appendix

18F describes how to transform a spaghetti model into a

hierarchically oriented model.

Free SQL Book, Tim Martyn 504 Copyright Pending, 2022

Appendix 18F: Drawing Hierarchical Models

Objective: Transform a spaghetti data model (e.g., Figure

18.2) into a hierarchical model (e.g., Figure 18.3 or Figure

18.4).

We recommend redrawing a spaghetti data model into a

hierarchically orientated model. Sometimes, you can use your

intuition to achieve this objective. Alternatively, you could

apply some “semi-mechanical” method as described below. Here,

we start with the following spaghetti model developed in the

preceding Appendix 18E.

REGION

RNO (PK)

RNAME

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

CUSTOMER

CNO (PK)

CNAME

. . .

STCODE (FK)

LINEITEM

PONO (PK1) (FK)

LINE (PK2)

PNO (FK1)

SNO (FK2)

. . .

PUR_ORDER

PONO (PK)

. . .

CNO (FK)

PART

PNO (PK)

PNAME

. . .

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

Free SQL Book, Tim Martyn 505 Copyright Pending, 2022

Find a big whiteboard or a large piece of paper and a pencil

with a good eraser.

Step-1: Examine the spaghetti model to identify the top-level

(root) tables and position them at the top of the page. Top-

level tables do not have any foreign-key (FK) columns. This

applies to the REGION and PART tables.

We will refer to the above intermediate design as the “current

hierarchical model.”

Step-2: Find the child-tables for these top-level tables.

These child-tables have foreign-keys that reference the above

REGION and PART tables. This applies to the STATE table with

a foreign-key that references REGION; and it applies to the

PARTSUPP table with a foreign-key that references PART.

The current hierarchical model now has four tables.

PART

PNO (PK)

PNAME

. . .

REGION

RNO (PK)

RNAME

. . .

REGION

RNO (PK)

RNAME

. . .

PART

PNO (PK)

PNAME

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

Free SQL Book, Tim Martyn 506 Copyright Pending, 2022

Step-3: Ask: Do the recently added STATE and PARTSUPP tables

have other foreign-keys that reference tables not in the

current hierarchical model? The STATE table does not have any

other foreign-keys. But, the PARTSUPP table does have another

foreign-key (SNO) that references the SUPPLIER table. Hence,

we must incorporate SUPPLIER into the current hierarchical

model.

Again, does the recently added SUPPLIER table have any

foreign-keys? Yes. The SUPPLIER table has a foreign-key

(STCODE) that references STATE. Hence, we dawn a one-to-many

relationship line from STATE to SUPPLIER. (If SUPPLIER had

foreign-key that referenced a table not in the current

hierarchical model, we would introduce that table into the

current hierarchical model.)

After drawing this new relationship line, we observe that our

model no longer appears to be hierarchically oriented.

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

REGION

RNO (PK)

RNAME

. . .

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

PART

PNO (PK)

PNAME

. . .

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

REGION

RNO (PK)

RNAME

. . .

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

PART

PNO (PK)

PNAME

. . .

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

Free SQL Book, Tim Martyn 507 Copyright Pending, 2022

Reorganize Tables: “Move boxes and lines around” such that

the design is hierarchically oriented.

The current hierarchical model now has five tables. Note that

all foreign-keys reference tables that are within this model.

Note: Sometimes, the current model cannot be represented

within a strictly hierarchical structure. This can happen in

the special case where the design includes one or more

recursive relationships (to be described in Chapter 30).

REGION

RNO (PK)

RNAME

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

PART

PNO (PK)

PNAME

. . .

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

Free SQL Book, Tim Martyn 508 Copyright Pending, 2022

Step-4: Iterate on Step-2 and Step-3

Include new tables that are the children of the tables

introduced during the preceding iteration. Draw relationship

lines for these tables. [If necessary, “move boxes and lines

around” such that the design becomes a hierarchy.]

If these new tables have foreign-keys that reference tables

outside the current hierarchical model, incorporate these

tables into the design and draw relationship lines for these

new tables. [Again, if necessary, “move boxes and lines

around” such that the design becomes a hierarchy.]

Etc.

We have already included child-tables for of REGION and PART.

Examining the original spaghetti model, we observe that:

STATE has another child, CUSTOMER.

PARTSUPP has another child, LINEITEM.

SUPPLIER does not have any other children.

Therefore, we must include CUSTOMER and LINEITEM with the

current model.

Free SQL Book, Tim Martyn 509 Copyright Pending, 2022

Include CUSTOMER as a child of STATE, which we can do without

disrupting the hierarchy. Also, observe that CUSTOMER does not

have any other foreign-keys other than STCODE which references

STATE.

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

PART

PNO (PK)

PNAME

. . .

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

CUSTOMER

CNO (PK)

CNAME

. . .

STCODE (FK)

REGION

RNO (PK)

RNAME

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

Free SQL Book, Tim Martyn 510 Copyright Pending, 2022

Include LINEITEM as a child of PARTSUPP, which we can do without

disrupting the hierarchy.

PART

PNO (PK)

PNAME

. . .

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

REGION

RNO (PK)

RNAME

. . .

CUSTOMER

CNO (PK)

CNAME

. . .

STCODE (FK)

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

PARTSUPP

PNO (PK1)

SNO (PK2)

. . .

LINEITEM

PONO (PK1) (FK)

LINE (PK2)

PNO (FK1)

SNO (FK2)

Free SQL Book, Tim Martyn 511 Copyright Pending, 2022

After including LINEITEM into the current hierarchical model,

observe that LINEITEM has a foreign-key that references

PUR_ORDER, a table that is not in the current model.

Therefore, include PUR_ORDER into current hierarchical model

and draw a one-to-many relationship line from PUR_ORDER to

LINEITEM.

PUR_ORDER

PONO (PK)

. . .

CNO (FK)

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

LINEITEM

PONO (PK1) (FK)

LINE (PK2)

PNO (FK1)

SNO (FK2)

. . .

PART

PNO (PK)

PNAME

. . .

REGION

RNO (PK)

RNAME

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

CUSTOMER

CNO (PK)

CNAME

. . .

CNO (FK)

SUPPLIER

SNO (PK)

SNAME

. . .

CNO (FK)

Free SQL Book, Tim Martyn 512 Copyright Pending, 2022

After including PUR_ORDER into the current hierarchical model,

observe that it has a foreign-key that references CUSTOMER.

Therefore, draw a one-to-many relationship line from CUSTOMER

to PUR_ORDER.

Almost Done: The current hierarchical model now has eight

tables, the same number of tables in our original spaghetti

model. Hence, we can stop iterating.

PUR_ORDER

PONO (PK)

. . .

CNO (FK)

SUPPLIER

SNO (PK)

SNAME

. . .

STCODE (FK)

PART

PNO (PK)

PNAME

. . .

PARTSUPP

PNO (PK1) (FK)

SNO (PK2) (FK)

. . .

CUSTOMER

CNO (PK)

CNAME

. . .

STCODE (FK)

REGION

RNO (PK)

RNAME

. . .

STATE

STCODE (PK)

STNAME

. . .

RNO (FK)

LINEITEM

PONO (PK1) (FK)

LINE (PK2)

PNO (FK1)

SNO (FK2)

. . .

Free SQL Book, Tim Martyn 513 Copyright Pending, 2022

Final Step:

Include the Primary-Key/Foreign-Key join-conditions as

previously illustrated in Figure 18.4 (shown below). Also, if

reasonable, include all columns and their data-types.

Otherwise, describe columns, data-types, and null indicators

in associated documentation.

REGION (R)

RNO [INT]

RNAME [CHAR]

CLIMATE [CHAR]

STATE (ST)

STCODE [CHAR]

STNAME [CHAR]

POPULATION [INT]

RNO (FK) [CHAR]

ST.STCODE=C.STCODE

R.RNO=ST.RNO

ST.STCODE=S.STCODE

PART (P)

PNO [CHAR]

PNAME [CHAR]

PCOLOR [CHAR]

PWT [INT]

CUSTOMER (C)

CNO [CHAR]

CNAME [CHAR]

CPHONE [CHAR]

STCODE (FK) [CHAR]

SUPPLIER (S)

SNO [CHAR]

SNAME [CHAR]

SPHONE [CHAR]

SSTATUS [CHAR]

STCODE (FK) [CHAR]

PS.PNO=LI.PNO and PS.SNO=LI.SNO

LINEITEM (LI)

PONO (FK1) [CHAR]

LINE [INT]

PNO (FK2) [CHAR]

SNO (FK2) [CHAR]

QTY [INT]

PRICE [DEC]

PO.PONO=LI.PONO

S.SNO= PS.SNO C.CNO=PO.CNO P.PNO=PS.PNO

PUR_ORDER (PO)

PONO [CHAR]

PODATE [INT]

POSTATUS [CHAR]

CNO (FK) [CHAR]

PARTSUPP (PS)

PNO (FK1) [CHAR]
SNO (FK2) [CHAR]

PSPRICE [DEC]

Free SQL Book, Tim Martyn 514 Copyright Pending, 2022

Concluding Comment

Chapter 30 will introduce recursive relationships that cannot

be drawn with a strictly hierarchical orientation. This

situation rarely presents a problem because many real-world

applications are designed to avoid recursive relationships.

Free SQL Book, Tim Martyn 515 Copyright Pending, 2022

Chapter

 19
 Outer-Join: Getting Started

There are three types of outer-join operations.

1. Left Outer-Join
2. Right Outer-Join
3. Full Outer-Join

Each type of outer-join uses the JOIN-ON syntax to merge data

from two tables by matching rows on a join-condition. As with

the inner-join, each type of outer-join result table contains

data from all matching rows. However, unlike the inner-join,

an outer-join result will also contain additional rows

derived from non-matching rows. The content of these

additional rows depends upon the type of outer-join.

Outer-join logic requires that you designate one table as the

“LEFT-table.” The other table becomes the “RIGHT-table.”

Casually speaking, we note that a:

• LEFT Outer-Join result table contains all matching rows
plus all non-matching rows from the LEFT-table only.

• RIGHT Outer-Join result table contains all matching rows
plus all non-matching rows from the RIGHT-table only.

• FULL Outer-Join result table contains all matching rows,
plus all non-matching rows from both tables.

The following Figure 19.1 presents an example of each type of

outer-join operation.

Free SQL Book, Tim Martyn 516 Copyright Pending, 2022

LEFT, RIGHT, and FULL Outer-Joins

Figure 19.1 illustrates each type of outer-join using the

following MAN table (designated as the LEFT-table) and DOG

table (the RIGHT-table). Observe that there is no PK-FK

relationship between these tables. Each example uses the

JOIN-ON syntax to compare on the MNO columns.

MAN DOG

MNO MNAME DNO DNAME MNO

77 MOE 1000 SPOT 99

88 LARRY (non-matching row) 3000 ROVER 77

99 CURLY 2000 WALLY 99

 4000 SPIKE 10 (non-matching row)

.

[* The front-end tool displays MNO1 as the column header for

the MNO column in the DOG table.]

 Non-matching MAN row (MNO = 88) appears in result.

 Non-matching DOG row (DNO = 4000) appears in result.

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

- - 4000 SPIKE 10

FULL Outer-Join

SELECT *

FROM MAN FULL OUTER JOIN DOG

ON MAN.MNO = DOG.MNO

Non-matching MAN row (MNO = 88) appears in result.

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

LEFT Outer-Join

SELECT *

FROM MAN LEFT OUTER JOIN DOG

ON MAN.MNO = DOG.MNO

Non-matching DOG row (DNO = 4000) appears in result.

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

- - 4000 SPIKE 10

RIGHT Outer-Join

SELECT *

FROM MAN RIGHT OUTER JOIN DOG

ON MAN.MNO = DOG.MNO

Figure 19.1: LEFT, RIGHT and FULL Outer-Join Operations

Free SQL Book, Tim Martyn 517 Copyright Pending, 2022

Important Special Case: Primary Key – Foreign Key Relationship

On the previous page, the MAN and DOG tables were not related

via a PK-FK relationship. In the following versions of the

MAN and DOG tables, the DOG.MNO column is designated as a

non-null foreign-key that references the MAN.MNO column.

Again, MAN is designated as the left-table, and DOG becomes

the right-table.

 PK FK

 MAN MNO MNAME DOG DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 3000 ROVER 77

 99 CURLY 2000 WALLY 99

 4000 SPIKE 99

Important Observation: All of the following outer-join result

tables contain data from all DOG rows because the FK-

constraint requires that all DOG.MNO values match on the join-

condition.

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

99 CURLY 4000 SPIKE 99

SELECT *

FROM MAN FULL OUTER JOIN DOG

ON MAN.MNO = DOG.MNO

Figure 19.2: Outer-Joins based on PK-FK Relationship

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

99 CURLY 4000 SPIKE 99

SELECT *

FROM MAN LEFT OUTER JOIN DOG

ON MAN.MNO = DOG.MNO

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

99 CURLY 4000 SPIKE 99

SELECT *

FROM MAN RIGHT OUTER JOIN DOG

ON MAN.MNO = DOG.MNO

Free SQL Book, Tim Martyn 518 Copyright Pending, 2022

FULL OUTER JOIN (No PK-FK Relationship)

This chapter’s sample queries reference the DEPARTMENT,

EMPLOYEE, and EMPLOYEE3 tables illustrated in Figures 16.1a

and 16.3a.

The first sample query illustrates a FULL outer-join of two

tables where the join-condition is not based upon a PK-FK

relationship. In such circumstances, it is possible for both

the left-table and the right-table to contain rows that do

not match on the join-condition.

Sample Query 19.1: Reference the DEPARTMENT and EMPLOYEE3

tables. Display all information about all departments and

all employees. (I.e., perform a full outer-join of

DEPARTMENT and EMPLOYEE3.) Sort the result by ENO within

DNO.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

10 ACCOUNTING 75000.00 5000 JOE 400.00 10

20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

30 PRODUCTION 7000.00 - - - -

40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

- - - 1000 MOE 2000.00 99

- - - 6000 GEORGE 9000.00 -

Syntax: DEPARTMENT is the left-table because it is specified

to the left of FULL OUTER JOIN.

Logic: Because this is a FULL outer-join, data from all

matching and all non-matching rows appear in the result.

Important Observation: The result table shows that system

appends null values to the non-matching rows.

[* The front-end tool displays DNO1 as the column header for

the DNO column in the EMPLOYEE table.]

SELECT *

FROM DEPARTMENT D FULL OUTER JOIN EMPLOYEE3 E

ON D.DNO = E.DNO

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 519 Copyright Pending, 2022

LEFT OUTER JOIN (No PK-FK Relationship)

The following sample query illustrates a LEFT outer-join

where the join-condition is not based upon a PK-FK

relationship. Again, we note that it is possible for both

tables to contain rows that do not match the join-condition.

This example will display all matching rows plus the non-

matching rows from the left-table only.

Sample Query 19.2: Reference the DEPARTMENT and EMPLOYEE3

tables. Display all information about all departments

along with all information about employees who work in

those departments. (I.e., Perform a left outer-join of

DEPARTMENT and EMPLOYEE3 where DEPARTMENT is designated

as the left-table.) Sort the result by ENO within DNO.

 DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Syntax: DEPARTMENT is the left-table because it is specified

to the left of LEFT OUTER JOIN.

Logic: This query objective requires that you designate

DEPARTMENT as the left-table. The system appends null values

to the non-matching row for Department 30.

Equivalent Statement: Exercise 19D will ask you code an

equivalent statement using a RIGHT OUTER JOIN.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE3 E

ON D.DNO = E.DNO

ORDER BY D.DNO, E. ENO

Free SQL Book, Tim Martyn 520 Copyright Pending, 2022

RIGHT OUTER JOIN (No PK-FK Relationship)

The following sample query illustrates a RIGHT outer-join

where the join condition is not based upon a PK-FK

relationship. Again, both tables could contain rows that do

not match on the join-condition. The result displays data

from all matching rows, plus the non-matching rows from the

right-table.

Sample Query 19.3: Reference the DEPARTMENT and EMPLOYEE3

tables. Display all information about all employees

along with all information about the departments the

employees work in. (I.e., Perform a right outer-join of

DEPARTMENT and EMPLOYEE3 where EMPLOYEE3 is the right-

table.) Sort the result by ENO within DNO.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

 - - - 1000 MOE 2000.00 99

- - - 6000 GEORGE 9000.00 -

Syntax: EMPLOYEE3 is the right-table because it is specified

to the right of RIGHT OUTER JOIN.

Logic: This query objective requires that you designate

EMPLOYEE3 as the right-table. The system appends null values

to the non-matching EMPLOYEE3 rows.

Equivalent Statement: The following sample query will present

a better way to code this statement.

SELECT *

FROM DEPARTMENT D RIGHT OUTER JOIN EMPLOYEE3 E

ON D.DNO = E.DNO

ORDER BY D.DNO, E. ENO

Free SQL Book, Tim Martyn 521 Copyright Pending, 2022

RIGHT OUTER JOIN is Unnecessary

You never need to code a RIGHT outer-join. From a practical

point of view, you can forget about the RIGHT outer-join

because any RIGHT outer-join can always be expressed as a

LEFT outer-join.

Sample Query 19.4: Same as preceding Sample Query 19.3. This

time, perform a LEFT outer-join where EMPLOYEE3 is

designated as the left-table.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

 - - - 1000 MOE 2000.00 99

- - - 6000 GEORGE 9000.00 -

Strong Recommendation: Assume you intend to code an outer-

join operation and you want to preserve the non-matching rows

from just one table. In this circumstance, code a LEFT outer-

join where the “preserve-all-rows-table” is designated as the

LEFT-table.

SELECT D.DNO, D.DNAME, D.BUDGET,

 E.ENO, E.ENAME, E.SALARY, E.DNO

FROM EMPLOYEE3 E LEFT OUTER JOIN DEPARTMENT D

ON E.DNO = D.DNO

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 522 Copyright Pending, 2022

LEFT OUTER JOIN (Primary Key - Foreign Key)

The preceding Sample Queries 19.1-19.4 performed outer-join

operations on tables that were not related via a PK-FK

relationship. However, as with inner-joins, most outer-join

operations are applied to tables that are related via a PK-

FK relationship. The following sample queries reference the

EMPLOYEE table with a non-null foreign key that references

the DEPARTMENT table.

The following sample query illustrates the most popular form

of outer-join. This is a LEFT OUTER JOIN where the join-

condition is based upon a PK-FK relationship, and the FK is

non-null. We designate the parent-table (DEPARTMENT) as the

left-table, and the child-table (EMPLOYEE) becomes the right-

table. In this circumstance, it is possible for the left-

table to contain rows that do not match the join-condition.

However, every row in the right-table must match.

Sample Query 19.5: Reference the DEPARTMENT and EMPLOYEE

tables. Display all information about all departments

and the employees who work in those departments. Sort

the result by ENO within DNO.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Important Observation: Because the tables are related via a

PK-FK relationship, you will get the same result if you

execute a FULL outer-join. This is illustrated in the

following Sample Query 19.6.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON E.DNO = D.DNO

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 523 Copyright Pending, 2022

FULL OUTER JOIN (Primary Key - Foreign Key)

The following sample query illustrates a FULL outer-join of

two tables where the join-condition is based upon a PK-FK

relationship, and the FK is non-null. We designate the parent-

table (DEPARTMENT) as the left-table, and the child-table

(EMPLOYEE) becomes the right-table. In this circumstance, it

is possible for the left-table to contain rows that do not

match the join condition. However, all rows in the right-

table must match.

Sample Query 19.6: Reference the DEPARTMENT and EMPLOYEE

tables. Display all information about all departments

along with all information about employees who work in

these departments. Also, include information about all

employees. (Hypothetically, this includes any employee

who is not assigned to some department. But the PK-FK

relationship means this is not possible.) Sort the

result by ENO within DNO.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

10 ACCOUNTING 75000.00 5000 JOE 400.00 10

20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

30 PRODUCTION 7000.00 - - - -

40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Important Observation: This result table is identical to the

previous result table.

Conclusion: If tables are related via a PK-FK relationship,

and the parent-table is designated as the left-table, the

LEFT outer-join and the FULL outer-join produce the same

result. In general, we recommend coding the LEFT outer-join.

SELECT *

FROM DEPARTMENT D FULL OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 524 Copyright Pending, 2022

Observations

The previous sample queries allow us to make some general

observations. These observations imply that most query

objectives can be satisfied by coding a LEFT outer-join.

Assumption: You want to code an outer-join operation based upon

a PK-FK relationship, and the FK column is non-null.

You only need to code a LEFT outer-join. Both the RIGHT outer-

join and the FULL outer-join are unnecessary. The following

examples reference the DEPARTMENT and EMPLOYEE tables to

illustrate this observation.

RIGHT outer-join is unnecessary: If you want the join-result

to contain all rows from a specified table, designate that

table as the left-table and perform a LEFT outer-join. (Sample

Query 1.4 shows that this observation applies even if you are

not joining on a PK-FK relationship.) The following

statements are logically equivalent. The result tables

contain the same data (although their row/column sequence may

differ).

SELECT *

FROM EMPLOYEE E RIGHT OUTER JOIN DEPARTMENT D

ON E.DNO = D.DNO

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

 ON D.DNO = E.DNO

FULL outer-join is unnecessary: The following statements are

equivalent, and the result tables contain the same data

(although their row/column sequence may differ).

SELECT *

FROM DEPARTMENT D FULL OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

 ON D.DNO = E.DNO

Preferred

Preferred

Free SQL Book, Tim Martyn 525 Copyright Pending, 2022

Exercises

19A. Reference the REGION and STATE tables in the MTPCH

database. Designate REGION as the left-table. Execute a

full outer-join.

19B. Reference the REGION and STATE tables in the MTPCH

database. Designate REGION as the left-table. Execute a

left outer-join. (Observe that the result is the same as

the previous exercise.)

19C. Reference the REGION and STATE tables in the MTPCH

database. Designate STATE as the right-table. Execute a

right outer-join. (Observe that the result is the same

as that produced by an inner-join.)

19D. We generally discourage use of the right outer-join.

But, for tutorial purposes only, you are asked to use

the right outer-join to satisfy the query objective for

Sample Query 19.2: Reference the DEPARTMENT and

EMPLOYEE3 tables. Display all information about all

departments along with all information about employees

who work in those departments. (Display information

about every department, even if the department does not

have any employees.) Sort the result by ENO within DNO.

Free SQL Book, Tim Martyn 526 Copyright Pending, 2022

Review: Inner-Join & Restriction

In Chapter 16 (Section on “INNER JOIN-ON Syntax: WHERE versus AND”)

we noted that, when specifying an inner-join using the JOIN-ON

syntax, you can replace WHERE with AND. Therefore, the

following two statements produce the same results.

Both statements produce the same result.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

This equivalency occurs because, with an inner-join

operation, the E.SALARY < 1000.00 condition can be applied

during the inner-join operation or after the inner-join

operation.

Important Observation:

Statement-1 specifies two operations: (1) An Inner-join

(JOIN-ON) followed by (2) a restriction (WHERE).

Statement-2 specifies just one operation: This is an Inner-

join (JOIN-ON) with a compound-condition. Visually, it may be

easier to recognize this by rewriting Statement-2 as:

SELECT *

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON E.DNO = D.DNO AND E.SALARY < 1000.00

Equivalent Statements

Statement-1

SELECT *

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON E.DNO = D.DNO

WHERE E.SALARY < 1000.00

Statement-2

SELECT *

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON E.DNO = D.DNO

AND E.SALARY < 1000.00

Free SQL Book, Tim Martyn 527 Copyright Pending, 2022

CAREFUL! Outer-Join & Restriction

With an outer-join operation, you cannot arbitrarily

interchange WHERE and. Observe that the following two

statements produce different results.

Statement-3 result is:

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

The Statement-4 result is:

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 - - - -

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 - - - -

The following pages explain these different results.

Not Equivalent: Different Results

Statement-3

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON E.DNO = D.DNO

WHERE D.BUDGET < 24000.00

ORDER BY D.DNO, E.ENO

Statement-4

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON E.DNO = D.DNO

AND D.BUDGET < 24000.00

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 528 Copyright Pending, 2022

Restriction (WHERE): Applied After the Outer-Join

Consider the preceding Statement-3.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON E.DNO = D.DNO

WHERE D.BUDGET < 24000.00

ORDER BY D.DNO, E.ENO

Logic: This statement asks the system to execute two

operations.

1. A left outer-join (specified with JOIN-ON syntax), and
2. A restriction is specified by the WHERE-clause

Details:

1. The system executes the LEFT OUTER JOIN to generate the

following intermediate result.

 DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Because the left outer-join result includes the non-

matching DEPARTMENT 30 row, it can appear in the final

result if it satisfies the following WHERE-clause.

2. After the outer-join is executed, the WHERE-clause

restriction (D.BUDGET < 24000.00) is applied to the

above intermediate result to produce the following final

result.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

 Observe that the non-matching DEPARTMENT 30 row appears

in the final result because its BUDGET value (7000.00)

satisfies the WHERE-clause.

Free SQL Book, Tim Martyn 529 Copyright Pending, 2022

Compound-Condition (AND): Applied During the Outer-Join

Consider the preceding Statement-4.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON E.DNO = D.DNO

AND D.BUDGET < 24000.00

ORDER BY D.DNO, E.ENO

Syntax: This ON-clause specifies a compound join-condition

where the D.BUDGET < 24000.00 condition is part of the join-

condition. Rewriting this statement emphasizes this logic.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON E.DNO = D.DNO AND D.BUDGET < 24000.00

ORDER BY D.DNO, E.ENO

Logic: This statement asks the system to execute one

operation, a left outer-join which happens to have a compound-

condition (E.DNO = D.DNO AND D.BUDGET < 24000.00). Hence the

D.BUDGET < 24000.00 condition is evaluated during the outer-

join operation. As with any left outer-join, the system

determines the matching rows, and then it appends the non-

matching rows from the left-table. The matching rows (match

both conditions in the compound-condition) are:

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

The non-matching left-table (DEPARTMENT) rows are:

 10 ACCOUNTING 75000.00 - - - -

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 - - - -

Hence the outer-join result is:

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 - - - -

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 - - - -

Free SQL Book, Tim Martyn 530 Copyright Pending, 2022

Restriction (WHERE): Applied After the Outer-Join

Statement-3 and Statement-4 presented the basic syntax and

logic of “WHERE versus AND” within the context of an outer-

join operation. The next two sample queries work backwards.

We start with these statements and then present reasonable

query objectives that are satisfied by the statements.

The following sample query is satisfied by Statement-3.

Sample Query 19.7: Reference the DEPARTMENT and EMPLOYEE

tables. Display all information about every department

(including departments without employees) which have a

budget that is less than $24,000. For all such

departments, display their departmental information,

followed by their employee information. Sort the result

by ENO within DNO.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

Logic: A left outer-join is required because the query

objective specifies “including departments without

employees.” This will include Department 30 in the

intermediate outer-join result. Because Department 30 meets

the D.BUDGET < 24000.00 condition, it appears in the final

result.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO

WHERE D.BUDGET < 24000.00

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 531 Copyright Pending, 2022

Compound-Condition (AND): Applied During the Outer-Join

In the following sample query, the specification of AND

indicates that the D.BUDGET < 24000.00 condition is to be

evaluated during the outer-join operation.

The following sample query is satisfied by Statement-4.

Sample Query 19.8: Reference the DEPARTMENT and EMPLOYEE

tables. Display all information about all departments.

Also, if a department has a budget that is less than

$24,000, display all information about that department’s

employees. Sort the result by ENO within DNO.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 - - - -

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 - - - -

Logic: A left outer-join is required because the query

objective specifies “Display all information about all

departments.” The following non-matching DEPARTMENT rows

appear in the result because they do not match the compound

ON-condition.

 10 ACCOUNTING 75000.00 - - - -

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 - - - -

Note that information about Employees 2000, 4000, and 5000 do

not appear because they work in departments which do not match

the BUDGET < 24000.00 condition.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND D.BUDGET < 24000.00

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 532 Copyright Pending, 2022

WHERE-Condition References Column in RIGHT-Table

Note that Statement-3 and Statement-4 specified a restriction

(D.BUDGET < 24000) that references a column in the LEFT-table

(the parent-table). The following Statement-5 and Statement-

6 specify a restriction (E.SALARY < 1000.00) that references

a column from the RIGHT-table (the child-table). Again, these

examples show that, with an outer-join, you cannot

arbitrarily swap WHERE and.

The Statement-5 result is:

DNO DNAME BUDGET ENO ENAME SALARY DNO1

10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

The Statement-6 result is:

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

20 INFO. SYS. 20000.00 - - - -

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

There is nothing new about the logical behavior of these

statements. However, referencing a child-column in a WHERE-

clause (as in Statement-5) merits consideration.

Not Equivalent: Different Results

Statement-5

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON E.DNO = D.DNO

WHERE E.SALARY < 1000.00

ORDER BY D.DNO, E.ENO

Statement-6

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON E.DNO = D.DNO

AND E.SALARY < 1000.00

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 533 Copyright Pending, 2022

Consider the Statement-5 showing: WHERE E.SALARY < 1000.00

The system initially executes the LEFT OUTER JOIN to generate

the following intermediate result.

 DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Next WHERE-clause restriction (E.SALARY < 1000.00) is applied

to this intermediate result to produce the following final

result.

 DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Observe that the non-matching DEPARTMENT 30 row is excluded

from the final result because its null SALARY value cannot

match any WHERE-condition. This example motivates the

following observation.

Important Observation: Within the context of a left outer-

join, if WHERE-clause that references a column from the RIGHT-

table (e.g., EMPLOYEE) it can never select a non-matching row

for the final result because all of its right-side columns

always contain null value(s). Hence, it makes no sense to

specify an outer-join. For Statement-5, you can (and probably

should) code an inner-join operation as illustrated below.

SELECT *

FROM DEPARTMEN T D INNER JOIN EMPLOYEE E

ON D.DNO = E.DNO

WHERE E.SALARY < 1000.00

ORDER BY D.DNO, E.ENO

The above observation does not apply to Statement-6 which

specifies AND (versus WHERE) for the E.SALARY < 1000.00

restriction. Notice that the Statement-6 result contains data

from “non-matching” rows which cannot be realized by an inner-

join.

Free SQL Book, Tim Martyn 534 Copyright Pending, 2022

The following sample query works backwards. It starts with

Statement-6 and then presents a reasonable query objective

that is satisfied by this statement. Note that, although this

statement specifies a condition that references SALARY (a

column from the child-table), you cannot rewrite an equivalent

statement using an inner-join.

Sample Query 19.9: Reference the DEPARTMENT and EMPLOYEE

tables. Display all information about all departments.

Also, display all information about any employee whose

salary is greater than $2,000.00. Sort the result by ENO

within DNO.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 - - - -

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 - - - -

Logic: During the LEFT outer-join, the matching rows (based

upon the compound join-condition) are:

20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

Three non-matching DEPARTMENT rows (with NULL values

appended) are also included to produce the final LEFT outer-

join result.

 10 ACCOUNTING 75000.00 - - - -

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 - - - -

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND E.SALARY > 2000.00

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 535 Copyright Pending, 2022

One More Example

The following sample query brings together concepts presented

in the previous sample queries. The ON-clause specifies a

compound join-condition, and the WHERE-clause specifies a

restriction on the outer-join result.

Sample Query 19.10: Reference the DEPARTMENT and EMPLOYEE

tables. Display all information about every department,

except DEPARTMENT 40. If any department, excluding

Department 40, has a budget that is less than $24,000.00,

display all information about the department’s

employees. Sort the result by ENO within DNO.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 - - - -

20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

30 PRODUCTION 7000.00 - - - -

Logic: The left outer-join produces the following

intermediate result.

DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 - - - -

20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

30 PRODUCTION 7000.00 - - - -

40 ENGINEERING 25000.00 - - - -

Next, the WHERE-clause excludes the row for DEPARTMENT 40 to

produce the final result.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND D.BUDGET < 24000.00

WHERE D.DNO <> 40

ORDER BY D.DNO, E.ENO

Free SQL Book, Tim Martyn 536 Copyright Pending, 2022

Summary: Outer-Join & Restriction

Consider the following skeleton-code.

SELECT *

FROM T1 LEFT OUTER JOIN T2

ON Condition-1

 AND Condition-2

 AND Condition-3

WHERE Condition-4

 AND Condition-5

 AND Condition-6

Although unnecessary, it may be helpful to rewrite this

skeleton-code as:

SELECT *

FROM T1 LEFT OUTER JOIN T2

ON (Condition-1 AND Condition-2 AND Condition-3)

WHERE (Condition-4 AND Condition-5 AND Condition-6)

This statement includes two compound-conditions. The first

compound-condition is specified in the ON-clause.

ON Condition-1 AND Condition-2 AND Condition-3

Because this compound-condition follows ON, it defines the

outer-join comparison logic that is implemented during the

outer-join operation. This outer-join produces an

intermediate result.

The second compound-condition is specified in the WHERE-

clause.

WHERE Condition-4 AND Condition-5 AND Condition-6

Because this compound-condition is specified in the WHERE-

clause, it defines a restriction operation that is

implemented after the outer-join operation has produced its

intermediate result. This second compound-condition restricts

this intermediate result to produce the final result.

Free SQL Book, Tim Martyn 537 Copyright Pending, 2022

Final Observation: Can You Always Avoid Null Values?

Assume your DBA wants to avoid problems with null values.

Therefore, whenever she creates a table, she always declares

all columns to be NOT NULL. Then the system will reject any

operation that attempts to store a null value in any table.

Question: Under this (perhaps unrealistic) assumption, can

you conclude that, when coding your SELECT statements, you

never have to consider null values?

Answer: No! You can avoid null values only if you decide to

never execute an outer-join operation.

Revisit Figures 19.1 and 19.2. Notice that the MAN and DOG

tables do not contain any null values. However, in these

figures, four of the six result tables produced by the three

kinds of outer-join operations contain null values.

Conclusion: Your DBA has prohibited null values from all base

tables. However, assuming that some users will execute outer-

join-operations, null values may appear in intermediate and

final result tables.

Free SQL Book, Tim Martyn 538 Copyright Pending, 2022

Important Exercises

Exercises 19E AND 19F reference the following versions of the

MAN and DOG tables. These tables are related via a PK-FK

relationship (DOG.MNO references MAN.MNO). These are paper-

and-pencil exercises because the MAN and DOG tables were not

created in the CREATE-ALL-TABLES script.

 MAN DOG

 MNO MNAME DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 3000 ROVER 77

 99 CURLY 2000 WALLY 99

 4000 SPIKE 99

19E. What are the result tables produced by the following

left outer-join operations?

 a. SELECT *

 FROM MAN LEFT OUTER JOIN DOG

 ON MAN.MNO = DOG.MNO

 WHERE MAN.MNAME LIKE '%R%'

 b. SELECT *

 FROM MAN LEFT OUTER JOIN DOG

 ON MAN.MNO = DOG.MNO

 AND MAN.MNAME LIKE '%R%'

19F. What are the result tables produced by the following

left outer-join operations?

 a. SELECT *

 FROM MAN LEFT OUTER JOIN DOG

 ON MAN.MNO = DOG.MNO

 WHERE DOG.DNAME LIKE 'S%'

 b. SELECT *

 FROM MAN LEFT OUTER JOIN DOG

 ON MAN.MNO = DOG.MNO

 AND DOG.DNAME LIKE 'S%'

Free SQL Book, Tim Martyn 539 Copyright Pending, 2022

Summary

This chapter introduced the basic concepts of the LEFT, RIGHT,

and FULL outer-join operations. The syntax for these

operations is a simple variation of the JOIN-ON syntax

introduced in Chapter 16.

 SELECT . . .

 LEFT

 FROM TABLE1 RIGHT OUTER JOIN TABLE2

 FULL

 ON join-condition

The LEFT Outer-Join result table contains all matching rows

plus all non-matching rows from the LEFT table only.

The RIGHT Outer-Join result table contains all matching rows

plus all non-matching rows from the RIGHT table only.

The FULL Outer-Join result table contains all matching rows,

plus all non-matching rows from both tables.

The basic syntax and logic of the outer-join operations

appears to be rather straightforward. However, as the last

few sample queries and exercises illustrated, sometimes the

logic can become a little tricky.

Free SQL Book, Tim Martyn 540 Copyright Pending, 2022

Summary Exercises

The following exercises refer to the DEPARTMENT and EMPLOYEE

tables.

19G. Display the name and budget for all departments. Also

display the name and salary of any employee who works in

a department having a budget that exceeds $50,000.00.

The result should look like:

DNAME BUDGET ENAME SALARY

 ACCOUNTING 75000.00 LARRY 2000.00

ACCOUNTING 75000.00 JOE 400.00

 INFO. SYS. 20000.00 - -

PRODUCTION 7000.00 - -

ENGINEERING 25000.00 - -

19H. Display the name and budget of those departments having

a budget that is less than $50,000.00. If any such

department has employees, also display name and salary

of the employees. The result should look like:

 DNAME BUDGET ENAME SALARY

INFO. SYS. 20000.00 MOE 2000.00

INFO. SYS. 20000.00 GEORGE 9000.00

INFO. SYS. 20000.00 CURLY 3000.00

PRODUCTION 7000.00 - -

ENGINEERING 25000.00 SHEMP 500.00

Free SQL Book, Tim Martyn 541 Copyright Pending, 2022

19I. Display the name and salary of any employee who earns

more than $1,000.00, along with the employee’s

departmental name and budget. The result looks like:

 ENAME SALARY DNAME BUDGET

 LARRY 2000.00 ACCOUNTING 75000.00

 MOE 2000.00 INFO. SYS. 20000.00

GEORGE 9000.00 INFO. SYS. 20000.00

CURLY 3000.00 INFO. SYS. 20000.00

19J. Display the name and budget for all departments. Also,

display the name and salary of any employee who works in

each department and earns more than $1,000.00. The

result should look like:

 DNAME BUDGET ENAME SALARY

ACCOUNTING 75000.00 LARRY 2000.00

INFO. SYS. 20000.00 MOE 2000.00

INFO. SYS. 20000.00 GEORGE 9000.00

INFO. SYS. 20000.00 CURLY 3000.00

PRODUCTION 7000.00 - -

ENGINEERING 25000.00 - -

 19K. Consider Sample Query 19.10 shown below.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND D.BUDGET < 24000.00

WHERE D.DNO <> 40

ORDER BY D.DNO, E.ENO

 Assume you replaced the keyword WHERE with the keyword

AND to formulate the following statement.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND D.BUDGET < 24000.00

AND D.DNO <> 40

ORDER BY D.DNO

Is this statement equivalent to the result shown for

Sample Query 19.10? (Does it produce the same correct

result?)

Free SQL Book, Tim Martyn 542 Copyright Pending, 2022

Appendix 19A: Theory

Although outer-join operations can be very useful, these

operations present multiple theoretical problems. (These

problems may be the reason Codd did not include outer-joins

in his original relational algebra.) We describe two such

problems below.

No Primary Key in Result Table: The most fundamental problem

is that, given two relations, the outer-join result of these

relations might not be a relation. For example, consider the

following LEFT OUTER JOIN of MAN and DOG where MAN is the

left-relation. Assume MNO is the primary key of MAN; DNO is

the primary key of DOG; and DOG.MNO is a foreign-key that

references MAN.

 MAN MNO MNAME DOG DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 3000 ROVER 77

 99 CURLY 2000 WALLY 99

 4000 SPIKE 99

The following result is a table, but it is not a valid

relation because no single column, or combination of columns,

can serve as its primary key.

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

99 CURLY 4000 SPIKE 99

The following observations imply that it is impossible to

designate any column, or any combination of these columns, as

a primary key.

• The MNO and MNAME columns from MAN, the parent-

table, may contain duplicate values.

• The DNO, DNAME, and MNO1 columns from DOG, the

child-table, may contain null values.

Similar problems apply to the RIGHT and FULL outer-join

operations.

Free SQL Book, Tim Martyn 543 Copyright Pending, 2022

Loss of Closure: If you start with valid relation(s) and then

apply any relational algebraic operation, ideally, the result

should always be a relation. This property is called

“closure.” Closure applies to the RESTRICT, PROJECT, CROSS,

INNER-JOIN, (and the UNION, INTERSECT, and EXCEPT operations

to be presented in Chapter 21.) Unfortunately, as illustrated

by the previous example, closure does not apply to the outer-

join operations.

Another Problem: In the Chapter 16 we noted that the system

produces the same result if (1) the inner-join is executed

before restriction, or (2) if restriction is executed before

the inner-join. The following example shows that this

equivalency does not apply to the left outer-join.

Outer-Join,

Then Restrict

1. MAN LEFT OUTER JOIN DOG ON MAN.MNO = DOG.MNO

MNO MNAME DNO DNAME MNO1

77 MOE 3000 ROVER 77

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 3000 WALLY 99

99 CURLY 4000 SPIKE 99

2. WHERE DOG.DNAME LIKE 'S%'

MNO MNAME DNO DNAME MNO1

99 CURLY 1000 SPOT 99

99 CURLY 4000 SPIKE 99

Restrict,

Then Outer-Join

1. WHERE DOG.DNAME LIKE 'S%'

 MAN TEMPDOG

 MNO MNAME DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 4000 SPIKE 99

 99 CURLY

2. MAN LEFT OUTER JOIN TEMPDOG

 ON MAN.MNO = TEMPDOG.MNO

MNO MNAME DNO DNAME MNO1

77 MOE - - -

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 4000 SPIKE 99

Different

Result

Free SQL Book, Tim Martyn 544 Copyright Pending, 2022

Appendix 19B: Theory & Efficiency

Outer-join operations tend to be slower than inner-join

operations for two reasons,

1. With inner join, the optimizer can capitalize on the

efficiency technique of executing restriction before

inner-join. (See the RESTRICT-PROJECT-First Procedure in

Appendix 17C and Figure 17C.1.) However, as illustrated

in the previous Appendix 19A, this efficiency technique

cannot we used with an outer-join operation.

2. Inner-join is commutative.

T1 inner-join T2 = T2 inner-join T1

Therefore, when optimizing an inner-join of tables T1

and T2, the optimizer can capitalize on the option of

choosing either T1 or T2 as the driving-table.

 However, outer-join is not commutative.

T1 outer-join T2 <> T2 outer-join T2

Therefore, when optimizing an outer-join operation, the

optimizer cannot arbitrarily choose either T1 or T2 as

the driving-table.

Free SQL Book, Tim Martyn 545 Copyright Pending, 2022

Appendix 19C: De-Normalized Tables (Again)

In Appendix 16A we considered the merits of creating the de-

normalized DNEMPLOYEE table by pre-joining the DEPARTMENT and

EMPLOYEE tables. This pre-join operation was an inner-join

and produced a table that looked like:

In Appendix 16A we noted that the major problem with this de-

normalized table is the Lost Information Problem. Note that

DNEMPLOYEE lost information about Department 30 because it

did not match on the inner-join operation.

Now, what if we attempted to resolve this problem by executing

a Left Outer-Join of DEPARTMENT and EMPLOYEE (similar to

Sample Query 19.6) and stored the result in a table called

XDNEMPLOYEE as shown below?

Note that XDNEMPLOYEE has information about all departments

and all employees (no Lost Information).

However! Is XDNEMPLOYEE really a good idea? Probably not,

because this table suffers from the “No Possible Primary Key

Problem” described in Appendix 19A.

ENO ENAME SALARY DNO DNAME BUDGET

1000 MOE 2000.00 20 INFO. SYS. 20000.00

2000 LARRY 2000.00 10 ACCOUNTING 75000.00

3000 CURLY 3000.00 20 INFO. SYS. 20000.00

4000 SHEMP 500.00 40 ENGINEERING 25000.00

5000 JOE 400.00 10 ACCOUNTING 75000.00

6000 GEORGE 9000.00 20 INFO. SYS. 20000.00

DNEMPLOYEE

DNO DNAME BUDGET ENO ENAME SALARY

10 ACCOUNTING 75000.00 2000 LARRY 2000.00

10 ACCOUNTING 75000.00 5000 JOE 400.00

20 INFO. SYS. 20000.00 1000 MOE 2000.00

20 INFO. SYS. 20000.00 3000 CURLY 3000.00

20 INFO. SYS. 20000.00 6000 GEORGE 9000.00

30 PRODUCTION 7000.00 - - -

40 ENGINEERING 25000.00 4000 SHEMP 500.00

XDNEMPLOYEE

Free SQL Book, Tim Martyn 546 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 547 Copyright Pending, 2022

Chapter

 20

 Multi-Table Left Outer-Joins

We have already seen that a multi-table INNER JOIN is a

straightforward extension of a two-table INNER JOIN.

Likewise, we will see that a multi-table LEFT OUTER JOIN is

(almost) a straightforward extension of a two-table LEFT

OUTER JOIN.

This chapter is organized into two sections.

Section-A: Top-Down Traversal of Table-Hierarchy: This

section will present SELECT statements that specify multi-

table LEFT OUTER JOIN operations to select data from tables

that lie along a hierarchical path. These tables will be

traversed in a top-down manner.

Section-B: Non-Top-Down Traversal of Table-Hierarchy: As in

the previous section, SELECT statements will specify multi-

table LEFT OUTER JOIN operations to select data from tables

that lie along a hierarchical path. However, these tables

will not be traversed in a top-down manner. This section will

be very useful in the following (optional) Chapter 20.5 where

an individual SELECT statement specifies both LEFT OUTER JOIN

and INNER JOIN operations.

Terminology: Unlike previous chapters, in this chapter

whenever we say “join” we mean LEFT OUTER JOIN.

Free SQL Book, Tim Martyn 548 Copyright Pending, 2022

A. Top-Down Traversal of Table-Hierarchy

Chapter 18 presented INNER JOIN operations that traversed the

following table-hierarchies in the MTPCH database. (Review

the MTPCH database in Figure 18.4.)

This chapter’s sample queries will specify multiple LEFT

OUTER JOIN operations that also traverse these same table-

hierarchies. These sample queries will traverse these

hierarchies in a top-down manner, by initially joining the

“top two” tables in the hierarchy.

STATE

REGION

CUSTOMER

PUR_ORDER

LINEITEM

PARTSUPP

PART

LINEITEM

STATE

REGION

SUPPLIER

PARTSUPP

LINEITEM

Free SQL Book, Tim Martyn 549 Copyright Pending, 2022

Review: Two-Table LEFT OUTER JOIN along Hierarchical Path

The following sample query performs a LEFT OUTER JOIN of the REGION

and STATE tables based on their PK-FK relationship. Observe that

these tables form a trivial hierarchy.

Sample Query 20.1: Display the number and name of every region

followed by the number and name of every state in each region.

Sort the result by STCODE within RNO.

 RNO RNAME STCODE STNAME

 1 NORTHEAST CT CONNECTICUT

 1 NORTHEAST MA MASSACHUSETTS

 2 NORTHWEST OR OREGON

 2 NORTHWEST WA WASHINGTON

 3 SOUTHEAST FL FLORIDA

 3 SOUTHEAST GE GEORGIA

 4 SOUTHWEST AZ ARIZONA

 4 SOUTHWEST NM NEW MEXICO

 5 MIDWEST - - R-No-ST

Notation: The (R-No-ST) notation designates a non-matching row

corresponding to a “Region with no States.”

Syntax and Logic: Nothing New. This SELECT statement is coded to

perform a top-down traversal of the REGION and STATE tables. The

result table join contains all RNO and RNAME values because REGION

is the left-table (the “top” table), and it contains all STCODE

and STNAME values because every STATE row must match some REGION

row.

Casually speaking, we “display data from all rows in both tables.”

The next sample query will “display data from all rows in three

tables.”

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME

FROM REGION R LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE

STATE

REGION

Free SQL Book, Tim Martyn 550 Copyright Pending, 2022

Three-Table LEFT OUTER JOIN along Hierarchical Path

The next sample query performs a top-down traversal of all tables

in the following REGION-STATE-CUSTOMER hierarchy.

Sample Query 20.2: Display the number and name of every region,

the code and name of every state in each region, and the number

and name of every customer in each state. Display the columns in

the following left-to-right sequence: RNO, RNAME, STCODE,

STNAME, CNO, and CNAME. Sort the result by CNO within STCODE

within RNO.

 RNO RNAME STCODE STNAME CNO CNAME

 1 NORTHEAST CT CONNECTICUT - - ST-No-C

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO

 1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI

 1 NORTHEAST MA MASSACHUSETTS 500 HILBERT

 2 NORTHWEST OR OREGON 300 NEWTON

 2 NORTHWEST OR OREGON 330 LEIBNIZ

 2 NORTHWEST WA WASHINGTON 400 DECARTES

 2 NORTHWEST WA WASHINGTON 440 PASCAL

 3 SOUTHEAST FL FLORIDA 600 BOOLE

 3 SOUTHEAST FL FLORIDA 660 CANTOR

 3 SOUTHEAST GE GEORGIA 700 RUSSELL

 3 SOUTHEAST GE GEORGIA 770 GODEL

 4 SOUTHWEST AZ ARIZONA 880 TURING

 4 SOUTHWEST AZ ARIZONA 890 MANDELBROT

 4 SOUTHWEST NM NEW MEXICO 780 CHURCH

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN

 5 MIDWEST - - - - R-No-ST

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

ORDER BY R.RNO, ST.STCODE, C.CNO

STATE

REGION

CUSTOMER

Free SQL Book, Tim Martyn 551 Copyright Pending, 2022

The result table contains data from:

• All REGION rows (including regions that do not have any

states)

• All STATE rows (including states that do not have any

customers)

• All CUSTOMER rows

Hence, this result table contains some data from “all rows in all

tables” in the hierarchy. Observe that the result table contains

the non-matching REGION value (MIDWEST) and the non-matching STATE

value (CONNECTICUT). These rows are identified by the following

notation.

 R-No-ST designates a non-matching row corresponding to a “Region

with no States.”

 ST-No-C designates a non-matching row corresponding to a “State

with no Customers.”

“Top-Down” Join-Sequence: Logically, the first LEFT OUTER JOIN

operation joins the “top two” tables, REGION and STATE, to produce

an intermediate join-result (which is the same as the final result

for the preceding Sample Query 20.1). Then, the second LEFT OUTER

JOIN operation joins this intermediate result (as the left-table)

with the CUSTOMER table to produce the final join-result. We refer

to this join-sequence as a “top-down” join-sequence. This top-down

join-sequence applies to all SELECT statements presented in this

Section-A.

Exercise:

20A. Display the number and name of every region, the number and

name of every state in each region, and the number and name

of every supplier in each state. Display the columns in the

following left-to-right sequence: RNO, RNAME, STCODE, STNAME,

SNO, and SNAME. Sort the result by SNO within STCODE within

RNO. (Hint: Follow the REGION-STATE-SUPPLIER hierarchical

path.)

Free SQL Book, Tim Martyn 552 Copyright Pending, 2022

Four-Table LEFT OUTER JOIN along Hierarchical Path

The next sample query performs a top-down traversal of all tables

in the following REGION-STATE-CUSTOMER-PUR_ORDER hierarchy.

Sample Query 20.3: Display the number and name of every region,

the code and name of every state in each region, the number and

name of every customer in each state, and the purchase-order

number and status of every purchase-order completed by each

customer. Display the columns in the following left-to-right

sequence: RNO, RNAME, STCODE, STNAME, CNO, CNAME, PONO, and

POSTATUS. Sort the result by PONO within CNO within STCODE within

RNO.

[Result table shown on following page]

 Syntax & Logic: Nothing New. This statement performs three LEFT

OUTER JOIN operations in a top-down join-sequence. Logically, the

REGION and STATE tables are initially joined to form an

intermediate join-result. This result is joined to the CUSTOMER

table to form another intermediate join-result, which is joined

to the PUR_ORDER table to generate the final join-result.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME, PO.PONO, PO.POSTATUS

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO

STATE

REGION

CUSTOMER

PUR_ORDER

Free SQL Book, Tim Martyn 553 Copyright Pending, 2022

 RNO RNAME STCODE STNAME CNO CNAME PONO POSTATUS

 1 NORTHEAST CT CONNECTICUT - - - - ST-No-C

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11101 C

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11102 P

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 11108 C

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 11109 P

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA 11110 C

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA 11111 P

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11120 C

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11121 C

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11122 P

 1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI 11124 P

 1 NORTHEAST MA MASSACHUSETTS 500 HILBERT 11150 P

 2 NORTHWEST OR OREGON 300 NEWTON 11130 C

 2 NORTHWEST OR OREGON 300 NEWTON 11133 P

 2 NORTHWEST OR OREGON 330 LEIBNIZ 11139 C

 2 NORTHWEST OR OREGON 330 LEIBNIZ 11141 P

 2 NORTHWEST WA WASHINGTON 400 DECARTES 11142 C

 2 NORTHWEST WA WASHINGTON 400 DECARTES 11144 P

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11146 C

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11148 C

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11149 P

 3 SOUTHEAST FL FLORIDA 600 BOOLE 11152 C

 3 SOUTHEAST FL FLORIDA 600 BOOLE 11153 P

 3 SOUTHEAST FL FLORIDA 660 CANTOR 11154 C

 3 SOUTHEAST FL FLORIDA 660 CANTOR 11155 P

 3 SOUTHEAST GE GEORGIA 700 RUSSELL 11156 C

 3 SOUTHEAST GE GEORGIA 770 GODEL 11157 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11159 C

 4 SOUTHWEST AZ ARIZONA 880 TURING 11160 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11170 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11198 P

 4 SOUTHWEST AZ ARIZONA 890 MANDELBROT - - C-No-PO

 4 SOUTHWEST NM NEW MEXICO 780 CHURCH - - C-No-PO

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 11158 C

 5 MIDWEST - - - - - - R-No-ST

Notation: C-No-PO designates a non-matching row corresponding to

a “Customer with no Purchase-Orders.”

Exercise:

20B. Display the number and name of every region, the code and

name of every state in each region, the number and name of

every supplier in each state, and the part number of every

part that you can purchase from these suppliers. Display the

columns in the following left-to-right sequence: RNO, RNAME,

STCODE, STNAME, SNO, SNAME, PNO. Sort the result by PNO within

SNO within STCODE within RNO. (Hint: Follow the REGION-STATE-

SUPPLIER-PARTSUPP hierarchical path.)

Free SQL Book, Tim Martyn 554 Copyright Pending, 2022

Five-Table LEFT OUTER JOIN along Hierarchical Path

The following sample query performs a top-down traversal of all

tables in the REGION-STATE-CUSTOMER-PUR_ORDER-LINEITEM hierarchy.

Sample Query 20.4: Display the number and name of every region,

the code of every state in each region, the number of every

customer in each state, the purchase-order number of every

purchase-order completed by each customer, and the part number

(PNO) and supplier number (SNO) specified in the purchase-

order’s line-items. Display the columns in the following left-

to-right sequence: RNO, RNAME, STCODE, CNO, PONO, PNO, and SNO.

Sort the result by PNO within PONO within CNO within STCODE

within RNO.

 [Following page shows some of the 67 returned rows.]

Notation: PO-No-LI designates a non-matching row corresponding

to a “Purchase-Order with no Line-Items.”

Syntax & Logic: Logically, by following a top-down join-sequence,

the REGION and STATE tables are joined to form an intermediate

join-result, which is joined to CUSTOMER to form another

intermediate join-result, which is joined to PUR_ORDER to form

another intermediate join-result, which is joined to LINEITEM to

form the final join-result.

SELECT R.RNO, R.RNAME, ST.STCODE, C.CNO,

 PO.PONO, LI.PNO, LI.SNO

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO, LI.PNO

STATE

REGION

CUSTOMER

PUR_ORDER

LINEITEM

Free SQL Book, Tim Martyn 555 Copyright Pending, 2022

 RNO RNAME STCODE CNO PONO PNO SNO

 1 NORTHEAST CT - - - - ST-No-C

 1 NORTHEAST MA 100 11101 P1 S2

 1 NORTHEAST MA 100 11101 P3 S3

 1 NORTHEAST MA 100 11102 P3 S3

 1 NORTHEAST MA 100 11102 P4 S4

 1 NORTHEAST MA 110 11108 P5 S1

 1 NORTHEAST MA 110 11108 P6 S4

 1 NORTHEAST MA 110 11109 P1 S2

 1 NORTHEAST MA 110 11109 P7 S2

 1 NORTHEAST MA 110 11109 P8 S4

 1 NORTHEAST MA 200 11110 P8 S4

 1 NORTHEAST MA 200 11111 P1 S4

 1 NORTHEAST MA 200 11111 P3 S4

 1 NORTHEAST MA 220 11120 P4 S4

 1 NORTHEAST MA 220 11120 P5 S2

 1 NORTHEAST MA 220 11121 P6 S6

 1 NORTHEAST MA 220 11121 P7 S4

 1 NORTHEAST MA 220 11122 P1 S2

 1 NORTHEAST MA 220 11122 P3 S3

 1 NORTHEAST MA 230 11124 P4 S4

 1 NORTHEAST MA 230 11124 P5 S1

 1 NORTHEAST MA 500 11150 P3 S4

 1 NORTHEAST MA 500 11150 P6 S4

 4 SOUTHWEST AZ 880 11159 P6 S4

 4 SOUTHWEST AZ 880 11159 P7 S2

 4 SOUTHWEST AZ 880 11160 P1 S2

 4 SOUTHWEST AZ 880 11160 P7 S2

 4 SOUTHWEST AZ 880 11170 P3 S4

 4 SOUTHWEST AZ 880 11170 P4 S4

 4 SOUTHWEST AZ 880 11198 - - PO-No-LI

 4 SOUTHWEST AZ 890 - - - C-No-PO

 4 SOUTHWEST NM 780 - - - C-No-PO

 4 SOUTHWEST NM 800 11158 P1 S2

 4 SOUTHWEST NM 800 11158 P3 S4

 5 MIDWEST - - - - - R-No-ST

Exercise:

20C. Display the number and name of every region, the code of every state

in each region, the number and name of every supplier in each

state, and the purchase-order number and part-number that appeared

in every line-item for each supplier. Sort the result by PNO within

PONO within SNO within STCODE within RNO. (Hints: Follow the

REGION-STATE-SUPPLIER-PARTSUPP-LINEITEM hierarchy. Note that no

data from the PARTSUPP table is displayed. This table serves as a

link-table between the SUPPLIER and LINEITEM tables.)

Free SQL Book, Tim Martyn 556 Copyright Pending, 2022

“Exiting the Hierarchy” (Careful!)

The following statement extends Sample Query 20.4. This statement

involves “one more hop” to another table, the PARTSUPP table, to

access and display PSPRICE values. There is nothing new from a

syntax perspective. However, you must recognize that the PARTSUPP

table is not a “sixth-table in a six-level hierarchy.”

Sample Query 20.5: Extend Sample Query 20.4. For each line-item,

also display its LIPRICE value (in the LINEITEM table) and its

corresponding PSPRICE value (from the PARTSUPP table).

[Following page shows some of the 67 returned rows.]

Logic: Note that LINEITEM is the child (not the parent) in the

one-to-many relationship between PARTSUPP and LINEITEM. Hence, we

cannot assume that data from all rows in the parent PARTSUPP table

will be displayed. Here, one PARTSUPP row (P7, S6) does not match

a LINEITEM row.

Also, note that the one-to-many PK-FK relationship between the

PARTSUPP and LINEITEM tables involves a composite key (PNO, SNO).

PARTSUPP

STATE

REGION

CUSTOMER

PUR_ORDER

LINEITEM

SELECT R.RNO, R.RNAME, ST.STCODE, C.CNO,

 PO.PONO, LI.PNO, LI.SNO, LI.LIPRICE, PS.PSPRICE

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

 LEFT OUTER JOIN PARTSUPP PS

 ON LI.PNO = PS.PNO AND LI.SNO = PS.SNO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO, LI.PNO

Free SQL Book, Tim Martyn 557 Copyright Pending, 2022

 RNO RNAME STCODE CNO PONO PNO SNO LIPRICE PSPRICE

1 NORTHEAST CT - - - - - -

1 NORTHEAST MA 100 11101 P1 S2 11.50 10.50

1 NORTHEAST MA 100 11101 P3 S3 12.00 12.00

1 NORTHEAST MA 100 11102 P3 S3 13.00 12.00

1 NORTHEAST MA 100 11102 P4 S4 13.00 12.00

1 NORTHEAST MA 110 11108 P5 S1 11.00 10.00

1 NORTHEAST MA 110 11108 P6 S4 5.00 4.00

1 NORTHEAST MA 110 11109 P1 S2 11.50 10.50

1 NORTHEAST MA 110 11109 P7 S2 3.00 2.00

1 NORTHEAST MA 110 11109 P8 S4 6.00 5.00

1 NORTHEAST MA 200 11110 P8 S4 6.00 5.00

1 NORTHEAST MA 200 11111 P1 S4 12.00 11.00

1 NORTHEAST MA 200 11111 P3 S4 13.50 12.50

1 NORTHEAST MA 220 11120 P4 S4 13.00 12.00

1 NORTHEAST MA 220 11120 P5 S2 11.00 10.00

1 NORTHEAST MA 220 11121 P6 S6 5.00 4.00

1 NORTHEAST MA 220 11121 P7 S4 4.00 3.00

1 NORTHEAST MA 220 11122 P1 S2 11.50 10.50

1 NORTHEAST MA 220 11122 P3 S3 13.00 12.00

1 NORTHEAST MA 230 11124 P4 S4 13.00 12.00

1 NORTHEAST MA 230 11124 P5 S1 11.00 10.00

1 NORTHEAST MA 500 11150 P3 S4 13.50 12.50

1 NORTHEAST MA 500 11150 P6 S4 5.00 4.00

.

.

4 SOUTHWEST AZ 880 11159 P6 S4 5.00 4.00

4 SOUTHWEST AZ 880 11159 P7 S2 3.00 2.00

4 SOUTHWEST AZ 880 11160 P1 S2 12.50 10.50

4 SOUTHWEST AZ 880 11160 P7 S2 3.00 2.00

4 SOUTHWEST AZ 880 11170 P3 S4 12.50 12.50

4 SOUTHWEST AZ 880 11170 P4 S4 13.00 12.00

4 SOUTHWEST AZ 880 11198 - - - -

4 SOUTHWEST AZ 890 - - - - -

4 SOUTHWEST NM 780 - - - - -

4 SOUTHWEST NM 800 11158 P1 S2 11.50 10.50

4 SOUTHWEST NM 800 11158 P3 S4 13.50 12.50

5 MIDWEST - - - - - - -

Observation: The result table has 67 rows, the same number of rows

in the previous result table for Sample Query 20.4. This occurred

because each LINEITEM row matches exactly one row in the PARTSUPP

table.

Important Question: Because PARTSUPP is not within the hierarchy

of tables, could we specify an INNER JOIN (instead of a LEFT OUTER

JOIN) of the LINEITEM and PARTSUPP tables? No! Try it. (See

Exercise 20J.)

Free SQL Book, Tim Martyn 558 Copyright Pending, 2022

Grouping and Summarizing

Chapters 9 and 9.5 introduced grouping rows and summarizing values

from each group; and Chapter 18 (Multi-Table Inner-Joins)

illustrated grouping and summarizing within a multi-table inner-

join result. The following sample query illustrates grouping and

summarizing with a multi-table outer-join result. Here, your logic

must consider possible null values in the join-result produced by

the LEFT OUTER JOIN operations.

Sample Query 20.6: Display the number and name of every region

followed by the total price of all parts purchased by a customer

in each region. Display the columns in the following left-to-

right sequence: RNO, RNAME, and TOTALPRICE (column heading for

the total price of all parts purchased in each region). Sort the

result by RNO.

RNO RNAME TOTALPRICE

 1 NORTHEAST 3110.00

 2 NORTHWEST 1790.00

 3 SOUTHEAST 2155.00

 4 SOUTHWEST 970.00

 5 MIDWEST 0.00 R-No-ST

Logic: Nothing new. The join-result contains one row for the non-

matching MIDWEST region with a null LIPRICE value. This row is

the only row in the MIDWEST group. Because the SUM (LIPRICE) for

this row is null, the COALESCE function is used to convert this

null value to zero.

SELECT R.RNO, R.RNAME, COALESCE (SUM (LIPRICE), 0) TOTALPRICE

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

GROUP BY R.RNO, R.RNAME

ORDER BY R.RNO

Free SQL Book, Tim Martyn 559 Copyright Pending, 2022

Restriction (WHERE): Applied After the Outer-Join

Chapter 19 described potential problems associated with

restrictions and null values as they relate to two-table outer-

join operations. These same problems appear within multi-table

outer-joins.

Sample Query 20.7: Display the number and name of every region

except the SOUTHEAST region, the code and name of every state

except those states located in the SOUTHEAST region, and the

number and name of every customer except those customers

located in states within the SOUTHEAST region. Sort the result

by CNO within STCODE within RNO.

 RNO RNAME STCODE STNAME CNO CNAME

 1 NORTHEAST CT CONNECTICUT - - ST-No-C

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO

 1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI

 1 NORTHEAST MA MASSACHUSETTS 500 HILBERT

 2 NORTHWEST OR OREGON 300 NEWTON

 2 NORTHWEST OR OREGON 330 LEIBNIZ

 2 NORTHWEST WA WASHINGTON 400 DECARTES

 2 NORTHWEST WA WASHINGTON 440 PASCAL

 4 SOUTHWEST AZ ARIZONA 880 TURING

 4 SOUTHWEST AZ ARIZONA 890 MANDELBROT

 4 SOUTHWEST NM NEW MEXICO 780 CHURCH

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN

 5 MIDWEST - - - - R-No-ST

Syntax & Logic: Nothing New. The two LEFT OUTER JOIN operations

produce a join-result (which is the same as final result in Sample

Query 20.2). Then the WHERE-clause excludes any row with an RNAME

value of SOUTHEAST. This solution is straightforward. However, the

following sample query, which is similar to this query, is not so

straightforward.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

WHERE R.RNAME <> 'SOUTHEAST'

ORDER BY R.RNO, ST.STCODE, C.CNO

Free SQL Book, Tim Martyn 560 Copyright Pending, 2022

Intentional Error

For tutorial purposes, the following SELECT statement makes an

intentional error. It incorrectly specifies a WHERE-clause to

exclude rows from the join-result.

Sample Query 20.8: Display the number and name of every region,

the name of every state except MASSACHUSETTS, and the name of

every customer except those customers who are located in

MASSACHUSETTS. Display the columns in the following left-to-

right sequence: RNO, RNAME, STNAME and CNAME. Sort the result

by CNAME within STNAME within RNO.

 RNO RNAME STNAME CNAME

 1 NORTHEAST CONNECTICUT - ST-No-C

 2 NORTHWEST OREGON LEIBNIZ

 2 NORTHWEST OREGON NEWTON

 2 NORTHWEST WASHINGTON DECARTES

 2 NORTHWEST WASHINGTON PASCAL

 3 SOUTHEAST FLORIDA BOOLE

 3 SOUTHEAST FLORIDA CANTOR

 3 SOUTHEAST GEORGIA GODEL

 3 SOUTHEAST GEORGIA RUSSELL

 4 SOUTHWEST ARIZONA MANDELBROT

 4 SOUTHWEST ARIZONA TURING

 4 SOUTHWEST NEW MEXICO CHURCH

 4 SOUTHWEST NEW MEXICO VON NEUMANN

Logic: This statement produces an “almost correct” (wrong) result.

The WHERE-clause correctly excludes the MASSACHUSETTS rows along

with related customer’s CNAME values from the final result.

However, it also incorrectly excludes the row for the MIDWEST

region.

Incorrect Statement & Incorrect Result:

SELECT R.RNO, R.RNAME, ST.STNAME, C.CNAME

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

WHERE ST.STNAME <> 'MASSACHUSETTS' Error

ORDER BY R.RNAME, ST.STNAME, C.CNAME

Free SQL Book, Tim Martyn 561 Copyright Pending, 2022

Notice that, after executing the two LEFT OUTER JOIN operations,

the MIDWEST row (denoted by the arrow) appears in the intermediate

join-result as shown below.

 RNO RNAME STNAME CNAME

 5 MIDWEST - -

 1 NORTHEAST CONNECTICUT -

 1 NORTHEAST MASSACHUSETTS BOLYAI

 1 NORTHEAST MASSACHUSETTS EUCLID

 1 NORTHEAST MASSACHUSETTS HILBERT

 1 NORTHEAST MASSACHUSETTS HYPATIA

 1 NORTHEAST MASSACHUSETTS PYTHAGORAS

 1 NORTHEAST MASSACHUSETTS ZENO

 2 NORTHWEST OREGON LEIBNIZ

 2 NORTHWEST OREGON NEWTON

 2 NORTHWEST WASHINGTON DECARTES

 2 NORTHWEST WASHINGTON PASCAL

 3 SOUTHEAST FLORIDA BOOLE

 3 SOUTHEAST FLORIDA CANTOR

 3 SOUTHEAST GEORGIA GODEL

 3 SOUTHEAST GEORGIA RUSSELL

 4 SOUTHWEST ARIZONA MANDELBROT

 4 SOUTHWEST ARIZONA TURING

 4 SOUTHWEST NEW MEXICO CHURCH

 4 SOUTHWEST NEW MEXICO VON NEUMANN

Next, the WHERE ST.STNAME <> 'MASSACHUSETTS' clause removes the

undesired MASSACHUSETTS rows from the final result. However, this

WHERE-clause also incorrectly removes the desired MIDWEST row

because it has a null STNAME value. Recall that no WHERE-condition

(excluding the IS NULL condition) can “get a hit” on a comparison

involving a NULL value.

Free SQL Book, Tim Martyn 562 Copyright Pending, 2022

ON-Clause: Compound-Condition (AND) Applied During Outer-Join

We correct the previous error by recalling the difference between

WHERE and AND as described in Chapter 19.

Sample Query 20.8 (Again): Display the number and name of every

region, the name of every state except MASSACHUSETTS, and the

name of every customer except those customers that are located

in MASSACHUSETTS. Display the columns in the following left-

to-right sequence: RNO, RNAME, STNAME and CNAME. Sort the

result by CNAME within STNAME within RNO.

 RNO RNAME STNAME CNAME

 5 MIDWEST - - R-No-ST

 1 NORTHEAST CONNECTICUT - ST-No-C

 2 NORTHWEST OREGON LEIBNIZ

 2 NORTHWEST OREGON NEWTON

 2 NORTHWEST WASHINGTON DECARTES

 2 NORTHWEST WASHINGTON PASCAL

 3 SOUTHEAST FLORIDA BOOLE

 3 SOUTHEAST FLORIDA CANTOR

 3 SOUTHEAST GEORGIA GODEL

 3 SOUTHEAST GEORGIA RUSSELL

 4 SOUTHWEST ARIZONA MANDELBROT

 4 SOUTHWEST ARIZONA TURING

 4 SOUTHWEST NEW MEXICO CHURCH

 4 SOUTHWEST NEW MEXICO VON NEUMANN

Syntax & Logic: Nothing new. In the first LEFT OUTER JOIN, the

compound join-condition (R.RNO = ST.RNO AND ST.STNAME <>

'MASSACHUSETTS') produces an intermediate result without

MASSACHUSETTS rows, but includes the MIDWEST row because REGION is

the left-table. The second LEFT OUTER JOIN of this intermediate

join-result (as the left-table) with the CUSTOMER table preserves

the MIDWEST row in the final result.

Correct Statement & Result:

SELECT R.RNO, R.RNAME, ST.STNAME, C.CNAME

FROM REGION R

LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO AND ST.STNAME <> 'MASSACHUSETTS'

LEFT OUTER JOIN CUSTOMER C

ON ST.STCODE = C.STCODE

ORDER BY R.RNAME, ST.STNAME, C.CNAME

Free SQL Book, Tim Martyn 563 Copyright Pending, 2022

Exercises:

20D. Display the number and name of every part, the supplier number

of every supplier who can sell the part, and the line-item

price for each sale of the part by the supplier. Display the

columns in the following left-to-right sequence: PNO, PNAME,

SNO, and LIPRICE. Sort the result by SNO within PNO. (Hint:

Follow the PART-PARTSUPP-LINEITEM hierarchy.)

20E. Display the number and name of every region followed by the

minimum and maximal PSPRICE values of parts sold by suppliers

in each region. Display the columns in the following left-

to-right sequence: RNO, RNAME, and MINPSPRICE and MAXPSPRICE

values (column headings for the min and max prices of parts

sold by suppliers in each region). Sort the result by RNO.

Display zero for null values. (Hint: Follow the REGION-STATE-

SUPPLIER-PARTSUPP hierarchy.)

20F. Display the number and name of every Western region. (The RNAME

value ends with ‘WEST’.) Also, display the code and name of

every state in each Western region, and the number and name of

every supplier in each Western region. Sort the result by SNO

within STCODE within RNO. (Hint: Follow the REGION-STATE-

SUPPLIER hierarchical path.)

20G. Display the number and name of every region, the code, name,

and population of every state with a population over 4 million

people, and the number and name of every supplier in these

states. Sort the result by SNO within STCODE within RNO.

(Hint: Follow the REGION-STATE-SUPPLIER hierarchical path.)]

Free SQL Book, Tim Martyn 564 Copyright Pending, 2022

B. Non-Top-Down Traversal of Table-Hierarchy

In Section-A, every sample query performed a top-down traversal of

table-hierarchies found in the MTPCH Database. In this section,

sample queries reference the same table-hierarchies, but will not

necessarily traverse these hierarchies in a top-down manner. The

information presented in this section will be very useful in the

following Chapter 20.5.

The following SELECT statements are equivalent. They both display

data from all rows in all tables in the REGION-STATE-CUSTOMER

hierarchy. Statement-1 was described in Sample Query 20.2. The

syntax for Statement-2 is new and will be described below.

Again, Statement-1 directs the system to perform a top-down

traversal by initially joining the REGION and STATE tables.

However, from a logical perspective, Statement-2 directs the

system to initially join the STATE and CUSTOMER tables. These

different join-sequences are illustrated in the following figure.

Statement-1 (Top-Down Traversal)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

ORDER BY R.RNO, ST.STCODE, C.CNO

Statement-2 (Non-Top-Down Traversal)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R LEFT OUTER JOIN

 STATE ST LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE, C.CNO

Statement-1

STATE

REGION

CUSTOMER

Join

First

Statement-2

STATE

REGION

CUSTOMER

Join

First

Free SQL Book, Tim Martyn 565 Copyright Pending, 2022

General Syntax

The following page will comment on: (i) how we know that Statement-

1 and Statement-2 are equivalent, and (ii) why we might want to

code Statement-2 versus Statement-1. But first we address syntax.

General Syntax for LEFT OUTER JOIN Clause: We have already seen

the basic syntax for the LEFT OUTER JOIN clause:

 TAB1 LEFT OUTER JOIN TAB2 ON join-condition

where TAB1 and TAB2 are table-names.

The following FROM-clause from Statement-1 conforms to this

general syntax where the table-expression is underlined. This

table-expression produces an intermediate-result table that

becomes the left-table in the join with CUSTOMER.

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

Likewise, the following the FROM-clause from Statement-2 conforms

to this general syntax where the table-expression is underlined.

This table-expression produces an intermediate-result table that

becomes the right-table in the join with REGION.

FROM REGION R LEFT OUTER JOIN

 STATE ST LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

The following page describes why, from a logical perspective,

Statement-2 implies that STATE and CUSTOMER are joined first.

The general syntax for the LEFT OUTER JOIN clause is:

 TAB-EXP1 LEFT OUTER JOIN TAB-EXP2 ON join-condition

where TAB-EXP1 and/or TAB-EXP2 can be a table-name or a

table-expression that produces an intermediate result table.

Free SQL Book, Tim Martyn 566 Copyright Pending, 2022

Consider the FROM-clause in Statement-2.

FROM REGION R LEFT OUTER JOIN

 STATE ST LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

Read this FROM-clause from left-to-right.

 FROM REGION R LEFT OUTER JOIN “something”

The system might expect this “something” to be the name of the

Right-table (e.g., STATE) as in Statement-1. However, instead of

a table-name, the system encounters the following table-

expression.

 STATE ST LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

* The system must evaluate this table-expression first to produce

an intermediate result to serve as the right-table in the join

with the REGION table. Hence, the FROM-clause effectively becomes:

FROM REGION R LEFT OUTER JOIN

 [Intermediate join-result on STATE and CUSTOMER]

 ON R.RNO = ST.RNO

Consideration of this FROM-clause motivates two questions.

Questions

1. How do we know that the FROM-clauses in Statement-1 and

Statement-2 (which specify different join-sequences) are

equivalent?

 Answer: The Associative Law applies to LEFT OUTER JOIN

operations. Details are described in Appendix 20A.

 2. If we know that the simpler top-down join-sequence in

Statement-1 produces the correct result, why would we want to

code the alternative join-sequence specified in Statememt-2?

 Answer: On a rare occasion, an alternative join-sequence

could possibly enhance efficiency. Again, see Appendix 20A.

Free SQL Book, Tim Martyn 567 Copyright Pending, 2022

Pseudo-Code for Join-Sequences

We introduce a pseudo-code for join-sequences that will facilitate

our discussion of future examples. Below it will facilitate our

discussion of LEFT OUTER JOIN operations that traverse a four-

level hierarchy (REGION-STATE-CUSTOMER-PUR_ORDER).

Pseudo-Code: Let LOJ represent a LEFT OUTER JOIN operation, and

let IJ represent an INNER JOIN operation. Similar to arithmetic

expressions, parentheses are used to designated a join-sequence.

For example, the join-sequences for Statement-1 and Statement-2

are shown below.

 Statement-1: (REGION LOJ STATE) LOJ CUSTOMER

 Statement-2: REGION LOJ (STATE LOJ CUSTOMER)

This pseudo-code does not specify ON-conditions because we assume

the join-conditions reference primary-key and foreign-key columns.

Below we present pseudo-code join-sequences for Query 20.3.

Join-Sequences for Sample Query 20.3: This sample query referenced

the REGION-STATE-CUSTOMER-PUR_ORDER hierarchy. Here, the number of

possible join-sequences increases to 5.

Join-Seq1: ((REGION LOJ STATE) LOJ CUSTOMER) LOJ PUR_ORDER

Join-Seq2: REGION LOJ (STATE LOJ (CUSTOMER LOJ PUR_ORDER))

Join-Seq3: REGION LOJ ((STATE LOJ CUSTOMER) LOJ PUR_ORDER)

Join-Seq4: (REGION LOJ (STATE LOJ CUSTOMER)) LOJ PUR_ORDER

Join-Seq5: (REGION LOJ STATE) LOJ (CUSTOMER LOJ PUR_ORDER)

Join-Seq1 represents the top-down join-sequence specified in

Sample Query 20.3. Join-Seq2 specifies a bottom-up join-sequence.

Join-Seq3 and Join-Seq4 represent a “middle-join-first” sequence

where to two “middle tables” (STATE and CUSTOMER), are joined

first. Join-Seq5 initially joins the top two tables (REGION and

STATE), and then joins the bottom two tables (CUSTOMER and

PUR_ORDER), and finally joins the two intermediate join-results.

Free SQL Book, Tim Martyn 568 Copyright Pending, 2022

Alternative Join-Sequences

Coding join-sequences for Join-Seq2, Join-Seq3, Join-Seq4, and

Join-Seq5 can be a little tricky. Below we preview two examples.

The following pages offer more advice on details.

Example: Code Join-Seq2:

 REGION LOJ (STATE LOJ (CUSTOMER LOJ PUR_ORDER))

Here, you want to initially join the CUSTOMER and PUR_ORDER tables

to produce an intermediate join-result. Then, this intermediate

join-result will serve as the right-table in a left outer-join

with STATE to produce a second intermediate join-result. Finally,

this second intermediate join-result will serve as the right-table

in a left outer-join with REGION.

The FROM-clause that specifies this join-sequence is shown below

in Figure 20.1.

Sample Query 20.3: Join-Seq2

FROM REGION R LEFT OUTER JOIN

 STATE ST LEFT OUTER JOIN

 CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO

 ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

Figure 20.1: REGION LOJ (STATE LOJ (CUSTOMER LOJ PUR_ORDER))

Free SQL Book, Tim Martyn 569 Copyright Pending, 2022

Example: Code Join-Seq4:

 (REGION LOJ (STATE LOJ CUSTOMER)) LOJ PUR_ORDER

Preview Exercise: Forthcoming Exercises 28I and 20J will ask you

to code FROM-clauses for the following two pseudo-code

expressions.

 Join-Seq3: REGION LOJ ((STATE LOJ CUSTOMER) LOJ PUR_ORDER)

Join-Seq5: (REGION LOJ STATE) LOJ (CUSTOMER LOJ PUR_ORDER)

The following pages will help you solve these exercises.

Sample Query 20.3: Join-Seq4

FROM REGION R LEFT OUTER JOIN

 STATE ST LEFT OUTER JOIN CUSTOMER C

 ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

 LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO

Figure 20.2: (REGION LOJ (STATE LOJ CUSTOMER)) LOJ PUR_ORDER

Free SQL Book, Tim Martyn 570 Copyright Pending, 2022

ON-Conditions ➔ Join-Sequence

You can work backwards, starting with a FROM-clause (written by

you or some other user) to deduce the join-sequence specified by

the FROM-clause. Then you can transform this FROM-clause into

pseudo-code. Below, we present a simple method to achieve this

objective. Consider the following FROM-clause, and focus on the

three ON-conditions.

FROM REGION R LEFT OUTER JOIN STATE ST

 LEFT OUTER JOIN CUSTOMER C

 ON ST.STCODE = C.STCODE 1

 LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO 2

 ON R.RNO = ST.RNO 3

List these ON-conditions in the same top-down sequence as they

were specified in the FROM-clause, as shown below.

1. ON ST.STCODE = C.STCODE

2. ON C.CNO = PO.CNO
3. ON R.RNO = ST.RNO

*** The sequence of ON-conditions dictates the join-sequence.

Notice that table-aliases in an ON-condition identify the tables

that are being joined. For example, consider the first ON-

condition: ON ST.STCODE = C.STCODE

After substituting table-names for the aliases, we have:

ON STATE.STCODE = CUSTOMER.STCODE

Hence, this first ON-condition implies that the STATE and CUSTOMER

tables are to be joined first. The second ON-condition implies

that the CUSTOMER and PUR_ORDER tables are to be joined second.

The third ON-condition implies that the REGION and STATE tables

are joined last. To summarize, we deduce that the join-sequence

specified by this FROM-clause is:

ON-Condition Join-Sequence

1. ON ST.STCODE = C.STCODE ➔ 1st Join: STATE and CUSTOMER

2. ON C.CNO = PO.CNO ➔ 2nd Join: CUSTOMER and PUR_ORDER

3. ON R.RNO = ST.RNO ➔ 3rd Join: REGION and STATE

Free SQL Book, Tim Martyn 571 Copyright Pending, 2022

If desired, we can transform this join-sequence into a pseudo-code

expression.

First, list the referenced tables in hierarchical sequence.

 REGION - STATE - CUSTOMER - PUR_ORDER

Next, examine the FROM-clause to include the specific join-

operations, IJ or LOJ. (In this chapter, all examples only specify

LOJ operations.)

 REGION LOJ STATE LOJ CUSTOMER LOJ PUR_ORDER

Then, examine the sequence of ON-conditions (shown on the previous

page) to assign the execution sequence to each LOJ operation.

 REGION LOJ STATE LOJ CUSTOMER LOJ PUR_ORDER

 3 1 2

Finally, specify parentheses to represent this join-sequence.

 REGION LOJ ((STATE LOJ CUSTOMER) LOJ PUR_ORDER)

Code Verification Technique: After you have coded a FROM-clause,

you can validate the join-sequence specified by this FROM-clause

by using the above method to generate the equivalent pseudo-code.

This pseudo-code should correspond to your query objective.

Exercise:

20H. Work backwards. Describe the join-sequence for the following

FROM-clause that references five tables. Then transform this

sequence into pseudo-code.

FROM REGION R

LEFT OUTER JOIN STATE ST

 LEFT OUTER JOIN CUSTOMER C

 LEFT OUTER JOIN PUR_ORDER PO

 LEFT OUTER JOIN LINEITEM LI

 ON PO.PONO = LI.PONO

 ON C.CNO = PO.CNO

 ON ST.STCODE = C.STCODE

ON R.RNO = ST.RNO

Free SQL Book, Tim Martyn 572 Copyright Pending, 2022

Optional Parentheses in FROM-Clauses

Our pseudo-code utilizes parentheses to designate the sequence of

join-operations. This is similar to utilizing parentheses to

designate the execution sequence of arithmetic operations within

an arithmetic expression.

Parentheses can also be specified within a FROM-clause. However,

unlike parentheses in our pseudo-code, parentheses within a FROM-

clause do not dictate the join-sequence. Parentheses can only

enhance readability.

Important: Each pair of parentheses must enclose a complete JOIN-

ON clause as illustrated in the following example.

Example: Assume you examine the FROM-clause in a SQL statement

(coded by some other user) and observe parentheses in the FROM-

clause, as illustrated below.

FROM REGION R

 LEFT OUTER JOIN

 (STATE ST LEFT OUTER JOIN CUSTOMER C

 ON ST.STCODE = C.STCODE)

 ON R.RNO = ST.RNO

This FROM-clause is equivalent to the following FROM-clause which

simply removes the parentheses.

FROM REGION R

 LEFT OUTER JOIN

 STATE ST LEFT OUTER JOIN CUSTOMER C

ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

Author Comment: Although parentheses enhance readability, for

tutorial reasons, this author did not specify parentheses in

preceding FROM-clauses. Three observations justify this decision.

1. Within arithmetic expressions, there is a default sequence of
arithmetic operations. For example, multiplication is

executed before addition. Hence: 2+3*4 = 14. However, there

is no default sequence among join-operations. For example,

the system will not automatically execute an INNER JOIN before

or after a LEFT OUTER JOIN. (The following chapter will

demonstrate this fact.)

Free SQL Book, Tim Martyn 573 Copyright Pending, 2022

2. Within an arithmetic expression, parentheses can be used to
override the default sequence of arithmetic operations. For

example, (2+3)*4 = 20. However, as stated above, there is no

default sequence among join-operations that can be

overridden. (In Sample Queries 20.1-20.8, we coded top-down

join-sequences as our own “preferred default” join-sequence.)

3. We did not specify parentheses in the previous FROM-clauses
because our intention was to avoid potential confusion

associated with the incorrect assumption that parentheses

dictate the sequence of join-operations.

Example: To enhance readability, we include parentheses in the

FROM-clause shown below Figure 20.3a. These parentheses correspond

to the parentheses specified in the following pseudo-code for this

FROM-clause.

 REGION LOJ (STATE LOJ (CUSTOMER LOJ (PUR_ORDER LOJ LINEITEM)))

Finally, the following Figure 20.3b optionally rewrites the above

FROM-clause such that each left-parentheses (indicating the

beginning of a new JOIN-ON clause) starts on a new line.

FROM REGION R

LEFT OUTER JOIN (STATE ST

 LEFT OUTER JOIN (CUSTOMER C

 LEFT OUTER JOIN (PUR_ORDER PO

 LEFT OUTER JOIN LINEITEM LI

 ON PO.PONO = LI.PONO)

 ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE)

ON R.RNO = ST.RNO

Figure 20.3a: FROM-Clause with Parentheses

FROM REGION R LEFT OUTER JOIN

 (STATE ST LEFT OUTER JOIN

(CUSTOMER C LEFT OUTER JOIN

(PUR_ORDER PO LEFT OUTER JOIN LINEITEM LI

 ON PO.PONO = LI.PONO)

 ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE)

ON R.RNO = ST.RNO

Figure 20.3b: Optional - Parentheses start on new line

Free SQL Book, Tim Martyn 574 Copyright Pending, 2022

Coding Non-Top-Down FROM-Clauses

Before coding a FROM-clause, it can be helpful to formulate a

pseudo-code expression that represents your desired join-sequence

(which was derived by analyzing your query objective). Then you

can transform this pseudo-code into an equivalent FROM-clause.

The following examples illustrate a semi-cookbook method to

transform a pseudo-code expression into a FROM-clause. (This

method may be “overkill” for users with good intuition.)

Example-1: Transform the following pseudo-code into a FROM-clause.

 REGION LOJ (STATE LOJ (CUSTOMER LOJ PUR_ORDER))

Begin by assigning sequence-numbers to each join-operation. For

example, the above pseudo-code indicates that the first join

operation joins the CUSTOMER and PUR_ORDER tables. Etc.

 REGION LOJ (STATE LOJ (CUSTOMER LOJ PUR_ORDER))

 3rd 2nd 1st

Next, list ON-conditions in a top-down manner corresponding to the

above sequence-numbers. Here, the ON-conditions specify table-

aliases and the primary-key and foreign-key columns of the tables

to be joined.

 ON C.CNO = PO.CNO

 ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

Then code a complete LEFT OUTER JOIN clause for each ON-condition.

1. Start with the first ON-condition: ON C.CNO = PO.CNO

 CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO

 We (optionally) enclose this complete JOIN-ON clause within

parentheses.

 (CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO)

Free SQL Book, Tim Martyn 575 Copyright Pending, 2022

2. Include the second ON-condition: ON ST.STCODE = C.STCODE

The pseudo-code indicates that the preceding JOIN-ON clause

becomes the right-table in this second join-operation.

 STATE ST LEFT OUTER JOIN

 (CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE

 Again, we optionally enclose this expanded JOIN-ON clause within

parentheses.

 (STATE ST LEFT OUTER JOIN

 (CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE)

3. Include the third ON-condition: ON R.RNO = ST.RNO

The pseudo-code indicates that the preceding JOIN-ON clause

becomes the right-table in this third join-operation.

REGION R LEFT OUTER JOIN

 (STATE ST LEFT OUTER JOIN

 (CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE)

ON R.RNO = ST.RNO

Because this is the last JOIN-ON clause, we choose not to

enclose it within the parentheses.

Finally, specify the FROM keyword before the above JOIN-ON clause.

FROM REGION R LEFT OUTER JOIN

 (STATE ST LEFT OUTER JOIN

 (CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE)

 ON R.RNO = ST.RNO

[This FROM-clause was illustrated in Figure 20.1.]

Free SQL Book, Tim Martyn 576 Copyright Pending, 2022

Example-2: Transform the following pseudo-code into a FROM-clause.

 (REGION LOJ (STATE LOJ CUSTOMER)) LOJ PUR_ORDER

Assign sequence-numbers to each join-operation.

 (REGION LOJ (STATE LOJ CUSTOMER)) LOJ PUR_ORDER

 2nd 1st 3rd

List ON-conditions in a top-down manner corresponding to the above

sequence-numbers

 ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

 ON C.CNO = PO.CNO

Code a complete LEFT OUTER JOIN clause for first ON-condition.

 (STATE ST LEFT OUTER JOIN CUSTOMER C

 ON ST.STCODE = C.STCODE)

Code a complete LEFT OUTER JOIN clause for the second ON-condition.

The pseudo-code indicates that the preceding JOIN-ON clause

becomes the right-table in this second join-operation.

 (REGION R LEFT OUTER JOIN

 (STATE ST LEFT OUTER JOIN CUSTOMER C

 ON ST.STCODE = C.STCODE)

 ON R.RNO = ST.RNO)

Code a complete LEFT OUTER JOIN clause for the third ON-condition.

The pseudo-code indicates that the preceding JOIN-ON clause

becomes the left-table in this third join-operation. Also specify

the FROM keyword.

FROM

 (REGION R LEFT OUTER JOIN

 (STATE ST LEFT OUTER JOIN CUSTOMER C

 ON ST.STCODE = C.STCODE)

 ON R.RNO – ST.RNO)

 LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO

[This FROM-clause was illustrated in Figure 20.2.]

Free SQL Book, Tim Martyn 577 Copyright Pending, 2022

Exercises:

20Ia Transform the following pseudo-code into a FROM-clause.

 REGION LOJ ((STATE LOJ CUSTOMER) LOJ PUR_ORDER)

20Ib. Transform the following pseudo-code into a FROM-clause.

(REGION LOJ STATE) LOJ (CUSTOMER LOJ PUR_ORDER)

Free SQL Book, Tim Martyn 578 Copyright Pending, 2022

Summary

It is not difficult, as illustrated by Sample Queries 20.1 – 20.4,

to code multiple LEFT OUTER JOIN operations that join tables along

a hierarchy in a top-down sequence. Sample Queries 20.5 – 20.8,

which also traversed the hierarchy in a top-down sequence, were

more complex because they involved exiting-the-hierarchy,

restrictions, grouping, and summarizing.

Section-B illustrated that non-top-down join-sequences produce the

same result if all join-operations are LEFT OUTER JOINs. The

following Appendix 20A will describe a potential efficiency

advantage associated with a non-top-down join-sequences. However,

significant advantages of non-top-down join-sequences will be

illustrated in the following Chapter 20.5.

Summary Exercise

20J. Optional Exercise: Modify the SELECT statement for Sample

Query 20.5. Change the FROM-clause. Specify an INNER JOIN

operation to join the LINEITEM and PARTSUPP tables as shown

below.

SELECT R.RNO, R.RNAME, ST.STCODE, C.CNO,

 PO.PONO, LI.PNO, LI.SNO, LI.LIPRICE, PS.PSPRICE

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

 INNER JOIN PARTSUPP PS ON LI.PNO = PS.PNO

 AND LI.SNO = PS.SNO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO, LI.PNO

Execute this statement and examine the result. All LEFT OUTER

JOIN operations appear to behave like INNER JOIN operations.

Why did this happen?

Free SQL Book, Tim Martyn 579 Copyright Pending, 2022

Appendix 20A: Theory & Efficiency

Review: In Appendix 18A we discussed efficiency considerations

pertaining to join-sequences for multiple INNER JOIN operations.

And, in Appendix 18B we noted that the Associative Law applies to

the INNER JOIN.

 (TAB1 IJ TAB2) IJ TAB3 = TAB1 IJ (TAB2 IJ TAB3)

From an efficiency perspective, this law allows the optimizer to

initially join TAB1 and TAB2, or to initially join TAB2 and TAB3.

Most likely, one of these join operations would produce a smaller

intermediate join result. For example, assume (TAB2 IJ TAB3)

produced a join-result that was smaller than the (TAB1 IJ TAB2)

join-result. Then the optimizer would be inclined to implement:

 TAB1 IJ (TAB2 IJ TAB3)

Theory: The Associative Law also applies to LEFT OUTER JOIN

operations.

 (TAB1 LOJ TAB2) LOJ TAB3 = TAB1 LOJ (TAB2 LOJ TAB3)

As with INNER JOINs, this law can be extended to any number of

LEFT OUTER JOINs. For example, Sample Query 20.3 specified:

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

The pseudo-code for this FROM-clause is:

((REGION LOJ STATE) LOJ CUSTOMER) LOJ PUR_ORDER

By repeated application of the Associative Law, we can deduce four

other equivalent join-sequences.

(REGION LOJ (STATE LOJ CUSTOMER)) LOJ PUR_ORDER

REGION LOJ ((STATE LOJ CUSTOMER) LOJ PUR_ORDER)

REGION LOJ ((STATE LOJ (CUSTOMER LOJ PUR_ORDER))

(REGION LOJ STATE) LOJ (CUSTOMER LOJ PUR_ORDER)

Free SQL Book, Tim Martyn 580 Copyright Pending, 2022

Efficiency: Appendix 18A discussed efficiency considerations

pertaining to different join-sequences within the context of

multiple INNER JOIN operations. The same concepts apply to multiple

LEFT OUTER JOIN operations because both inner-joins and outer-

joins obey the Associative Law.

If a FROM-clause specifies multiple LFFT OUTER JOIN operations, a

general efficiency guideline is to initially join the two tables

that will produce the smallest intermediate join-result; after

this join is completed, join the next two tables (including

intermediate result tables) that produce the next smallest

intermediate result; Etc.

For example, consider the following top-down join-sequence.

((REGION LOJ STATE) LOJ CUSTOMER) LOJ PUR_ORDER

This join-sequence initially joins the REGION and STATE tables

which happen to be the two smallest tables. Then this intermediate

join-result table is joined with CUSTOMER which happens to be the

third smallest table. Finally, this intermediate join-result is

joined with the PUR_ORDER table which happens to be the largest of

the four tables. This fortunate turn of events occurred because

(i) the join-sequence followed the hierarchical path in a top-down

manner, and (ii) it is usually the case a parent-table contains

fewer rows than its child-table.

A top-down join-sequence may not be the most efficient sequence in

two circumstances. First, sometimes a parent-table has many more

rows than a child-table. Second, an ON-Clause may specify an AND-

condition that significantly reduces the size of a join-result.

[For tutorial reasons, this chapter’s sample queries did not

specify any AND-conditions in ON-clauses.] These circumstances

would require the optimizer to “do its thing” to determine the

optimal join-sequence.

What if the optimizer fails to generate an optimal join-sequence?

Then you could try coding your desired join-sequence in the FROM-

clause. This could possibly influence the optimizer produce a more

efficient join-sequence.

Free SQL Book, Tim Martyn 581 Copyright Pending, 2022

 Chapter

 20.5

“Mixing” Inner-Joins and Outer-Joins

Each SELECT statement presented in this chapter specifies one or

more INNER JOIN operations along with one or more LEFT OUTER JOIN

operations. Again, all referenced tables lie along a hierarchical

path in the MTPCH database.

This is an optional chapter because all of its sample queries and

exercises can be satisfied by coding one or more Common Table

Expressions (CTEs), a topic that will be introduced in Chapter 27.

Because the “mixing” of INNER JOINs and OUTER JOINs can become a

little tricky, many users will prefer to code FROM-clauses that

reference CTEs.

Before reading this chapter, you should have read Section-B in the

preceding Chapter 20.

Free SQL Book, Tim Martyn 582 Copyright Pending, 2022

Mixing Inner-Joins & Outer-Joins

Each of this chapter’s sample queries satisfy its query objective

with a SELECT statement that specifies INNER JOIN and LEFT OUTER

JOIN operations.

This chapter will use the pseudo-code notation that was introduced

in the previous chapter. For example, the query objective for the

forthcoming Sample Query 20.10 requires an INNER JOIN to be

executed before a LEFT OUTER JOIN. Pseudo-code for this join-

sequence is:

REGION LOJ (STATE IJ CUSTOMER)

Unfair Preview Question: Will the above pseudo-code produce the

same result as the following pseudo-code which joins the same

tables with the same join-operations, but changes the sequence of

the join-operations?

(REGION LOJ STATE) IJ CUSTOMER

Preview Answer: No. Observe the different results for the following

Sample Queries 20.10 and 20.11a.

Possible Join Sequences: Consider the four possible pseudo-code

expressions for joining tables that along the REGION-STATE-

CUSTOMER hierarchy. Assume that one join-operation is a LEFT OUTER

JOIN (LOJ) and the other is an INNER JOIN (IJ). This pseudo-code

references table aliases.

Expression-1: (R IJ ST) LOJ C

 IJ executed before LOJ

Expression-2: R LOJ (ST IJ C)

Expression-3: (R LOJ ST) IJ C

 LOJ executed before IJ

Expression-4: R IJ (ST LOJ C)

Free SQL Book, Tim Martyn 583 Copyright Pending, 2022

Expression-1: (R IJ ST) LOJ C

This expression represents a top-down join-sequence where the

INNER JOIN operation is executed first. The following FROM-clause,

which will be specified in Sample Query 20.9, codes this join-

sequence.

 FROM REGION R

 INNER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

Expression-2: R LOJ (ST IJ C)

This expression, like Expression-1, indicates that the INNER JOIN

operation is executed first. The following FROM-clause, which will

be specified in Sample Query 20.10, codes this join-sequence.

FROM REGION R

 LEFT OUTER JOIN

 STATE ST INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

Expression-3: (R LOJ ST) IJ C

This expression represents a top-down join-sequence where the LEFT

OUTER JOIN operation is executed first. The following FROM-clause,

which will be specified in Sample Query 20.11a, codes this join-

sequence.

 FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

Expression-4: R IJ (ST LOJ C)

This expression, like Expression-3, indicates that the LEFT OUTER

JOIN operation is executed first. The following FROM-clause, which

will be specified in Sample Query 20.11b, codes this join-sequence.

 FROM REGION R

 INNER JOIN STATE ST

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

Free SQL Book, Tim Martyn 584 Copyright Pending, 2022

Expression-1: (R IJ ST) LOJ C

In the following sample query, the top-down join-sequence conforms

to the query objective.

Sample Query 20.9: Display the number and name of every region

that contains at least one state, the code and name of every

state (including states without customers), and the number and

name of every customer in each state. Display the columns in the

following left-to-right sequence: RNO, RNAME, STCODE, STNAME,

CNO and CNAME. Sort the result by CNO within STCODE within RNO.

RNO RNAME STCODE STNAME CNO CNAME

 1 NORTHEAST CT CONNECTICUT - - ST-No-C

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO

 1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI

 1 NORTHEAST MA MASSACHUSETTS 500 HILBERT

 2 NORTHWEST OR OREGON 300 NEWTON

 2 NORTHWEST OR OREGON 330 LEIBNIZ

 2 NORTHWEST WA WASHINGTON 400 DECARTES

 2 NORTHWEST WA WASHINGTON 440 PASCAL

 3 SOUTHEAST FL FLORIDA 600 BOOLE

 3 SOUTHEAST FL FLORIDA 660 CANTOR

 3 SOUTHEAST GE GEORGIA 700 RUSSELL

 3 SOUTHEAST GE GEORGIA 770 GODEL

 4 SOUTHWEST AZ ARIZONA 880 TURING

 4 SOUTHWEST AZ ARIZONA 890 MANDELBROT

 4 SOUTHWEST NM NEW MEXICO 780 CHURCH

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R

 INNER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

ORDER BY R.RNO, ST.STCODE, C.CNO

Free SQL Book, Tim Martyn 585 Copyright Pending, 2022

Syntax & Logic: This query objective wants to display just the

matching rows in the REGION table. Specifying an INNER JOIN

operation satisfies this objective. This inner-join produces the

following intermediate join-result. (Notice that the non-matching

MIDWEST region does not appear in this result.)

 RNO RNAME STCODE STNAME

 1 NORTHEAST CT CONNECTICUT

 1 NORTHEAST MA MASSACHUSETTS

 2 NORTHWEST OR OREGON

 2 NORTHWEST WA WASHINGTON

 3 SOUTHEAST FL FLORIDA

 3 SOUTHEAST GE GEORGIA

 4 SOUTHWEST AZ ARIZONA

 4 SOUTHWEST NM NEW MEXICO

Next, this intermediate join-result serves as the left-table in

the LEFT OUTER JOIN with the CUSTOMER table. This join-operation

preserves all of the above rows, including rows for states without

customers. (Notice that CONNECTICUT, the only state without any

customers, appears in the final result.)

Equivalent FROM-clause: Sample Query 20.11b will present an

alternative (non-top-down) FROM-clause for this query objective.

Most users will prefer the current FROM-clause because it specifies

a top-down join-sequence.

Exercise:

20K. Display the number and name of every region that contains at

least one state, the code and name of every state (including

states without any suppliers), and the number and name of

every supplier in each state. Display the columns in the

following left-to-right sequence: RNO, RNAME, STCODE, STNAME,

SNO, and SNAME. Sort the result by SNO within STCODE within

RNO. (Hint: Follow the REGION-STATE-SUPPLIER hierarchy.)

Free SQL Book, Tim Martyn 586 Copyright Pending, 2022

Expression-2: R LOJ (ST IJ C)

The following FROM-clause designates a join-sequence that does not

conform to a top-down join-sequence. Here, the INNER JOIN operation

is executed first.

Sample Query 20.10: Display the number and name of every region,

the code and name of every state with at least one customer, and

the number and name of every customer in these states. Display

the columns in the following left-to-right sequence: RNO, RNAME,

STCODE, STNAME, CNO, and CNAME. Sort the result by CNO within

STCODE within RNO.

RNO RNAME STCODE STNAME CNO CNAME

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO

 1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI

 1 NORTHEAST MA MASSACHUSETTS 500 HILBERT

 2 NORTHWEST OR OREGON 300 NEWTON

 2 NORTHWEST OR OREGON 330 LEIBNIZ

 2 NORTHWEST WA WASHINGTON 400 DECARTES

 2 NORTHWEST WA WASHINGTON 440 PASCAL

 3 SOUTHEAST FL FLORIDA 600 BOOLE

 3 SOUTHEAST FL FLORIDA 660 CANTOR

 3 SOUTHEAST GE GEORGIA 700 RUSSELL

 3 SOUTHEAST GE GEORGIA 770 GODEL

 4 SOUTHWEST AZ ARIZONA 880 TURING

 4 SOUTHWEST AZ ARIZONA 890 MANDELBROT

 4 SOUTHWEST NM NEW MEXICO 780 CHURCH

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN

 5 MIDWEST - - - - R-No-ST

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R

 LEFT OUTER JOIN

 STATE ST INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE, C.CNO

Free SQL Book, Tim Martyn 587 Copyright Pending, 2022

Syntax & Logic: This query objective wants to display data about

states with customers. Specifying an inner-join of STATE and

CUSTOMER satisfies this objective. This inner-join produces the

following intermediate join-result. (Notice that the non-matching

CONNECTICT row does not appear in this result.)

 STCODE STNAME RNO CNO CNAME

 AZ ARIZONA 4 880 TURING

 AZ ARIZONA 4 890 MANDELBROT

 FL FLORIDA 3 600 BOOLE

 FL FLORIDA 3 660 CANTOR

 GE GEORGIA 3 700 RUSSELL

 GE GEORGIA 3 770 GODEL

 MA MASSACHUSETTS 1 100 PYTHAGORAS

 MA MASSACHUSETTS 1 110 EUCLID

 MA MASSACHUSETTS 1 200 HYPATIA

 MA MASSACHUSETTS 1 220 ZENO

 MA MASSACHUSETTS 1 230 BOLYAI

 MA MASSACHUSETTS 1 500 HILBERT

 NM NEW MEXICO 4 780 CHURCH

 NM NEW MEXICO 4 800 VON NEUMANN

 OR OREGON 2 300 NEWTON

 OR OREGON 2 330 LEIBNIZ

WA WASHINGTON 2 400 DECARTES

 WA WASHINGTON 2 440 PASCAL

Next, this intermediate join-result serves as the right-table in

the LEFT OUTER JOIN with the REGION table. This LEFT OUTER JOIN

preserves all of the above rows (because all RNO values match). It

also includes information about regions without states. Notice

that MIDWEST, the only region without any states, appears in the

final result.

Exercise:

20L. Display the number and name of every region, the code and

name of those states that have at least one supplier, and the

number and name of these suppliers. Display the columns in

the following left-to-right sequence: RNO, RNAME, STCODE,

STNAME, SNO, and SNAME. Sort the result by SNO within STCODE

within RNO. (Hint: Follow the REGION-STATE-SUPPLIER

hierarchy.)

Free SQL Book, Tim Martyn 588 Copyright Pending, 2022

“Questionable” Expression-3: (R LOJ ST) IJ C

Sample Query 20.11a: Same query objective as Sample Query 18.3

that coded two INNER JOIN operations [Access the REGION, STATE,

and CUSTOMER tables. For all customers, display their CNO and

CNAME values, along with their state’s STCODE and STNAME values,

along with their region’s RNO and RNAME values. Display these

columns in the following left-to-right sequence: RNO, RNAME,

STCODE, STNAME, CNO and CNAME. Sort the result by CNO within

STCODE within RNO.]

Result Table: Same result shown for Sample Query 18.3.

Logic: The final result table does not contain data about the

MIDWEST region (the only region without any states), and it does

not contain data about CONNECTICUT (the only state without any

customers). Casually speaking, the INNER JOIN “effectively undoes

part of the previous LEFT OUTER JOIN” by removing non-matching

rows such that the final result corresponds to two INNER JOIN

operations.

Specifically, the initial LEFT OUTER JOIN operation contains data

about the MIDWEST region (because REGION is the left-table), and

data about CONNECTICUT (because its foreign-key value must match

some primary-key in the REGION table). However, the subsequent

INNER JOIN removes the MIDWEST and CONNECTICUT rows because:

• the intermediate result row for the MIDWEST region will have

a null ST.STCODE value which cannot match any C.STCODE, and

• the intermediate result row for CONNECTICUT does not match on

any CUSTOMER row because Connecticut does not have any

customers.

Conclusion: The above SELECT statement is “questionable” because

it is simpler to code two INNER JOIN operations as shown in Sample

Query 18.3.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

ORDER BY R.RNO, ST.STCODE, C.CNO

Free SQL Book, Tim Martyn 589 Copyright Pending, 2022

“Questionable” Expression-4: R IJ (ST LOJ C)

Sample Query 20.11b: Same query objective as Sample Query 20.9.

[Display the number and name of every region that contains at

least one state, the code and name of every state (including

states without customers), and the number and name of every

customer in each state. Display the columns in the following

left-to-right sequence: RNO, RNAME, STCODE, STNAME, CNO and

CNAME. Sort the result by CNO within STCODE within RNO.] Note

that Sample Query 20.9. coded a top-down join-sequence.

Result Table: Same result shown for Sample Query 20.9.

Logic: The initial LEFT OUTER JOIN preserves information about

CONNECTICUT (the state without customers). The subsequent INNER

JOIN removes information about the MIDWEST Region.

The equivalent FROM-clause for Sample Query 20.9 is:

 FROM REGION R

 INNER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

This FROM-clause may be simpler because it follows a top-down join-

sequence.

“Questionable” Expressions: Expression-3 and Expression-4 were

designated as “questionable” because each expression can be

rewritten in a simpler form.

Also, note that both of these FROM-clauses executed the INNER JOIN

after the LEFT OUTER, and the INNER JOIN removed part of the outer-

join result. This is not necessarily wrong. It depends upon your

query objective. However, you should be attentive when you execute

an INNER JOIN after a LEFT OUTER JOIN.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME

FROM REGION R

 INNER JOIN STATE ST

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 ON R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE, C.CNO

Free SQL Book, Tim Martyn 590 Copyright Pending, 2022

The following sample query traverses the REGION-STATE-CUSTOMER-

PUR_ORDER hierarchy. The query objective conforms to a top-down

join-sequence.

Sample Query 20.12: Display the number and name of every region

with at least one state, the code and name of every state

with at least one customer, the number and name of every

customer in these states (including customers without

purchase orders), and the date of every purchase-order

completed by these customers. Display the columns in the

following left-to-right sequence: RNO, RNAME, STCODE, STNAME,

CNO, CNAME, and PODATE. Sort the result by PODATE within CNO

within STCODE within RNO.

 [Result table shown on following page.]

Logic: This query objective implies the following top-down join-

sequence.

 ((REGION IJ STATE) IJ CUSTOMER) LOJ PUR_ORDER

This FROM-clause could be coded with parentheses as shown below.

FROM ((REGION R

 INNER JOIN STATE ST ON R.RNO = ST.RNO)

 INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE)

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

[Recall that each pair of parentheses must enclose a complete JOIN-

ON clause that references two table-names or table expressions.]

Executing the first two INNER JOIN operations eliminates the non-

matching regions (MIDWEST) without states and non-matching states

(CONNECTICUT) without customers. Then the subsequent LFFT OUTER

JOIN preserves all customers, including those customers

(MANDELBROT and CHURCH) without purchase orders.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME, PO.PODATE

FROM REGION R

 INNER JOIN STATE ST ON R.RNO = ST.RNO

 INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PODATE

Free SQL Book, Tim Martyn 591 Copyright Pending, 2022

 RNO RNAME STCODE STNAME CNO CNAME PODATE

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 1

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 3

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 47

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 49

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA 20

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA 21

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 5

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 22

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 23

 1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI 6

 1 NORTHEAST MA MASSACHUSETTS 500 HILBERT 72

 2 NORTHWEST OR OREGON 300 NEWTON 7

 2 NORTHWEST OR OREGON 300 NEWTON 8

 2 NORTHWEST OR OREGON 330 LEIBNIZ 9

 2 NORTHWEST OR OREGON 330 LEIBNIZ 61

 2 NORTHWEST WA WASHINGTON 400 DECARTES 62

 2 NORTHWEST WA WASHINGTON 400 DECARTES 63

 2 NORTHWEST WA WASHINGTON 440 PASCAL 64

 2 NORTHWEST WA WASHINGTON 440 PASCAL 65

 2 NORTHWEST WA WASHINGTON 440 PASCAL 71

 3 SOUTHEAST FL FLORIDA 600 BOOLE 73

 3 SOUTHEAST FL FLORIDA 600 BOOLE 74

 3 SOUTHEAST FL FLORIDA 660 CANTOR 1

 3 SOUTHEAST FL FLORIDA 660 CANTOR 75

 3 SOUTHEAST GE GEORGIA 700 RUSSELL 1

 3 SOUTHEAST GE GEORGIA 770 GODEL 3

 4 SOUTHWEST AZ ARIZONA 880 TURING 3

 4 SOUTHWEST AZ ARIZONA 880 TURING 4

 4 SOUTHWEST AZ ARIZONA 880 TURING 10

 4 SOUTHWEST AZ ARIZONA 880 TURING 10

 4 SOUTHWEST AZ ARIZONA 890 MANDELBROT - C-No-PO

 4 SOUTHWEST NM NEW MEXICO 780 CHURCH - C-No-PO

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 3

Exercise:

20M. Display the number and name of every region with at least one

state, the code and name of every state with at least one

supplier, the number and name of every supplier (including

suppliers who do not sell any parts), and the part numbers of

parts that can be purchased from these suppliers. Display the

columns in the following left-to-right sequence: RNO, RNAME,

STCODE, STNAME, SNO, SNAME, and PNO. Sort the result by PNO

within SNO within STCODE within RNO. (Hint: Traverse REGION-

STATE-SUPPLIER-PARTSUPP hierarchy.)

Free SQL Book, Tim Martyn 592 Copyright Pending, 2022

The following sample query traverses the REGION-STATE-CUSTOMER-

PUR_ORDER hierarchy. The query objective does not conform to a

top-down join-sequence.

Sample Query 20.13: Display the number and name of every region,

the code and name of every state with at least one customer, the

number and name of every customer with at least one purchase

order, and the number and status of these customers’ purchase-

orders. Display the columns in the following left-to-right

sequence: RNO, RNAME, STCODE, STNAME, CNO, CNAME, PONO, and

POSTATUS. Sort the result by PONO within CNO within STCODE within

RNO.

[Result table is shown on following page.]

Logic: This query objective implies the following join-sequence.

 REGION LOJ ((STATE IJ CUSTOMER) IJ PUR_ORDER)

This FROM-clause could be coded with parentheses as shown below.

FROM REGION R

 LEFT OUTER JOIN

 ((STATE ST INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE)

 INNER JOIN PUR_ORDER PO ON C.CNO = PO.CNO)

 ON R.RNO = ST.RNO

Note that the two INNER JOIN operations are executed before the

LEFT OUTER JOIN operation. These INNER JOINs produce an

intermediate result that excludes data about the state without

customers (CONNECTICUT) and the customers without purchase orders

(MANDELBROT and CHURCH). This intermediate join-result result

becomes the right-table in the LEFT OUTER JOIN that preserves the

MIDWEST region.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME, PO.PONO, PO.POSTATUS

FROM REGION R

 LEFT OUTER JOIN

 STATE ST INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 INNER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

 ON R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO

Free SQL Book, Tim Martyn 593 Copyright Pending, 2022

 RNO RNAME STCODE STNAME CNO CNAME PONO POSTATUS

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11101 C

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11102 P

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 11108 C

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 11109 P

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA 11110 C

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA 11111 P

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11120 C

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11121 C

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11122 P

 1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI 11124 P

 1 NORTHEAST MA MASSACHUSETTS 500 HILBERT 11150 P

 2 NORTHWEST OR OREGON 300 NEWTON 11130 C

 2 NORTHWEST OR OREGON 300 NEWTON 11133 P

 2 NORTHWEST OR OREGON 330 LEIBNIZ 11139 C

 2 NORTHWEST OR OREGON 330 LEIBNIZ 11141 P

 2 NORTHWEST WA WASHINGTON 400 DECARTES 11142 C

 2 NORTHWEST WA WASHINGTON 400 DECARTES 11144 P

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11146 C

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11148 C

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11149 P

 3 SOUTHEAST FL FLORIDA 600 BOOLE 11152 C

 3 SOUTHEAST FL FLORIDA 600 BOOLE 11153 P

 3 SOUTHEAST FL FLORIDA 660 CANTOR 11154 C

 3 SOUTHEAST FL FLORIDA 660 CANTOR 11155 P

 3 SOUTHEAST GE GEORGIA 700 RUSSELL 11156 C

 3 SOUTHEAST GE GEORGIA 770 GODEL 11157 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11159 C

 4 SOUTHWEST AZ ARIZONA 880 TURING 11160 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11170 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11198 P

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 11158 C

 5 MIDWEST - - - - - - R-No-ST

Exercise:

20N: Display the number and name of every region, the code and

name of every state with at least one supplier, the number

and name of every supplier that sells at least one part, and

the part number and PSPRICE of these parts. Display the

columns in the following left-to-right sequence: RNO, RNAME,

STCODE, STNAME, SNO, SNAME, PNO, and PSPRICE. Sort the result

by PNO within SNO within STCODE within RNO.

Free SQL Book, Tim Martyn 594 Copyright Pending, 2022

The following sample query traverses the REGION-STATE-CUSTOMER-

PUR_ORDER hierarchy. The query objective does not conform to a

top-down join-sequence.

Sample Query 20.14: Display the number and name of every region,

the code and name of every state, the number and name of every

customer that has at least one purchase order, and the number

and status of these purchase orders. Display the columns in the

following left-to-right sequence: RNO, RNAME, STCODE, STNAME,

CNO, CNAME, PONO and POSTATUS. Sort the result by PONO within

CNO within STCODE within RNO.

[Result table is shown on following page.]

Logic: This query objective implies the following join-sequence.

 (REGION LOJ STATE) LOJ (CUSTOMER IJ PUR_ORDER)

This FROM-clause could be coded with parentheses as shown below.

FROM (REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO)

 LEFT OUTER JOIN

 (CUSTOMER C INNER JOIN PUR_ORDER PO ON C.CNO=PO.CNO)

 ON ST.STCODE = C.STCODE

This sequence of join-operations produces two intermediate join-

results. Let IRST represent the first intermediate result produced

by the LEFT OUTER JOIN of REGION and STATE; and let ICPO represent

the second intermediate result produced by the INNER JOIN of

CUSTOMER and PUR_ORDER. Then the final join-result is produced by:

IRST LEFT OUTER JOIN ICPO.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME, PO.PONO, PO.POSTATUS

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN

 CUSTOMER C INNER JOIN PUR_ORDER PO ON C.CNO=PO.CNO

 ON ST.STCODE = C.STCODE

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO

Free SQL Book, Tim Martyn 595 Copyright Pending, 2022

The first LEFT OUTER JOIN produces an intermediate join-result

(IRST) that includes data from the non-matching region (MIDWEST)

and all states (including CONNECTICUT). The INNER JOIN produces an

intermediate result (ICPO) that excludes data about customers

without purchase orders (MANDELBROT and CHURCH). Then the second

LEFT OUTER JOIN of IRST and ICPO, where IRST is the left-table,

preserves the non-matching region (MIDWEST) and non-matching state

(CONNECTICUT).

 RNO RNAME STCODE STNAME CNO CNAME PONO POSTATUS

 1 NORTHEAST CT CONNECTICUT - - - - ST-No-C

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11101 C

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11102 P

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 11108 C

 1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 11109 P

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA 11110 C

 1 NORTHEAST MA MASSACHUSETTS 200 HYPATIA 11111 P

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11120 C

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11121 C

 1 NORTHEAST MA MASSACHUSETTS 220 ZENO 11122 P

 1 NORTHEAST MA MASSACHUSETTS 230 BOLYAI 11124 P

 1 NORTHEAST MA MASSACHUSETTS 500 HILBERT 11150 P

 2 NORTHWEST OR OREGON 300 NEWTON 11130 C

 2 NORTHWEST OR OREGON 300 NEWTON 11133 P

 2 NORTHWEST OR OREGON 330 LEIBNIZ 11139 C

 2 NORTHWEST OR OREGON 330 LEIBNIZ 11141 P

 2 NORTHWEST WA WASHINGTON 400 DECARTES 11142 C

 2 NORTHWEST WA WASHINGTON 400 DECARTES 11144 P

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11146 C

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11148 C

 2 NORTHWEST WA WASHINGTON 440 PASCAL 11149 P

 3 SOUTHEAST FL FLORIDA 600 BOOLE 11152 C

 3 SOUTHEAST FL FLORIDA 600 BOOLE 11153 P

 3 SOUTHEAST FL FLORIDA 660 CANTOR 11154 C

 3 SOUTHEAST FL FLORIDA 660 CANTOR 11155 P

 3 SOUTHEAST GE GEORGIA 700 RUSSELL 11156 C

 3 SOUTHEAST GE GEORGIA 770 GODEL 11157 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11159 C

 4 SOUTHWEST AZ ARIZONA 880 TURING 11160 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11170 P

 4 SOUTHWEST AZ ARIZONA 880 TURING 11198 P

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 11158 C

 5 MIDWEST - - - - - - R-No-ST

Exercise:

20O. Display the number and name of every region, the code and

name of every state, the number and name of every supplier

that sells at least one part, and the part number and PSPRICE

value of these parts. Display the columns in the following

left-to-right sequence: RNO, RNAME, STCODE, STNAME, SNO,

SNAME, PNO, and PSPRICE. Sort the result by PNO within SNO

within STCODE within RNO.

Free SQL Book, Tim Martyn 596 Copyright Pending, 2022

The following sample query traverses the REGION-STATE-CUSTOMER-

PUR_ORDER-LINEITEM hierarchy. The query objective does not conform

to a top-down join-sequence.

Sample Query 20.15: Display the following information about

regions, states, customers, purchase-orders, and line-items.

• Display the number and name of all regions, including regions
without any states.

• Display the code and name of all states, including states without
any customers.

• Display customer number and name for those customers that have
at least one purchase-order.

• Display each of these customer’s purchase-order numbers,

including numbers for purchase-orders that do not have any line-

items.

• Display each line-item’s line-number and part-number values.

[Result table on following page shows some of the 65

selected rows.]

[Result table on following page shows some of its 65 rows.]

Logic: This query objective implies the following pseudo-code

join-sequence.

 ((REGION LOJ STATE) LOJ (CUSTOMER IJ PUR_ORDER)) LOJ LINEITEM

The INNER JOIN of CUSTOMER and PUR_ORDER excludes data about those

customers (CHURCH and MANDELBROT) who do not have any purchase-

orders. The three LEFT OUTER JOIN operations preserve all other

non-matching rows.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME, C.CNO, C.CNAME,

 PO.PONO, LI.LINE, LI.PNO

FROM ((REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO)

 LEFT OUTER JOIN

 (CUSTOMER C INNER JOIN PUR_ORDER PO ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE)

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO, LI.LINE

Free SQL Book, Tim Martyn 597 Copyright Pending, 2022

RNO RNAME STCODE STNAME CNO CNAME PONO LINE PNO

1 NORTHEAST CT CONNECTICUT - - - - -

1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11101 1 P1

1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11101 2 P3

1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11102 1 P3

1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11102 2 P4

.

4 SOUTHWEST AZ ARIZONA 880 TURING 11159 1 P6

4 SOUTHWEST AZ ARIZONA 880 TURING 11159 2 P7

4 SOUTHWEST AZ ARIZONA 880 TURING 11160 1 P1

4 SOUTHWEST AZ ARIZONA 880 TURING 11160 2 P7

4 SOUTHWEST AZ ARIZONA 880 TURING 11170 1 P3

4 SOUTHWEST AZ ARIZONA 880 TURING 11170 2 P4

4 SOUTHWEST AZ ARIZONA 880 TURING 11198 - -

4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 11158 1 P1

4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 11158 2 P3

5 MIDWEST - - - - - - -

Alternative Solution: In Chapter 27, Exercise 27R will specify a

Common Table Expression to present another solution to this sample

query. This alternative solution will code an INNER JOIN of CUSTOMER

and PUR_ORDER to form an intermediate result table called

CUST_WITH_PO. The following code represents a top-down sequence of

LEFT OUTER JOIN operations that traverses a four-level hierarchy

which includes this CUST_WITH_PO intermediate result table.

 FROM REGION R

 LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUST_WITH_PO CWPO

 ON ST.STCODE = CWPO.STCODE

 LEFT OUTER JOIN LINEITEM LI

 ON PO.PONO = LI.PONO

Exercise:

20P. Display the following information about regions, states,

suppliers, and the parts that each supplier is allowed to

sell and has already sold.

• Display the number and name of all regions.

• Display the code and name for all states.

• Display the supplier numbers and names for those suppliers
who are allowed to sell at least one part.

• Display the part numbers of these parts.

• Display the part number and LIPRICE value of those parts
these suppliers have already sold.

LOJ

LOJ

LOJ

STATE

REGION

CUST_WITH_PO

LINEITEM

Free SQL Book, Tim Martyn 598 Copyright Pending, 2022

The next sample query traverses the REGION-STATE-CUSTOMER-

PUR_ORDER-LINEITEM hierarchy. The query objective does not conform

to a top-down join-sequence.

Sample Query 20.16: Display the following information about

regions, states, customers, purchase-orders, and line-items.

• Display the number and name of any region that has at least
one state.

• Display the code and name of any state that has at least one
customer.

• Display the number and name of all customers, including
customers without purchase-orders.

• Display the customer’s purchase-order numbers for those

purchase-orders with at least one line-item.

• Display the line-number and corresponding part-number of
each line-item.

[Result table on following page shows some of its 64 rows.]

Logic: This query objective implies the following pseudo-code

join-sequence.

 ((REGION IJ STATE) IJ CUSTOMER) LOJ (PUR_ORDER IJ LINEITEM)

The three INNER JOIN operations exclude data from non-matching

rows that describe regions (MIDWEST) without states, states

(CONNECTICUT) without customers, and purchase-orders (11198)

without line-items. The LEFT OUTER JOIN preserves data about all

customers, including customers (CHURCH and MANDELBROT) who do not

have any purchase-orders.

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME, PO.PONO, LI.LINE, LI.PNO

FROM ((REGION R

 INNER JOIN STATE ST ON R.RNO = ST.RNO)

 INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE)

 LEFT OUTER JOIN

 (PUR_ORDER PO INNER JOIN LINEITEM LI ON PO.PONO = LI.PONO)

 ON C.CNO = PO.CNO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO, LI.LINE

Free SQL Book, Tim Martyn 599 Copyright Pending, 2022

RNO RNAME STCODE STNAME CNO CNAME PONO LINE PNO

1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11101 1 P1

1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11101 2 P3

1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11102 1 P3

1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 11102 2 P4

1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 11108 1 P5

1 NORTHEAST MA MASSACHUSETTS 110 EUCLID 11108 2 P6

3 SOUTHEAST GE GEORGIA 770 GODEL 11157 2 P5

.

.

4 SOUTHWEST AZ ARIZONA 890 MANDELBROT - - -

4 SOUTHWEST NM NEW MEXICO 780 CHURCH - - -

4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 11158 1 P1

4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 11158 2 P3

Alternative Solution: In Chapter 27, Exercise 27S will specify two

Common Table Expressions to present another solution to this sample

query. Two INNER JOIN operations will join REGION, STATE, and

CUSTOMER to produce an intermediate result table called

MATCHING_R_ST_C. Then another INNER JOIN operation will join

PUR_ORDER and LINEITEM to produce a second intermediate result table

called MATCHING_PO_LI. Finally, a LEFT OUTER JOIN of these

intermediate result tables will produce the final result.

Exercise:

20Q. Display the following information about regions, states,

suppliers, and parts.

• Display the number and name of any region that has at least
one state.

• Display the code and name of any state that has at least one
supplier.

• Display the number and name of all suppliers, including
those suppliers who are not yet allowed to sell any parts.

• Display the part number and LIPRICE of each part the

supplier has sold.

LOJ

MATCHING_PO_LI

MATCHING_R_ST_C

Free SQL Book, Tim Martyn 600 Copyright Pending, 2022

Summary

This chapter introduced FROM-clauses that specified INNER JOIN and

LEFT OUTER JOIN operations. Because such statements can become a

little tricky, you may choose to code alternative statements using

Common Table Expressions to be introduced in Chapter 27.

Summary Exercises

Exercises 20R1, 20R2, 20S1, and 20S2 are optional exercises.

20R1. Work backwards. Transform the following FROM-clause into

equivalent pseudo-code.

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN

 CUSTOMER C INNER JOIN PUR_ORDER PO

 ON C.CNO=PO.CNO

 ON ST.STCODE = C.STCODE

20R2. Work backwards. Transform the following FROM-clause into

equivalent pseudo-code.

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN

 CUSTOMER C INNER JOIN PUR_ORDER PO

ON C.CNO = PO.CNO

 ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

20S1. Convert the following pseudo-code expression into a FROM-

clause.

R LOJ (ST IJ (C LOJ PO))

20S2. Convert the following pseudo-code expression into a FROM-

clause.

(R IJ ST) IJ ((C LOJ PO) LOJ LI))

Free SQL Book, Tim Martyn 601 Copyright Pending, 2022

Some of the following exercises have multiple solutions.

Suggestion: Represent query objective in pseudo-code and then

transform pseudo-code to a FROM-clause.

20T. Display the number and name of every region, the code and

name of every state with at least one supplier, and the number

and name of every supplier in these states. Display the

columns in the following left-to-right sequence: RNO, RNAME,

STCODE, STNAME, SNO, and SNAME. Sort the result by SNO within

STCODE within RNO.

20U. Display the part number of every part, the supplier number of

every supplier who has sold this part, and the purchase-order

number and line-item price for each sale of the part by the

supplier. Display the columns in the following left-to-right

sequence: PNO, SNO, PONO, and LIPRICE. Sort the result by

PONO, SNO within PNO. (Hint: Follow the PART-PARTSUPP-

LINEITEM hierarchy.)

20V. Display the number and name of any region that contains at

least one state, the code and name of every state (including

states without customers), the number and name of every

customer in each state (including customers without purchase-

orders), and the date of every purchase-order completed by

these customers. Display the columns in the following left-

to-right sequence: RNO, RNAME, STCODE, STNAME, CNO, CNAME,

and PODATE. Sort the result by PODATE within CNO within STCOE

within RNO.

20W. Reference the STATE-CUSTOMER-PUR_ORDER-LINEITEM hierarchy.

• Display the RNO value of any region that has at least one
state.

• Display the STCODE value of any state that has at least

one customer.

• For each such state, display the CNO and CNAME values of

its customers.

• For each customer with at least one purchase-order, display

the customer’s purchase-order numbers.

• For each purchase-order, display its LINE and corresponding

PNO values even if the purchase order does not have any

line-items.

Free SQL Book, Tim Martyn 602 Copyright Pending, 2022

20X. Reference the STATE-CUSTOMER-PUR_ORDER-LINEITEM hierarchy.

• Display the STCODE and RNO values of any state that has at
least one customer.

• For each such state, display the CNO and CNAME values of

its customers, even if those customers do not have any

purchase-orders.

• For each customer with at least one purchase-order that has

at least one line-item, display the customer’s purchase-

order numbers.

• For those purchase-orders, display each line-item’s LINE

and PNO values.

Free SQL Book, Tim Martyn 603 Copyright Pending, 2022

Appendix 20.5A: Theory & Efficiency

Theory (Review): Given tables (relations) T1, T2, and T3, the

following logical rules apply.

The INNER JOIN obeys the Associative Law.

 (T1 IJ T2) IJ T3 = T1 IJ (T2 IJ T3)

The LEFT OUTER JOIN obeys the Associative Law.

 (T1 LOJ T2) LOJ T3 = T1 LOJ (T2 LOJ T3)

The INNER JOIN obeys the Commutative Law.

 T1 IJ T2 = T2 IJ T1

Note: The LEFT OUTER JOIN does not obey the Commutative Law

 For example, REGION LOJ STATE <> STATE LOJ REGION

Optimizer Query Rewrite: Assume a business user’s articulation of

her query objective encourages you to represent its join-sequence

with the following pseudo-code expression (which references table

aliases).

(R IJ ST) IJ (C LOJ (PO LOJ LI))

The optimizer could apply the above logical rules to generate seven

other equivalent expressions that represent different join-

sequences. The following page will present the application of these

rules.

Free SQL Book, Tim Martyn 604 Copyright Pending, 2022

Eight Equivalent Pseudo-Code Expressions

Exp-1: (R IJ ST) IJ (C LOJ (PO LOJ LI)) original expression

Exp-2: (ST IJ R) IJ (C LOJ (PO LOJ LI))

 by applying Commutative Law for IJ to Exp-1

Exp-3: (R IJ ST) IJ ((C LOJ PO) LOJ LI)

by applying Associative Law for LOJ to Exp-1

Exp-4: (ST IJ R) IJ ((C LOJ PO) LOJ LI)

 by applying both Commutative Law for IJ and

 Associative Law for LOJ to Exp-1

Exp-5: (C LOJ (PO LOJ LI)) IJ (R IJ ST)

 by applying Commutative Law for IJ to Exp-1

Exp-6: (C LOJ (PO LOJ LI)) IJ (ST IJ RJ)

 by applying Commutative Law for IJ to Exp-5

Exp-7: ((C LOJ PO) LOJ LI) IJ (R IJ ST)

 by applying Associative Law for LOJ to Exp-5

Exp-8: ((C LOJ PO) LOJ LI) IJ (ST IJ R)

by applying both Commutative Law for IJ and

 Associative Law for LOJ to Exp-5

Optimizer Analysis: Assuming that each parent-table is smaller

than its child-table, and assuming no AND-conditions are specified

in the ON-clauses, we speculate that the optimizer will implement

Expression-3.

(R IJ ST) IJ ((C LOJ PO) LOJ LI))

Again, we remind you than an optimizer “has a mind of its own,” and

may not generate a desired application plan. In this case, you may

try your hand at some logical gymnastics, deduce the most efficient

join-sequence, and code this sequence within your FROM-clause.

Free SQL Book, Tim Martyn 605 Copyright Pending, 2022

 PART V

 Set Operations & CASE

This part of the book introduces SQL’s set operations and CASE-

expressions. These topics are important because they allow you to

specify more sophisticated logic within SQL statements.

Chapter 21 introduces SQL’s set operations: UNION, INTERSECT, and

EXCEPT. These operations reflect SQL’s mathematical heritage.

(This mathematics is not difficult and will be presented in

Appendix 21B.) This chapter also demonstrates how the UNION

operation can be used to indirectly implement “If-Then” logic

within a SELECT statement.

Chapter 22 introduces CASE-expressions. CASE allows you to

directly specify If-Then logic within a SQL statement. We will see

that CASE is superior to If-Then logic implemented via the UNION

operation.

Free SQL Book, Tim Martyn 606 Copyright Pending, 2022

Sample Tables

Chapter 21 references five new tables. Two of these tables, PROJMGR

and PROJMGR2, describe project managers. These tables are almost

identical. The only difference is the primary-key columns,

PROJMGR.ENO and PROJMGR2.PMNO.

The PROJMGR table describes project managers within an

organization where some, but not all, project managers are also

employees. Hence some PROJMGR.ENO values (e.g., 1000 and 6000)

match ENO values found in the EMPLOYEE table. Furthermore, when a

PROJMGR.ENO value matches an EMPLOYEE.ENO, corresponding

PROJMGR.PMNAME and EMPLOYEE.ENAME values will also match. Also,

notice that DICK and DON are assigned ENO numbers, even though

they are not employees.

The PROJMGR2 table differs from the PROJMGR table because it

describes project managers within an organization where a project

manager cannot be an employee (even though some project managers

coincidentally have the same name as an employee).

Chapter 21 also references three tables that describe parts used

in projects. These tables are displayed below.

The PROJ1PARTS table describes parts used in Project1; PROJ2PARTS

describes parts used in Project2; and PROJ3PARTS describe parts

used in Project3. Project1 and Project2 may use some of the same

parts (e.g., P4 and P5); and, Project2 and Project3 may use some

of the same parts (e.g., P3 and P6). However, if a part is used in

Project1, it cannot be used in Project3; and vice versa.

PROJ1PARTS PROJ2PARTS PROJ3PARTS

PNO PNAME PCOLOR QTY PNO PNAME PWT PNO PNAME PCOLOR QTY

P1 PART1 RED 16 P3 PART3 20 P3 PART3 PINK 98

P2 PART2 BLUE 16 P4 PART4 10 P6 PART6 BLUE 97

P4 PART4 YELLOW 17 P5 PART5 20 P7 PART7 PINK 95

P5 PART5 RED 15 P6 PART6 12 P8 PART8 PINK 99

Primary Key: PNO Primary Key: PNO Primary Key: PNO

PROJMGR PROJMGR2

ENO PMNAME MBA RATE DNO PMNO PMNAME MBA RATE DNO

1000 MOE N 500.00 20 1500 MOE N 500.00 20

2500 DICK N 100.00 40 2500 DICK N 100.00 40

6000 GEORGE Y 10.00 20 6500 GEORGE Y 10.00 20

4500 DON N 70.00 40 4500 DON N 70.00 40

Primary Key: ENO Primary Key: PMNO

Free SQL Book, Tim Martyn 607 Copyright Pending, 2022

 Chapter

 21

 Set Operations:

UNION, INTERSECT, and EXCEPT

This chapter introduces three set operations designated by the

keywords UNION, INTERSECT, and EXCEPT. Appendix 21B describes the

mathematical foundations of these operations. This appendix is

optional reading, and it is not difficult. Therefore, you are

encouraged (but not required) to read this appendix before starting

this chapter.

The keywords UNION, INTERSECT, and EXCEPT are specified between

individual “Sub-SELECTs.” The following skeleton-code outlines

some examples.

Each Sub-SELECT generates an intermediate result. Then a set

operation processes the intermediate results to produce a final

result.

SELECT ____

FROM ____

WHERE ____

 UNION

SELECT ____

FROM ____

WHERE ____

SELECT ____

FROM ____

WHERE ____

 INTERSECT

SELECT ____

FROM ____

WHERE ____

SELECT ____

FROM ____

WHERE ____

 EXCEPT

SELECT ____

FROM ____

WHERE ____

Free SQL Book, Tim Martyn 608 Copyright Pending, 2022

Union-Compatibility

Informally, two tables are union-compatible if (i) the tables have

the same number of columns, and (ii) the corresponding columns

have comparable data-types. (E.g., A CHAR column can be compared

to a VARCHAR column, and an INTEGER column can be compared to a

DECIMAL column.) Two base tables are rarely union-compatible. For

example, the following EMPLOYEE and PROJMGR tables are not union-

compatible because EMPLOYEE has four columns and PROJMGR has five

columns.

However, although these base tables are not union-compatible, you

can select columns from each table such that the intermediate

result tables are union-compatible. For example, consider the

following statements and their results.

SELECT ENO, ENAME SELECT ENO, PMNAME

FROM EMPLOYEE FROM PROJMGR

ENO ENAME ENO PMNAME

1000 MOE 1000 MOE

2000 LARRY 2500 DICK

3000 CURLY 6000 GEORGE

4000 SHEMP 4500 DON

5000 JOE

6000 GEORGE

These result tables are union-compatible because they have the

same number of columns, and the corresponding columns have

comparable data-types. The name of the second column in each table,

ENAME and PMNAME, illustrates that corresponding columns need not

have the same name.

Both result tables have identical rows describing Employees 1000

and 6000. Hence, we conclude that corresponding rows represent the

same person who is both an employee and a project manager.

EMPLOYEE PROJMGR

ENO ENAME SALARY DNO ENO PMNAME MBA RATE DNO

1000 MOE 2000.00 20 1000 MOE N 500.00 20

2000 LARRY 2000.00 10 2500 DICK N 100.00 40

3000 CURLY 3000.00 20 6000 GEORGE Y 10.00 20

4000 SHEMP 500.00 40 4500 DON N 70.00 40

5000 JOE 400.00 10

6000 GEORGE 9000.00 20

Primary Key: ENO Primary Key: ENO

Free SQL Book, Tim Martyn 609 Copyright Pending, 2022

UNION

Informally, UNION asks the system to “merge” rows from two union-

compatible intermediate result tables and remove any duplicate rows

from the result.

Sample Query 21.1: Reference the EMPLOYEE and PROJMGR tables.

Display the employee numbers and names of all employees

and all project managers. Sort the result table by the

first column.

 ENO ENAME

1000 MOE

2000 LARRY

2500 DICK

3000 CURLY

4000 SHEMP

4500 DON

5000 JOE

6000 GEORGE

Syntax: UNION is specified between two Sub-SELECTs that generate

union-compatible intermediate results.

Logic: The intermediate results are merged into the final result.

Duplicate rows are eliminated from the final result. Specifically,

rows describing Employees 1000 and 6000 are only displayed once.

Column Headings: If two corresponding columns have different names

(e.g., ENAME and PMNAME), the front-end tool determines the column

heading. Many front-end tools display the column names associated

with the first Sub-SELECT as illustrated above.

Possible Incidental Sort: If you remove the ORDER BY clause from

this statement, there is a good chance that the final result will

be incidentally sorted. (See Appendix 21A.)

SELECT ENO, ENAME

FROM EMPLOYEE

 UNION

SELECT ENO, PMNAME

FROM PROJMGR

ORDER BY 1

Sub-SELECT

Sub-SELECT

Free SQL Book, Tim Martyn 610 Copyright Pending, 2022

Displaying “Labels”

Examine the result table in the previous sample query. Notice that

you cannot determine if an individual row was derived from the

EMPLOYEE table or from the PROJMGR table. If this information is

important, you can display some constant value to serve as a label.

Sample Query 21.2: Make a simple change to the previous SELECT-

statement. Display a third column containing the character-

strings 'EMP' or 'PM' to indicate the source table for each

row. Sort the final result table by the first column.

ENO ENAME SOURCETAB

1000 MOE EMP

1000 MOE PM

2000 LARRY EMP

2500 DICK PM

3000 CURLY EMP

4000 SHEMP EMP

4500 DON PM

5000 JOE EMP

6000 GEORGE EMP

6000 GEORGE PM

Syntax & Logic: Nothing New.

Important Observation: The result table for the previous Sample

Query 21.1 has 8 rows, whereas the above result table has 10 rows.

Observe that the above result table displays two rows describing

Employee 1000 and two rows describing Employee 6000. Displaying

the label eliminated the possibility of duplicate rows.

SELECT ENO, ENAME, 'EMP' SOURCETAB

FROM EMPLOYEE

 UNION

SELECT ENO, PMNAME, 'PM'

FROM PROJMGR

ORDER BY 1

Free SQL Book, Tim Martyn 611 Copyright Pending, 2022

INTERSECT

After executing both Sub-SELECTs, INTERSECT asks the system to

return just those rows that are present in both intermediate result

tables, and, if necessary, remove duplicate rows from the result.

Sample Query 21.3: Display the employee numbers and names of all

persons who are described in both the EMPLOYEE and

PROJMGR tables. Sort the result by the first column.

 ENO ENAME

 1000 MOE

6000 GEORGE

Syntax: INTERSECT is specified between two Sub-SELECTs. The Sub-

SELECTs must generate union-compatible results. (We could say the

Sub-SELECTs are “intersect-compatible,” but most users will say

“union-compatible.”)

Logic: The intermediate-result tables are shown below. Only rows

common to both intermediate-results appear in the final result.

ENO ENAME ENO PMNAME

1000 MOE 1000 MOE

2000 LARRY 2500 DICK

3000 CURLY 6000 GEORGE

4000 SHEMP 4500 DON

5000 JOE

6000 GEORGE

Alternative Solutions: Exercise 21F will invite you to code a join-

operation to satisfy this query objective. Chapter 25 (Exercise

25K) will present two additional solutions.

SELECT ENO, ENAME

FROM EMPLOYEE

 INTERSECT

SELECT ENO, PMNAME

FROM PROJMGR

ORDER BY 1

Free SQL Book, Tim Martyn 612 Copyright Pending, 2022

EXCEPT (MINUS)

EXCEPT asks the system to select those rows from the first-

intermediate-result table that are not present in the second-

intermediate-result table, and, if necessary, remove any duplicate

rows from the result. [Note: ORACLE uses the keyword MINUS instead

of EXCEPT.]

Sample Query 21.4: Display the employee number and name of every

employee who is not a project manager. (I.e., Display the

employee number and name of every person who is described in

the EMPLOYEE table but not described in the PROJMGR table.)

Sort the result by the first column.

ENO ENAME

2000 LARRY

3000 CURLY

4000 SHEMP

5000 JOE

Syntax: EXCEPT is specified between two Sub-SELECTs. The Sub-

SELECTs must generate union-compatible intermediate results.

Logic: The EXCEPT operation returns those rows from first

intermediate-result table that are not found in the second

intermediate-result table.

ENO ENAME ENO PMNAME

1000 MOE 1000 MOE

2000 LARRY 2500 DICK

3000 CURLY 6000 GEORGE

4000 SHEMP 4500 DON

5000 JOE

6000 GEORGE

Notice that interchanging the Sub-SELECT statements would generate

a different result.

Alternative Solutions: Chapter 25 (Exercise 25L) will present two

additional solutions.

SELECT ENO, ENAME

FROM EMPLOYEE

 EXCEPT

SELECT ENO, PMNAME

FROM PROJMGR

ORDER BY 1

Free SQL Book, Tim Martyn 613 Copyright Pending, 2022

PROJ1PARTS PROJ2PARTS

PNO PNAME PCOLOR QTY PNO PNAME PWT

P1 PART1 RED 16 P3 PART3 20

P2 PART2 BLUE 16 P4 PART4 10

P4 PART4 YELLOW 17 P5 PART5 20

P5 PART5 RED 15 P6 PART6 12

Exercises

Exercises 21A-21E reference the following PROJ1PARTS and

PROJ2PARTS tables. Recall that some parts (e.g., P4 and P5) can be

used in both projects.

21A. Display the part number and name of all parts used by either

Project1 or Project2.

21B. Display the part number and name of any part that is used in

both Project1 and Project2.

21C. (i) Display the part number and name of any part that is used

in Project1 but not used in Project2.

 (ii) Display the part number and name of any part that is

used in Project2 but not used in Project1.

21D. The following statement produces a potentially confusing

result. Why?

SELECT PNO, PNAME, QTY

FROM PROJ1PARTS

UNION

SELECT PNO, PNAME, PWT

FROM PROJ2PARTS

ORDER BY 1

21E. Modify the above statement to display a label to distinguish

QTY values from PWT values.

21F. Code an alternative solution to Sample Query 21.3 using a

join-operation instead of specifying INTERSECT.

Free SQL Book, Tim Martyn 614 Copyright Pending, 2022

UNION ALL

Placing the keyword ALL after UNION tells the system to perform a

“union” operation without removing duplicate rows from the result.

The following sample query is not a very realistic, but it does

illustrate the basic functionality of UNION ALL. Sample Queries

21.6 and 21.7 will present more realistic examples.

Sample Query 21.5: This query is a variation of Sample Query 21.1.

Display the employee numbers and names of all employees and

all project managers. However, do not remove any duplicate

rows from the final result. Sort the final result by the first

column.

ENO ENAME

1000 MOE

1000 MOE

2000 LARRY

2500 DICK

3000 CURLY

4000 SHEMP

4500 DON

5000 JOE

6000 GEORGE

6000 GEORGE

Syntax: Specify UNION ALL between the individual Sub-SELECTs.

Logic: This example displays all rows generated by the individual

Sub-SELECTs. Observe the duplicate rows that describe MOE and

GEORGE. Because we discourage displaying duplicate rows, you

should consider including some row label as illustrated in the

Sample Query 21.2.

SELECT ENO, ENAME

FROM EMPLOYEE

 UNION ALL

SELECT ENO, PMNAME

FROM PROJMGR

ORDER BY 1

Free SQL Book, Tim Martyn 615 Copyright Pending, 2022

The next sample query references the following PROJMGR2 table.

 PROJMGR2: PMNO PMNAME MBA RATE DNO

 1500 MOE N 500.00 20

 2500 DICK N 100.00 40

 6500 GEORGE Y 10.00 20

 4500 DON N 70.00 40

Recall that PROJMGR2.PMNO values cannot match any EMPLOYEE.ENO

value, and vice versa. (I.e., The primary keys values of EMPLOYEE

and PROJMGR2 tables are disjoint.)

Sample Query 21.6: This sample query is similar to the previous

sample query. Reference the EMPLOYEE and PROJMGR2 tables.

Display the number and name of every employee and project

manager. Sort the result by the first column.

 ENO ENAME

1000 MOE

1500 MOE

2000 LARRY

2500 DICK

3000 CURLY

4000 SHEMP

4500 DON

5000 JOE

6000 GEORGE

6500 GEORGE

Logic: Design constraints imply that duplicate rows cannot appear

within the intermediate-result tables. Therefore, we could have

produced the same final result by specifying UNION instead of UNION

ALL. However, for efficiency purposes, you might prefer UNION ALL.

Efficiency: Sometimes, you can improve efficiency by specifying

UNION ALL instead of UNION. When you specify UNION ALL you are

telling the system that it can omit any internal processing used

to detect and remove duplicate rows. (Appendix 21A will comment on

this matter.)

SELECT ENO, ENAME

FROM EMPLOYEE

UNION ALL

SELECT PMNO, PMNAME

FROM PROJMGR2

ORDER BY 1

Free SQL Book, Tim Martyn 616 Copyright Pending, 2022

“If-Then” Logic

UNION ALL can be used to indirectly implement some basic “If-Then”

logic. Unlike previous sample queries, the following sample query

specifies Sub-SELECTs that reference the same table (EMPLOYEE);

and, unlike previous sample queries, the following sample query

specifies two set operations.

Sample Query 21.7: Display the ENO and ENAME values from all

EMPLOYEE rows. For confidentiality reasons, do not display

SALARY values. Instead, for each employee, display a textual

label indicating that the employee’s salary is “TOO SMALL”,

“TOO BIG”, or “OK” according to the following business rules.

• If the SALARY < 1000, then display “TOO SMALL”

• If the SALARY > 3000, then display “TOO BIG”

• Otherwise, display “OK”
Sort the result by the ENAME column.

 ENO ENAME TEXTLABEL

 3000 CURLY OK

 6000 GEORGE TOO BIG

 5000 JOE TOO SMALL

 2000 LARRY OK

 1000 MOE OK

 4000 SHEMP TOO SMALL

Logic: Here, the logic is straightforward because we specified the

same set operation (UNION ALL) twice. The last section in this

chapter will show that we must be careful when specifying multiple

different set operations.

Alternative Solution: Sample Query 22.3 will present a better

solution that specifies a CASE-expression.

SELECT ENO, ENAME, 'TOO SMALL' TEXTLABEL

FROM EMPLOYEE

WHERE SALARY < 1000

UNION ALL

SELECT ENO, ENAME, 'TOO BIG'

FROM EMPLOYEE

WHERE SALARY > 3000

UNION ALL

SELECT ENO, ENAME, 'OK'

FROM EMPLOYEE

WHERE SALARY BETWEEN 1000 and 3000

ORDER BY 2

Free SQL Book, Tim Martyn 617 Copyright Pending, 2022

Cautionary Observations about UNION ALL

We reference the three previous sample queries to make some

cautionary observations about UNION ALL.

• Sample Query 21.5 demonstrated that UNION ALL may return

duplicate rows. However, we generally discourage displaying

duplicate rows.

• Sample Query 21.6 noted that UNION ALL may be more efficient
than UNION because it avoids the cost of finding and removing

duplicate rows. However, from an ideal perspective, you should

not have to consider efficiency.

• Sample Query 21.7 demonstrated that UNION ALL can be used to
implement If-Then logic. However, the next chapter will show

that CASE provides a more direct method of implementing If-Then

logic.

Ancient History: Some early versions of SQL did not support UNION

ALL. Users of these products complained to their database vendors

about using UNION to satisfy query objectives like Sample Query

21.6 where execution time was slow because the system did extra

work to identify and remove duplicate rows that the user knew could

not occur. This inefficiency was one reason database vendors

decided to support UNION ALL.

Exercises:

Reference the PROJ1PARTS and PROJ3PARTS tables. Recall that

Project1 and Project3 can never use the same part.

21G. Display the part number and name of all parts used by either

Project1 or Project3.

21H. Reference the PROJ1PARTS table. Produce a result that

displays every part number and name, followed by a character-

string indicating if the QTY column contains a value that is

less than, equal to, or greater than 16. Sort the result by

PNO. The result should look like:

 PNO PNAME COMMENTARY

P1 PART1 QTY EQUAL TO 16

P2 PART2 QTY EQUAL TO 16

P4 PART4 QTY GREATER THAN 16

P5 PART5 QTY LESS THAN 16

Free SQL Book, Tim Martyn 618 Copyright Pending, 2022

INTERSECT ALL

We introduce INTERSECT ALL, but we do not present any relevant

sample queries because INTERSECT ALL does not find many real-world

applications.

Consider the DNO values in the EMPLOYEE and PROJMGR tables.

EMPLOYEE.DNO PROJMGR.DNO

20 20

10 40

20 20

40 40

10

 20

Execute: SELECT DNO FROM EMPLOYEE

INTERSECT ALL

SELECT DNO FROM PROJMGR

Result: DNO

 20

 20

 40

Logic: Using very casual terminology, we say that INTERSECT ALL

returns all DNO values that “overlap” with each other.

EMPLOYEE.DNO: {10, 10, 20, 20, 20, 40}

PROJMGR.DNO: {20, 20, 40, 40}

Observe that:

• The EMPLOYEE.DNO column contains three 20s. The PROJMGR.DNO

column contains two 20s. Two of these 20s “overlap” each other

as illustrated above. Hence, two 20 values appear in the

result.

• EMPLOYEE.DNO contains one 40. PROJMGR.DNO contains two 40s.

Only one 40 overlaps the other. Hence, one 40 value appears

in the result.

• No other values overlap with each other.

Free SQL Book, Tim Martyn 619 Copyright Pending, 2022

EXCEPT ALL

We introduce EXCEPT ALL, but we do not present any relevant sample

queries because EXCEPT ALL does not find many real-world

applications.

The following example illustrates EXCEPT ALL.

Execute: SELECT DNO FROM EMPLOYEE

EXCEPT ALL

SELECT DNO FROM PROJMGR

Result: DNO

 10

 10

 20

Logic: Using very casual terminology, we say that EXCEPT ALL

returns just those EMPLOYEE.DNO values that do not overlap with

PROJMGR.DNO values. Again, the following figure uses arrows to

identify the overlapping values. The other (non-overlapping)

EMPLOYEE.DNO values (the underlined values) are returned by the

EXCEPT ALL operation.

EMPLOYEE.DNO: {10, 10, 20, 20, 20, 40}

PROJMGR.DNO: {20, 20, 40, 40}

Observe that:

• EMPLOYEE.DNO contains two 10s. PROJMGR.DNO has no 10s. Hence

both of the EMPLOYEE.DNO 10s appear in the result.

• EMPLOYEE.DNO contains three 20s. PROJMGR.DNO contains two

20s. Only one EMPLOYEE.DNO value of 20 does not overlap with

the 20s in PROJMGR.DNO. Hence one 20 appears in the result.

• EMPLOYEE.DNO contains one 40. PROJMGR.DNO contains two 40s.

Hence, EMPLOYEE.DNO does not contain any non-overlapping 40s.

Free SQL Book, Tim Martyn 620 Copyright Pending, 2022

Null Values: UNION – INTERSECT – EXCEPT

Here we describe set operations within the context of null values.

The following examples reference the JUNK1 and JUNK2 tables shown

below. Both tables have just one column (JNO) that contains some

null values represented by hyphens.

 JUNK1.JNO JUNK2.JNO

 20 20

 10 40

 20 20

 40 40

 10 -

 20 30

 -

 -

 -

With UNION, INTERSECT, and EXCEPT, multiple null values are treated

as duplicates, and duplicate null values do not appear in the

result. (This is similar to applying DISTINCT to null values as

illustrated in Sample Query 11.10.) The following examples

illustrate this behavior.

SELECT * FROM JUNK1 SELECT * FROM JUNK1

UNION INTERSECT

SELECT * FROM JUNK2 SELECT * FROM JUNK2

ORDER BY JNO ORDER BY JNO

 JNO JNO

 10 20

 20 40

 30 -

 40

 -

SELECT * FROM JUNK1

EXCEPT

SELECT * FROM JUNK2

ORDER BY JNO

 JNO

 10

Free SQL Book, Tim Martyn 621 Copyright Pending, 2022

Null Values: UNION ALL – INTERSECT ALL – EXCEPT ALL

If you specify ALL with any set operation, multiple null values

are not treated as duplicates. Hence multiple null values can

appear in the result. The following examples illustrate this

behavior.

SELECT * FROM JUNK1 SELECT * FROM JUNK1

UNION ALL INTERSECT ALL

SELECT * FROM JUNK2 SELECT * FROM JUNK2

ORDER BY JNO ORDER BY JNO

JNO JNO

 10 20

 10 20

 20 40

 20 -

 20

 20

 20

 30

 40

 40

 40

 -

 -

 -

 -

SELECT * FROM JUNK1

EXCEPT ALL

SELECT * FROM JUNK2

ORDER BY JNO

JNO

 10

 10

 20

 -

 -

Free SQL Book, Tim Martyn 622 Copyright Pending, 2022

Execution Hierarchy for Multiple Set Operations

In Chapter 4, we described the hierarchy of execution for the

Boolean operations where, in the absence of parentheses, NOT is

executed first, followed by AND, then followed by OR.

Later, in Chapter 7, we described the hierarchy of execution for

the arithmetic operations where, in the absence of parentheses,

multiplication and division are executed before addition the

subtraction. Addition and subtraction are at the same level and

are executed as they appear in a left-to-right reading of the

expression. In a similar manner, multiplication and division are

at the same level and are executed as they appear in a left-to-

right reading of the expression.

In this section we consider the execution hierarchy for the set

operations: UNION, INTERSECT, and EXCEPT.

Strong Recommendation: Specify parentheses (as previously

emphasized for the Boolean and arithmetic operations). This

recommendation is especially emphasized for the set operations

because different database systems may default to different

hierarchies! Ouch! Therefore, again, always specify parentheses to

indicate your desired execution sequence.

Execution Hierarchy (DB2 and SQL Server): In the absence of

parentheses, the execution hierarchy is:

▪ INTERSECT is executed first.

▪ UNION and EXCEPT are executed second. These operations are at

the same level and are executed as they appear in a left-to-

right reading of the expression.

ORACLE: See end of this section.

The following examples assume that you are using DB2 or SQL Server,

and your SELECT statement references the following three one-

column tables (SETA, SETB, and SETC).

SETA

 XNO

 10

 20

 30

 50

SETB

 XNO

 10

 30

 40

 60

SETC

 XNO

 10

 20

 40

 70

Free SQL Book, Tim Martyn 623 Copyright Pending, 2022

DB2 and SQL Server: INTERSECT has precedence over UNION.

Parentheses are specified in the following Figures 21.1a and

21.1b. Hence, the execution hierarchy does not come into play.

Parentheses are not specified in the following Figure 21.1c. Hence,

the execution hierarchy implies that INTERSECT is executed first

(even though UNION is coded before INTERSECT). Notice that the

Figure 21.1c result is the same as the Figure 21.1b result where

parentheses explicitly implied that INTERSECT was executed first.

(SELECT XNO FROM SETA

 UNION

 SELECT XNO FROM SETB)

 INTERSECT

 SELECT XNO FROM SETC

 XNO

 10

 20

 40

Figure 21.1a: Parentheses imply

UNION executed before INTERSECT

SELECT XNO FROM SETA

 UNION

(SELECT XNO FROM SETB

 INTERSECT

SELECT XNO FROM SETC)

 XNO

 10

 20

 30

 40

 50

Figure 21.1b: Parentheses imply

INTERSECT executed before UNION

SELECT XNO FROM SETA

 UNION

SELECT XNO FROM SETB

 INTERSECT

SELECT XNO FROM SETC

 XNO

 10

 20

 30

 40

 50

Figure 21.1c: No Parentheses -

INTERSECT executed before UNION

Free SQL Book, Tim Martyn 624 Copyright Pending, 2022

DB2 and SQL Server: INTERSECT has precedence over EXCEPT.

Parentheses are specified in the following Figures 21.2a and

21.2b. Hence, the execution hierarchy does not come into play.

Parentheses are not specified in the following Figure 21.2c. Hence

the execution hierarchy implies that INTERSECT is executed first

(even though EXCEPT is coded before INTERSECT). Notice that the

Figure 21.2c result is the same as the Figure 21.2b result where

parentheses explicitly implied that INTERSECT was executed first.

(SELECT XNO FROM SETA

 EXCEPT

SELECT XNO FROM SETB)

 INTERSECT

SELECT XNO FROM SETC

 XNO

 20

Figure 21.2a: Parentheses imply

EXCEPT executed before INTERSECT

SELECT XNO FROM SETA

 EXCEPT

(SELECT XNO FROM SETB

 INTERSECT

SELECT XNO FROM SETC)

 XNO

 20

 30

 50

Figure 21.2b: Parentheses imply

INTERSECT executed before EXCEPT

SELECT XNO FROM SETA

 EXCEPT

SELECT XNO FROM SETB

 INTERSECT

SELECT XNO FROM SETC

 XNO

 20

 30

 50

Figure 21.2c: No Parentheses -

INTERSECT executed before EXCEPT

Free SQL Book, Tim Martyn 625 Copyright Pending, 2022

DB2 and SQL Server: UNION and EXCEPT are at same level.

Parentheses are specified in the following Figures 21.3a and

21.3b. Hence, the execution hierarchy does not come into play.

Parentheses are not specified in the following Figures 21.3c and

21.3d. Because UNION and EXCEPT are at the same (second) level in

the execution hierarchy, the left-to-right sequence of the

operations dictates the execution sequence.

In Figure 21.3c UNION is executed first because it is coded before

EXCEPT. (The result is the same as Figure 21.3a.) In Figure 21.3d

EXCEPT is executed first because it is coded before UNION. (The

result is the same as Figure 21.3b.)

(SELECT XNO FROM SETA

 UNION

SELECT XNO FROM SETB)

 EXCEPT

SELECT XNO FROM SETC

 XNO

 30

 50

 60

Figure 21.3a: Parentheses imply

UNION executed before EXCEPT

SELECT XNO FROM SETA

 UNION

(SELECT XNO FROM SETB

 EXCEPT

SELECT XNO FROM SETC)

 XNO

 10

 20

 30

 50

 60

Figure 21.3b: Parentheses imply

EXCEPT executed before UNION

SELECT XNO FROM SETA

 UNION

SELECT XNO FROM SETB

 EXCEPT

SELECT XNO FROM SETC

 XNO

 30

 50

 60

Figure 21.3c: No Parentheses -

UNION executed before EXCEPT

SELECT XNO FROM SETB

 EXCEPT

SELECT XNO FROM SETC

 UNION

SELECT XNO FROM SETA

 XNO

 10

 20

 30

 50

 60

Figure 21.3d: No Parentheses -

EXCEPT executed before UNION

Free SQL Book, Tim Martyn 626 Copyright Pending, 2022

ORACLE: Potential Confusion

In the past, and maybe today (depending upon when you are reading

this chapter), ORACLE did not implement any execution hierarchy

for the set operations. All set operations were at the same level.

If parentheses were not specified, the set operations were executed

in the order that they appeared in a left-to-right reading of the

expression.

**** However - Read the following statement copied from the ORACLE

10.2 reference manual.

To comply with emerging SQL standards, a future release of Oracle will give

the INTERSECT operator greater precedence than the other set operators. Therefore, you

should use parentheses to specify order of evaluation in queries that use

the INTERSECT operator with other set operators.

Again, code parentheses to explicitly specify your desired

execution sequence.

Author Comment: I became confused when I first executed the

following SELECT statement in DB2 where I incorrectly assumed that

UNION would be executed first.

SELECT XNO FROM SETA

 UNION

SELECT XNO FROM SETB

 INTERSECT

SELECT XNO FROM SETC

Why did the SQL Standards Committee decide to give INTERSECT a

higher precedence? I don’t know, but there may be a reasonable

basis for this decision: INTERSECT is similar to AND, and UNION is

similar to OR. Therefore, if AND has a higher precedence than OR,

then INTERSECT should also have a higher precedence than UNION.

Free SQL Book, Tim Martyn 627 Copyright Pending, 2022

Summary

UNION: UNION is fundamental in the sense that, given a query

objective that requires a UNION operation, we cannot always specify

some alternative SQL code to satisfy this objective.

INTERSECT and EXCEPT: INTERSECT and EXCEPT are useful operations,

but they are not fundamental. Exercises 25K and 25L will present

alternative solutions to this chapter’s sample queries that

specified INTERSECT and EXCEPT. (Early versions of SQL did not

support INTERSECT and EXCEPT. Hence, SQL users were forced to code

alternative solutions. Today, many users continue to prefer these

alternative solutions.)

Keyword ALL: UNION ALL can be useful. However, you should be aware

of the previous cautionary comments about this operation.

Design Observation: Examination of the EMPLOYEE and PROJMGR tables

could motivate the following observation.

The PROJMGR table contains a column called ENO, implying that

all project managers are assigned employee numbers, further

implying that all project managers are employees. However, we

stated that some project managers are not employees, and their

PROJMGR.ENO values do not appear in the EMPLOYEE table. There

appears to some inconsistency in this design.

The database designer might defend this design by noting that a

project manager may or may not be an employee. For example, a

project manager who is not an employee might be an external

consultant who is assigned a “dummy” employee number, and dummy

employee numbers are not stored in the EMPLOYEE table. While this

dummy employee may be untidy, the EMPLOYEE and PROJMGR tables

accurately model this business practice. Unfortunately, in the

real-world, you will encounter untidy database designs derived

from untidy business practices that complicate your efforts to

know your data.

Free SQL Book, Tim Martyn 628 Copyright Pending, 2022

Summary Exercises

21I. Reference the EMPLOYEE and PROJMGR tables. Display the

employee number and name of any person who works in or manages

projects for Department 20.

21J. Reference the EMPLOYEE and PROJMGR tables. Modify the

previous exercise. Display “EMPLOYEE” or “PROJECT MANAGER”,

in the third column to indicate that the person is an employee

or a project manager. (Two rows will be displayed for any

person who is both an employee and a project manager.)

21K. Reference the EMPLOYEE and PROJMGR tables. Display the

employee number and name of any person who is both an employee

and project manager in Department 20. Sort the result by the

first column.

21L. Reference the EMPLOYEE and PROJMGR tables. Display the

employee number and name of any project manager who is not an

employee.

21M. Reference the PROJ2PARTS table. Display every part number and

name and a character-string indicating if the PWT column

contains a value that is less than, equal to, or greater than

12. Sort the result by the first column. The result should

look like:

 PNO PNAME COMMENTARY

P3 PART3 WEIGHT IS GREATER THAN 12

P4 PART4 WEIGHT IS LESS THAN 12

P5 PART5 WEIGHT IS GREATER THAN 12

P6 PART6 WEIGHT IS EQUAL TO 12

21N. Reference the EMPLOYEE table. Display the department number

and the total salary for each department. Also, display the

final total of all salaries. Your SELECT statement should

specify UNION ALL. The result should look like:

DNO SUMSALARY

 10 2400.00

 20 14000.00

 40 500.00

 Final 16900.00

Comment: Optional Chapter 9.5 (Sample Query 9.21) describes

a better method using the ROLLUP option with the GROUP BY

clause.

Free SQL Book, Tim Martyn 629 Copyright Pending, 2022

21O. Consider the following SELECT statements. Produce two results

for each statement. (1) Assume that INTERSECT has precedence

over UNION. (2) Assume there is no precedence among the set

operations. Sometimes, both assumptions produce the same

result

Statement-1: (SELECT PNO, PNAME FROM PROJ2PARTS

 UNION

 SELECT PNO, PNAME FROM PROJ3PARTS)

 INTERSECT

 SELECT PNO, PNAME FROM PROJ1PARTS

Statement-2: SELECT PNO, PNAME FROM PROJ2PARTS

 UNION

SELECT PNO, PNAME FROM PROJ3PARTS

 INTERSECT

SELECT PNO, PNAME FROM PROJ1PARTS

Statement-3: SELECT PNO, PNAME FROM PROJ2PARTS

 INTERSECT

(SELECT PNO, PNAME FROM PROJ3PARTS

UNION

SELECT PNO, PNAME FROM PROJ1PARTS)

21P. Display the part numbers and names of any part this used in

all three projects. (Trick question!)

Free SQL Book, Tim Martyn 630 Copyright Pending, 2022

Appendix 21A: Efficiency

Removing Duplicate Rows: Coding UNION, INTERSECT, or EXCEPT

(without specifying ALL) requires the system to identify and remove

duplicate rows. This process, which may involve sorting, could

incur an additional performance cost. Appendix 3A discussed

sorting considerations associated with the DISTINCT keyword.

Similar considerations apply to SQL’s set operations.

Multiple Sub-SELECTs Reference the Same Table: Consider Sample Query

21.7 where three Sub-SELECTs referenced the same table. If this

table is very large, and the optimizer decides to scan the table

three times (once for each Sub-SELECT), then the total cost could

be expensive. In this circumstance, specifying CASE (to be

discussed in the next chapter) should be more efficient.

Possible Do-It-Yourself Query Rewrite: Consider the following.

 SELECT * FROM BIG_TABLE WHERE COLX IN (2, 7, 19)

Assume that:

• BIG_TABLE has a billion rows

• There is a non-unique index on COLX.

• Approximately 10 rows match the WHERE-condition.

Given the small selectivity, the optimizer should decide to use

the index on COLX. However, what if your imperfect optimizer makes

a poor decision and decides to scan the table? In this

circumstance, you could possibly entice the optimizer to use the

COLX index by rewriting the above SELECT statement as:

SELECT * FROM BIG_TABLE WHERE COLX = 2

UNION ALL

SELECT * FROM BIG_TABLE WHERE COLX = 7

UNION AL

SELECT * FROM BIG_TABLE WHERE COLX = 19

This code should encourage the optimizer to use the index to

satisfy each Sub-SELECT. However - Be Careful!!! This revised

statement would be horribly inefficient if the system decides to

perform three scans of BIG_TABLE.

This kind of user query rewrite is an ugly patch job. Modern

optimizers are very intelligent. They reduce, but do not always

eliminate, the need for this kind of user query rewrite.

Free SQL Book, Tim Martyn 631 Copyright Pending, 2022

Appendix 21B: Theory

Mathematical Foundation: Recall that each table (ideally)

corresponds to a set where each row in the table corresponds to an

element in the set. For example, consider a small school with a

baseball team and a chess team. We represent the baseball team by

set B, and represent the chess team by set C. Student names, the

elements for each set, are listed below.

 B = {Moe, Ruth, Larry, Curly, Gerig}

 C = {Newton, Moe, Larry, Einstein, Curly}

From a database perspective, we can represent each set as a table

(the BTEAM table and the CTEAM table) where each table has just

one column.

Set Operations: Reference these sets, and consider three questions

(queries).

1. Assume all students from both teams attend a joint meeting.

What students attend this meeting? The UNION operation

answers this question.

B UNION C = {Moe, Larry, Curly,

Ruth, Gerig, Newton, Einstein}

The result contains all names from both sets B and C, without

duplicate names. (Moe, Larry, and Curly are members of both

teams, but their name only appears once in the result.)

BTEAM

BNAME

Moe

Ruth

Larry

Curly

Gerig

CTEAM

CNAME

Newton

Moe

Larry

Einstein

Curly

Free SQL Book, Tim Martyn 632 Copyright Pending, 2022

2. Assume only students who play for both teams attend another

meeting. What students attend this meeting? The INTERSECT

operation answers this question.

B INTERSECT C = {Moe, Larry, Curly}

 This result contains just those names that are found in both

sets.

Before discussing EXCEPT, we note that the UNION and INTERSECT

operations are commutative. This means that:

 B UNION C = C UNION B

 B INTERSECT C = C INTERSECT B

3. Consider a meeting of baseball players who are not on the

chess team. What students attend this meeting? The EXCEPT

operation answers this question.

B EXCEPT C = {Ruth, Gerig}

 The result contains those names from set B that are not found

in set C. Note that B is specified first to the left of the

keyword EXCEPT.

 Now, consider a meeting of just those chess players who are

not on the baseball team. What students attend this meeting?

Again, the EXCEPT operation produces the answer. Here, set C

is specified first to the left of the keyword EXCEPT.

C EXCEPT B = {Newton, Einstein}

 Observe that, unlike UNION and INTERSECT, the EXCEPT

operation is not commutative.

 B EXCEPT C produces a different result than C EXCEPT B.

Conventional Mathematical Notation: Most math books use the

following symbols to represent these set operations.

 B C represents B UNION C

 B C represents B INTERSECT C

 B – C represents B EXCEPT C

Free SQL Book, Tim Martyn 633 Copyright Pending, 2022

Venn Diagrams: You may recall some teacher drawing circular

diagrams to represent sets. These diagrams are called Venn

Diagrams. Below we make a trivial modification by drawing

rectangular Venn Diagrams to represent sets B and C.

Venn diagrams can be used to illustrate set operations. Below,

each shaded area represents the result of a set operation.

Relational Algebra: Appendix 17B described four of the eight

operations defined by Codd’s Relational Algebra. These were:

• RESTRICT

• PROJECT

• JOIN

• CROSS PRODUCT

This chapter has introduced three more algebraic operations.

• UNION

• INTERSECT

• EXCEPT

You now know seven of the eight operations that Codd included in

his Relational Algebra. This book does not discuss his eighth

operation (DIVIDE).

B

C

B and C

B

C

B and C

B

C

B and C

 UNION INTERSECT EXCEPT

 B C B C B - C

B C

Free SQL Book, Tim Martyn 634 Copyright Pending, 2022

Appendix 21C: Theory & Efficiency

Set Theory: Appendix 4B presented some laws of logic that applied

to the Boolean operations (AND, OR, and NOT). Similar laws apply

to the set operations (UNION, INTERSECT, and EXCEPT). This is

appendix considers the two Distributive Laws.

Given three sets SA, SB, and SC.

1. Distributive Law of INTERSECT over UNION:

SA (SB SC) = (SA SB) (SA SC)

2. Distributive Law of UNION over INTESECT:

SA (SB SC) = (SA SB) (SA SC)

Observations: A general objective is to generate small

intermediate result tables. With this objective in mind, we make

some observations.

• Given two arbitrary tables, SA and SB, the intersection of

these tables is almost always smaller (has fewer rows) than

the union of these tables.

SIZE [SA SB] <= SIZE [(SA SB]

Examination of the Venn Diagrams on the previous page

illustrates this fact. A special case circumstance where the

sizes are equal occurs when both tables contain the same data

(SA = SB).

• If SA is smaller than SB, then

SIZE [SA SB] <= SIZE [SA]

These observations imply that an optimizer might prefer the

INTERSECT (versus UNION) operation, especially when one of the

tables is considerably smaller than the other table.

Free SQL Book, Tim Martyn 635 Copyright Pending, 2022

Analysis: Distributed Law of INTERSECT over UNION

SA (SB SC) = (SA SB) (SA SC)

Assume SA is very large, and both SB and SC are small. Then the

optimizer would probably prefer to have SA participate in just one

set operation. Hence, it would decide to implement the left-side

expression of this distributed law.

SA (SB SC)

Alternatively, assume SA is very small, and both SB and SC are

large. Then, to avoid having the two large tables participate in

a UNION operation that could produce a very large intermediate

result, the optimizer might prefer to implement the right-side

expression of this law.

(SA SB) (SA SC)

A similar analysis can be done for the Distributed Law of UNION

over INTERSECT.

Optimizer Query Rewrite: According to the Distributed Law of

INTERSECT over UNION, the following statements are equivalent.

Dependent upon the estimated size of intermediate result tables

(and other factors), the optimizer may transform one of these

statements into the other.

Similar query rewrite can be done based on the Distributed Law of

UNION over INTERSECT.

SELECT XNO FROM SETA

INTESECT

(SELECT XNO FROM SETB

 UNION

 SELECT XNO FROM SETC)

(SELECT XNO FROM SETA

 INTESECT

 SELECT XNO FROM SETB)

 UNION

 (SELECT XNO FROM SETA

 INTERSECT

 SELECT XNO FROM SETC)

Free SQL Book, Tim Martyn 636 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 637 Copyright Pending, 2022

 Chapter

 22

 CASE-Expressions

CASE-expressions are important because they allow you to specify

logic that cannot be (directly) specified by the WHERE, GROUP BY,

and HAVING clauses, and the join and set operations. Specifically,

CASE provides an explicit method for implementing “If-Then” logic.

This functionality allows you to satisfy more complex query

objectives.

SQL supports two kinds of CASE-expressions. These are:

1. Simple-CASE

2. Searched-CASE

This chapter’s sample queries present the syntax and logic for

both variations of CASE.

A CASE-expression is usually specified within a SELECT-clause.

However, a CASE-expression may also be specified within a WHERE-

clause, HAVING-clause, and ORDER BY clause.

Free SQL Book, Tim Martyn 638 Copyright Pending, 2022

CASE [column | expression]

WHEN value-1

Return ____

WHEN value-2

Return ____

WHEN value-3

Return ____

[ELSE]

Return ____

. . .

Simple-CASE

The following example introduces a Simple-CASE expression.

Example: CASE SALARY

 WHEN 1000 THEN 'One Thousand'

 WHEN 2000 THEN 'Two Thousand'

 ELSE 'Not 1000 and Not 2000'

 END

This example asks the system to examine the value of SALARY. The

first WHEN-condition asks the system to evaluate SALARY = 1000. If

this condition is true, the system returns “One Thousand” and exits

the CASE-Expression. Otherwise, the next WHEN-condition (SALARY =

2000) is evaluated. If this condition is true, the system returns

“Two Thousand” and exits the CASE-Expression. Otherwise, the

system returns the value specified in the ELSE-clause, “Not 1000

and Not 2000”.

Syntax & Logic: CASE [column | expression]

WHEN value-1 THEN return-value-1

WHEN value-2 THEN return-value-2

 . . .

 [ELSE return-value-n]

 END

The keyword CASE is followed by a column-name or an expression.

The value of the column/expression in compared to a series of

values specified by WHEN-clauses. If the column/expression equals

a WHEN-value, the corresponding return-value is returned, and the

CASE-expression is terminated. If there is no match on any WHEN-

clause, the return-value specified in the ELSE-clause is returned.

The following diagram illustrates the logic of the Simple-CASE

expression.

A null value is returned if no WHEN-clause produces a match, and

the optional ELSE-clause is omitted.

Free SQL Book, Tim Martyn 639 Copyright Pending, 2022

Simple-CASE (Column)

Sample Query 22.1: For each row in the EMPLOYEE table, display the

ENO and ENAME values followed by a textual description of the

SALARY value according to the following rule.

• If SALARY = 1000, then display “One Thousand”

• If SALARY = 2000, then display “Two Thousand”

• If SALARY = 9000, then display “Nine Thousand”

• Otherwise, display “Not (1000, 2000, 9000)”
Specify TEXTSALARY as a column-alias for the third column

generated by a CASE-expression. Sort the result by ENO values.

ENO ENAME TEXTSALARY

 1000 MOE Two Thousand

2000 LARRY Two Thousand

 3000 CURLY Not (1000, 2000, 9000)

 4000 SHEMP Not (1000, 2000, 9000)

 5000 JOE Not (1000, 2000, 9000)

 6000 GEORGE Nine Thousand

Logic: The system examines each row in the EMPLOYEE table. For

each row, the system displays the ENO and ENAME values followed by

a character-string value according the logic designated by the

query objective.

SELECT ENO, ENAME, CASE SALARY

 WHEN 1000 THEN 'One Thousand'

 WHEN 2000 THEN 'Two Thousand'

 WHEN 9000 THEN 'Nine Thousand'

 ELSE 'Not (1000, 2000, 9000)'

 END TEXTSALARY

FROM EMPLOYEE

ORDER BY ENO

Free SQL Book, Tim Martyn 640 Copyright Pending, 2022

Simple-CASE (Expression)

The next sample query specifies an expression (SALARY+500)

immediately after the keyword CASE.

Sample Query 22.2: For each row in the EMPLOYEE table, display its

ENO and ENAME values, followed by a textual description according

to the following rule.

• If SALARY+500 = 1500, then display “1.5K”

• If SALARY+500 = 2500, then display “2.5K”

• If SALARY+500 = 9500, then display “9.5K”

• Otherwise, display “Not (1.K, 2.5K, 9.5K)”
Specify TEXTSALARY as a column-alias for the third column

generated by a CASE-expression. Sort the result by ENO values.

 ENO ENAME TEXTSALARY

 1000 MOE 2.5K

2000 LARRY 2.5K

 3000 CURLY Not (1.K, 2.5K, 9.5K)

 4000 SHEMP Not (1.K, 2.5K, 9.5K)

 5000 JOE Not (1.K, 2.5K, 9.5K)

 6000 GEORGE 9.5K

Logic: The system examines each row in the EMPLOYEE table. For

each row, the system displays the ENO and ENAME values, followed

by a character-string value according the logic designated by the

query objective.

SELECT ENO, ENAME, CASE SALARY+500

 WHEN 1500 THEN '1.5K'

 WHEN 2500 THEN '2.5K'

 WHEN 9500 THEN '9.5K'

 ELSE 'Not (1.K, 2.5K, 9.5K)'

 END TEXTSALARY

FROM EMPLOYEE

ORDER BY ENO

Free SQL Book, Tim Martyn 641 Copyright Pending, 2022

CASE

WHEN condition-1

Return ___

WHEN condition-2

Return ___

WHEN condition-3

Return ___

[ELSE]

Return ___

. . .

Searched-CASE

The Simple-CASE can only compare on an equals (=) condition. The

Searched-CASE is more powerful than the Simple-CASE because it can

express more complex conditions that can include any comparison

operator (<, >, <=, >=, <>), [NOT] LIKE, [NOT] IN, NOT [BETWEEN],

and Boolean connectors (AND, OR, NOT).

Example: CASE

 WHEN SALARY < 1000 THEN 'TOO SMALL'

WHEN SALARY > 3000 THEN 'TOO BIG'

 ELSE 'OK'

 END

The first WHEN-clause specifies a condition (SALARY < 1000). If

this condition is true, the system returns TOO SMALL and exits the

CASE-Expression. Otherwise, the system evaluates the condition

associated with the second WHEN-clause (SALARY > 3000). If this

condition is true, the system returns TOO BIG and exits the CASE-

Expression. Otherwise, the system returns OK, the value specified

by the ELSE-clause.

Syntax & Logic: CASE

 WHEN condition-1 THEN return-value-1

 WHEN condition-2 THEN return-value-2

 . . .

 [ELSE return-value-n]

 END

Observe that the keyword CASE is not followed by a column-name or

expression. Instead, each WHEN-clause specifies a condition. The

following diagram illustrates the logic of the Searched-CASE

expression.

A null value is returned if no WHEN-clause produces a match, and

the optional ELSE-clause is omitted.

Free SQL Book, Tim Martyn 642 Copyright Pending, 2022

The following query objective is the same as Sample Query 21.7.

Sample Query 22.3: Display the ENO and ENAME values of all

employees. For confidentiality reasons, do not display specific

SALARY values. Instead, display a character-string according to

the following rule.

• If the SALARY < 1000, then display “TOO SMALL”

• If the SALARY > 3000, then display “TOO BIG”

• Otherwise, display “OK”

 Sort the result by ENAME values.

 ENO ENAME TEXTLABEL

 3000 CURLY OK

 6000 GEORGE TOO BIG

 5000 JOE TOO SMALL

 2000 LARRY OK

 1000 MOE OK

4000 SHEMP TOO SMALL

Syntax: Unlike the Simple-CASE, the keyword CASE is not followed

by a column-name or expression. Each WHEN-clause specifies a

condition followed by a corresponding return-value.

Logic: The system examines each row in the EMPLOYEE table. For

each row, the system displays its ENO and ENAME values, followed

by a character-string value. If SALARY is less than 1000, then TOO

SMALL is displayed. Otherwise, if SALARY is greater than 30000,

then TOO BIG is displayed. Otherwise, OK is displayed.

SELECT ENO, ENAME, CASE

 WHEN SALARY < 1000 THEN 'TOO SMALL'

 WHEN SALARY > 3000 THEN 'TOO BIG'

 ELSE 'OK'

 END TEXTLABEL

FROM EMPLOYEE

ORDER BY ENAME

Free SQL Book, Tim Martyn 643 Copyright Pending, 2022

Simple-CASE is Unnecessary

Any if-then logic that can be expressed by a Simple-CASE expression

can also be expressed by a Searched-CASE expression. We demonstrate

this point by rewriting Sample Queries 22.1 and 22.2 using

Searched-CASE expressions.

Conclusion: Simple-CASE is convenient, but you don’t need it.

Exercise:

22A. For every row in the DEPARTMENT table, display a character-

string that is derived from its DNO value according to the

following rule.

• If DNO = 10, then display DEPARTMENT-10

• If DNO = 20, then display DEPARTMENT-20

• If DNO = 30, then display DEPARTMENT-30

• If DNO = 40, then display DEPARTMENT-40

• Otherwise, display “Some other department”
 Also, display each department’s BUDGET value. Specify DEPTNO

as a column-alias for the first column generated by the CASE-

expression. Code two SELECT statements using both variations

of CASE.

Sample Query 22.1: Searched-CASE

SELECT ENO, ENAME, CASE

 WHEN SALARY = 1000 THEN 'One Thousand'

 WHEN SALARY = 2000 THEN 'Two Thousand'

 WHEN SALARY = 9000 THEN 'Nine Thousand'

 ELSE 'Not (1000, 2000, 9000)'

 END TEXTSALARY

FROM EMPLOYEE

Sample Query 22.2: Searched-CASE

SELECT ENO, ENAME, CASE

 WHEN SALARY+500 = 1500 THEN '1.5K'

 WHEN SALARY+500 = 2500 THEN '2.5K'

 WHEN SALARY+500 = 9500 THEN '9.5K'

 ELSE 'Not (1.K, 2.5K, 9.5K)'

 END TEXTSALARY

FROM EMPLOYEE

Free SQL Book, Tim Martyn 644 Copyright Pending, 2022

Careful! Sequence of WHEN-Clauses

Sample Query 22.4: For each row in NTAB, display the A and B values

followed by a character-string description according the

following rule:

Display “A EQUALS B” if A = B

Display “A IS BIGGER THAN B” if A > B

Display “B IS BIGGER THAN A” if A < B

Display “ONLY A IS NULL” if A is null and B is not null

Display “ONLY B IS NULL” if B is null and A is not null

Display “BOTH VALUES ARE NULL” if A is null and B is null

Otherwise, display “Something Strange Happened!”

A B INCORRECT

5 5 A EQUALS B

5 10 B IS BIGGER THAN A

5 - ONLY B IS NULL

- 10 ONLY A IS NULL

- - ONLY A IS NULL Error

Do not code WHEN-clauses in an arbitrary top-

to-bottom sequence. The following sample

query illustrates a CASE-expression that

incorrectly specifies the WHEN-clauses in the

wrong top-to-bottom sequence.

Incorrect Solution

SELECT A, B,

 CASE

WHEN A = B THEN 'A EQUALS B'

WHEN A > B THEN 'A IS BIGGER THAN B'

WHEN A < B THEN 'B IS BIGGER THAN A'

➔ WHEN A IS NULL THEN 'ONLY A IS NULL'

WHEN B IS NULL THEN 'ONLY B IS NULL'

WHEN A IS NULL AND B IS NULL THEN 'BOTH VALUES ARE NULL'

ELSE 'Something Strange Happened! '

 END INCORRECT

FROM NTAB

A B

5 5

5 10

5 -

- 10

- -

NTAB

Free SQL Book, Tim Martyn 645 Copyright Pending, 2022

Logic: Observe that the last row in the result table is wrong.

Both columns A and B contain null values, but the text incorrectly

displays “ONLY A IS NULL”.

In the Incorrect Solution, the error occurs because the last WHEN-

condition (WHEN A IS NULL AND B IS NULL THEN...) is never tested.

This happens because the fourth WHEN-condition (WHEN A IS NULL

THEN...) evaluates to True. Hence, the fourth comment (ONLY A IS

NULL) is displayed and the CASE-expression is terminated.

Termination implies that the last two WHEN-conditions and the ELSE-

clause are not evaluated.

The following statement specifies the WHEN-clauses in the correct

top-to-bottom sequence. Here, WHEN A IS NULL AND B IS NULL is “moved

up” to be specified before the WHEN A IS NULL clause and the WHEN

B IS NULL clause.

A B CORRECT

 5 5 A EQUALS B

5 10 B IS BIGGER THAN A

5 - ONLY B IS NULL

- 10 ONLY A IS NULL

- - BOTH VALUES ARE NULL

Exercise:

22B. Reference the REGION table. For each row, display a two-

character code for the RNO value followed by the value of the

CLIMATE column. Character codes for the RNO values are: 1 =

NE, 2 = NW, 3 = SE, 4 = SW, and 5 = MW. Specify RCODE as the

column-alias for the column generated by the CASE-expression.

Code two SELECT statements using both variations of CASE.

Correct Solution

SELECT A, B,

 CASE

WHEN A = B THEN 'A EQUALS B'

WHEN A > B THEN 'A IS BIGGER THAN B'

WHEN A < B THEN 'B IS BIGGER THAN A'

➔ WHEN A IS NULL AND B IS NULL THEN 'BOTH VALUES ARE NULL'
WHEN A IS NULL THEN 'ONLY A IS NULL'

WHEN B IS NULL THEN 'ONLY B IS NULL'

ELSE 'Something Strange Happened! '

 END CORRECT

FROM NTAB

Free SQL Book, Tim Martyn 646 Copyright Pending, 2022

Substitute for Null Values

Sample Query 22.5: Display all data in the NTAB table after making

the following substitutions.

• Substitute 6 for any null value in column A.
• Substitute 9 for any null value in column B.

 Specify AA as a column alias for the first column.

 Specify BB as a column-alias for the second column.

 AA BB

 5 5

 5 10

 5 9

 6 10

 6 9

Syntax: This statement specifies two short CASE-expressions.

Sometimes a short CASE-expression can be coded on a single line as

illustrated below.

SELECT CASE WHEN A IS NULL THEN 6 ELSE A END AA,

 CASE WHEN B IS NULL THEN 9 ELSE B END BB

FROM NTAB

Some users would find this code easier to understand. However,

using the COALESCE function is probably simpler than any variation

of CASE.

SELECT CASE WHEN A IS NULL THEN 6

 ELSE A

 END AA,

 CASE WHEN B IS NULL THEN 9

 ELSE B

 END BB

FROM NTAB

A B

5 5

5 10

5 -

- 10

- -

NTAB

Sample Query 11.13a displayed the NTAB

table where it used the COALESCE function

to substitute a real (non-null) value

for each null value. The following

SELECT statement presents an alternative

solution using a Searched-CASE to satisfy

the same query objective.

Free SQL Book, Tim Martyn 647 Copyright Pending, 2022

Merging Values from Multiple Columns

The following sample query displays a single value from one of two

columns according to the following rule.

Sample Query 22.6: For each row in NTAB, display:

• A if A is greater than or equal to B.

• B if A is less than B.

• B if A is null and B is not null

• A if B is null and A is not null

• -1 if both values are null.
 Specify MERGED as a column-alias.

 MERGED

 5

 10

 5

 10

 -1

Syntax and Logic: Nothing new.

Exercise:

22C. Reference the NTAB table. Only consider rows where both the

A and B columns contain non-null values. For each such row,

display the A and B values followed by:

• “EQUAL VALUES” if A is equal to B

• “NON-EQUAL VALUES” if A is not equal to B
 Specify NOTNULL as a column alias for the result which should

look like:

A B NOTNULL

 5 5 EQUAL VALUES

 5 10 NON-EQUAL VALUES

SELECT

CASE WHEN A >= B THEN A

 WHEN A < B THEN B

WHEN A IS NULL AND B IS NOT NULL THEN B

WHEN B IS NULL AND A IS NOT NULL THEN A

ELSE -1

END MERGED

FROM NTAB

A B

5 5

5 10

5 -

- 10

- -

NTAB

Free SQL Book, Tim Martyn 648 Copyright Pending, 2022

CASE References a Built-in Function

Both variations of CASE allow a WHEN-clause to compare a value to a

result that is returned by a built-in function.

Sample Query 22.7: Reference the EMPLOYEE table. You are told that

the sum of all SALARY values is 16,900, and you want to verify

this information. Write a SELECT statement that summarizes all

SALARY values. If this summary value equals 16,900, display TOTAL

SALARY IS CORRECT. Otherwise, display PROBLEM WITH TOTAL SALARY.

 RESULT

 TOTAL SALARY IS CORRECT

Simple-CASE: The keyword CASE is immediately followed by the SUM

function that returns a value. This value is referenced within the

WHEN-clause.

Searched-CASE: The SUM function is specified within a WHEN-clause.

Simple-CASE

SELECT

 CASE SUM (SALARY)

 WHEN 16900 THEN 'TOTAL SALARY IS CORRECT'

 ELSE 'PROBLEM WITH TOTAL SALARY'

 END RESULT

FROM EMPLOYEE

Searched-CASE

SELECT

 CASE

 WHEN SUM (SALARY) = 16900 THEN 'TOTAL SALARY IS CORRECT'

 ELSE 'PROBLEM WITH TOTAL SALARY'

 END RESULT

FROM EMPLOYEE

Free SQL Book, Tim Martyn 649 Copyright Pending, 2022

CASE Specified as an Argument to a Function

A CASE-expression can be specified as an argument to a built-in

function.

Sample Query 22.8: Display the sum of all employee salaries after

making the following substitutions for SALARY values.

• Substitute 2500 for each 2000 value

• Substitute 3500 for each 3000 value

• Substitute 8500 for each 9000 value

• Leave other values unchanged

 Specify ADJTOTAL as a column-alias.

 ADJTOTAL

 17900

Syntax: Both statements specify a CASE-expression as an argument to

a SUM function.

Simple-CASE

SELECT SUM (CASE SALARY

 WHEN 2000 THEN 2500

 WHEN 3000 THEN 3500

 WHEN 9000 THEN 8500

 ELSE SALARY

 END) ADJTOTAL

FROM EMPLOYEE

Searched-CASE

SELECT SUM (CASE

 WHEN SALARY = 2000 THEN 2500

 WHEN SALARY = 3000 THEN 3500

 WHEN SALARY = 9000 THEN 8500

 ELSE SALARY

 END) ADJTOTAL

FROM EMPLOYEE

Free SQL Book, Tim Martyn 650 Copyright Pending, 2022

Simple-CASE

SELECT DNO, CASE SUM (SALARY)

 WHEN 14000 THEN '14K'

 WHEN 2400 THEN '2.4K'

 ELSE 'NEITHER 14K NOR 2.4K'

 END TOTSAL

FROM EMPLOYEE

GROUP BY DNO

Searched-CASE

SELECT DNO, CASE

 WHEN SUM (SALARY) = 14000 THEN '14K'

 WHEN SUM (SALARY) = 2400 THEN '2.4K'

 ELSE 'NEITHER 14K NOR 2.4K'

 END TOTSAL

FROM EMPLOYEE

GROUP BY DNO

The next two sample queries are similar to the preceding two sample

queries. The only difference is that each CASE-expression references

a summary total generated by a GROUP BY clause.

Sample Query 22.9: For each department referenced in the EMPLOYEE

table, display its DNO value followed by a textual description

of the department’s total salary according to the following

rules.

• If the total departmental salary is 14000, display “14K”

• If the total departmental salary is 2400, display “2.4K”

• Otherwise, display “NEITHER 14K NOR 2.4K”

 DNO TOTSAL

 10 2.4K

 20 14K

 40 NEITHER 14K NOR 2.4K

Syntax & Logic: Nothing new.

Free SQL Book, Tim Martyn 651 Copyright Pending, 2022

Simple-CASE

SELECT DNO, SUM (CASE SALARY

 WHEN 2000 THEN 2500

 WHEN 3000 THEN 3500

 WHEN 9000 THEN 8500

 ELSE 1000

 END) TOTSAL

FROM EMPLOYEE

GROUP BY DNO

Searched-CASE

SELECT DNO, SUM (CASE

 WHEN SALARY = 2000 THEN 2500

 WHEN SALARY = 3000 THEN 3500

 WHEN SALARY = 9000 THEN 8500

 ELSE 1000

 END) TOTSAL

FROM EMPLOYEE

GROUP BY DNO

In the previous sample query, the CASE-expression referenced the

SUM function. In the following sample query, the SUM function

references a CASE-expression.

Sample Query 22.10: Reference the EMPLOYEE table and make the

following substitutions for each SALARY value.

• Substitute 2500 for each 2000 value

• Substitute 3500 for each 3000 value

• Substitute 8500 for each 9000 value

• Substitute 1000 for any other value

 Then, display the total department salary for each department.

 DNO TOTSAL

 10 3500

 20 14500

 40 1000

Syntax & Logic: Nothing new.

Free SQL Book, Tim Martyn 652 Copyright Pending, 2022

Hiding Confidential Summary Totals

When a user examines a result table containing statistical

summaries, in some circumstances, this person may be able to make

deductions about the underlying raw data that was used to produce

the statistical summaries. This could be problematic if the raw data

is confidential. For example, assume that individual SALARY values

are confidential, and consider the following statement.

SELECT DNO, COUNT (*) EMPCT, SUM (SALARY) TOTALSALARY

FROM EMPLOYEE

GROUP BY DNO

 DNO EMPCT TOTALSALARY

 10 2 2400.00

 20 3 14000.00

 40 1 500.00

Because Department 40 only has one employee, you can deduce that

this employee has salary of $500.00. Also, if you work in Department

10, and your salary is $400.00, you can deduce that your coworker

earns $2,000.00.

We will assume (perhaps unrealistically) that you cannot deduce the

salary of any employee who works in a department that has three or

more employees. Below we consider three modifications to the above

SELECT statement that only displays the total salary of departments

with three or more employees. The third modification probably

generates the most desirable result.

Modification-1: Use the HAVING-clause to display information about

just those departments having more than two employees.

DNO EMPCT TOTALSALARY

 20 3 14000.00

A potential shortcoming for this result is that it does not display

any information about Departments 10 and 40. The next two

modifications use CASE to display rows for Departments 10 and 40

while hiding their total departmental salaries.

SELECT DNO, COUNT (*) EMPCT, SUM (SALARY) TOTALSALARY

FROM EMPLOYEE

GROUP BY DNO

HAVING COUNT (*) > 2

Free SQL Book, Tim Martyn 653 Copyright Pending, 2022

Modification-2: Use CASE to display a total salary of 0.00 for any

department with less than three employees.

DNO EMPCT TOTSALARY

10 2 0.00

20 3 14000.00

40 1 0.00

This solution may be better, but it introduces another potential

problem. Someone who examines the result may conclude that

Departments 10 and 40 only hire employees who work for free. ☺

Modification-3: Use CASE to display the “CONFIDENTIAL” message

instead of the total salary for any department with less than three

employees.

DNO EMPCT TOTSALARY

10 2 CONFIDENTIAL

20 3 14000.00

40 1 CONFIDENTIAL

The CAST function is specified to convert SUM (SALARY) to a

character-string because “CONFIDENTIAL” is a character-string.

SELECT DNO, COUNT (*) EMPCT,

 CASE

 WHEN COUNT (*) < 3 THEN 0.00

 ELSE SUM (SALARY)

 END TOTSALARY

FROM EMPLOYEE

GROUP BY DNO

SELECT DNO, COUNT (*) EMPCT,

 CASE

 WHEN COUNT (*) < 3 THEN 'CONFIDENTIAL'

 ELSE CAST (SUM (SALARY) AS CHAR(10))

 END TOTSALARY

FROM EMPLOYEE

GROUP BY DNO

Free SQL Book, Tim Martyn 654 Copyright Pending, 2022

Important Observation about CASE

Previous sample queries illustrated that the specification of CASE

within a SELECT-clause allows you to specify logic that is applied

after all other logical processing associated with the WHERE, JOIN-

ON, GROUP BY, HAVING clauses and set operations.

Consider the following SELECT statement that does not contain a

CASE-expression. All logic pertaining to row selection, join, and

grouping operations is implemented via the WHERE, JOIN-ON, GROUP

BY, and HAVING clauses.

 Query Objective: Reference to the PART and PARTSUPP tables. You are

only interested in parts that you can purchase from multiple suppliers.

For any such part that is greater than 15 pounds, display the part

number and name, followed by the maximum and minimum prices, and the

difference in these prices that you could pay suppliers for the part.

Do not display information about any part where there is no difference

between the maximum and minimum prices.

SELECT P.PNO, P.PNAME,

 MAX (PS.PSPRICE) MAXPRICE,

 MIN (PS.PSPRICE) MINPRICE,

 MAX (PS.PSPRICE) - MIN (PS.PSPRICE) DIFFERENCE

FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

WHERE PWT >= 15

GROUP BY P.PNO, P.PNAME

HAVING COUNT (*) >= 2

AND MAX (PS.PSPRICE) > MIN (PS.PSPRICE)

ORDER BY P.PNO

PNO PNAME MAXPRICE MINPRICE DIFFERENCE

P1 PART1 11.00 10.50 0.50

P3 PART3 12.50 12.00 0.50

P5 PART5 11.00 10.00 1.00

P7 PART7 3.50 2.00 1.50

P8 PART8 5.00 3.00 2.00

The following extension to the logic of this query requires the

specification of a CASE-expression.

Free SQL Book, Tim Martyn 655 Copyright Pending, 2022

Assume the business user is not interested in the specific

statistical values displayed in the previous result. Instead, this

user prefers to see one of three different narrative comments about

the difference between maximum and minimum values, such as:

PNO PNAME MAXMINDIFFERENCE

P1 PART1 LESS THAN OR EQUAL TO $1.00

P3 PART3 LESS THAN OR EQUAL TO $1.00

P5 PART5 LESS THAN OR EQUAL TO $1.00

P7 PART7 GREATER THAN $1.00, BUT LESS THAN $2.00

P8 PART8 GREATER THAN OR EQUAL TO $2.00

Including a CASE-expression in the preceding SELECT-statement

realizes this objective. (Observe there is no change to the logic

embodied within the WHERE, JOIN-ON, GROUPING and HAVING clauses.)

SELECT P.PNO, P.PNAME,

 CASE

 WHEN MAX(PS.PSPRICE)- MIN (PS.PSPRICE) >= 2.00

 THEN 'GREATER THAN OR EQUAL TO $2.00'

 WHEN MAX(PS.PSPRICE)- MIN (PS.PSPRICE) > 1.00

 THEN 'GREATER THAN $1.00, BUT LESS THAN $2.00'

 ELSE 'LESS THAN OR EQUAL TO $1.00'

 END MAXMINDIFFERENCE

FROM PART P INNER JOIN PARTSUPP PS ON P.PNO = PS.PNO

AND PWT >= 15

GROUP BY P.PNO, P.PNAME

HAVING COUNT(*) >= 2

AND MAX(PS.PSPRICE)> MIN(PS.PSPRICE)

ORDER BY P.PNO

Summary Observation: Specifying CASE within a SELECT-clause allows

you the implement If-Then logic that is applied after all other

logical processing associated with row selection, join-operations,

grouping, and summarizing.

Free SQL Book, Tim Martyn 656 Copyright Pending, 2022

Exercises

22D. Reference the EMPLOYEE table. Consider the total of all

SALARY values in this table. If this total is less than

10,000, display “SMALL TOTAL SALARY”. If this total exceeds

20,000, display “LARGE TOTAL SALARY”. Otherwise, display

“OK SALARY”. The result should look like:

 TEXTMSG

 OK SALARY

22E. Make the following substitution and then calculate the total

of all SALARY values in the EMPLOYEE table. For each SALARY

value that is less than 1,000, substitute 1,000 for that

value. The result should look like:

 ADJUSTEDSALARY

 18000.00

22F. Reference the EMPLOYEE table. Assume that all ENAME values

are unique. Display three summary totals:

(i) The total of all employee salaries.

(ii) The total of all employee salaries assuming that MOE
has been fired. (MOE’s SALARY value is zero).

(iii) The total of all employee salaries assuming that both
LARRY and CURLY have been fired. (Both SALARY values

are zero.)

The result should look like:

 ALLEMPLOYEES NOMOE NOLARRYCURLY

 16900.00 14900.00 11900.00

22G. Reference the PRESERVE table. Display the state code and

total acreage for all preserves in any state having a total

acreage that exceeds 15,000 acres. If a state has less than

or equal to 15,000 acres, display the state code followed

by a character-string stating “LESS THAN OR EQUAL TO 15000

ACRES”. The result should look like:

STATE SUM (ACRES)

AZ 51360

MA LESS THAN OR EQUAL TO 15000 ACRES

MT 16931

Free SQL Book, Tim Martyn 657 Copyright Pending, 2022

CASE in the WHERE-Clause

A CASE-expression is usually specified within a SELECT-clause.

There are not many situations where you will need to specify a

CASE-expression in a WHERE-clause. However, the following sample

query presents an example where specifying CASE in a WHERE-clause

is useful.

Sample Query 22.11: Reference the EMPLOYEE table. Do not display

information about any employee with a SALARY value of 2000.00.

For other employees, display the ENO, ENAME, SALARY, and ratio

of SALARY/(SALARY–2000.00) if this ratio is greater than or

equal to 2.00. (Note: There is a divide-by-zero problem when

a SALARY value equals 2000.00.)

ENO ENAME SALARY RATIO

3000 CURLY 3000.00 3.00

Logic: For each EMPLOYEE row, the CASE-expression returns some

value. The WHEN-condition returns a value of 0.0 when a SALARY

equals 2000.00; otherwise, it returns the ratio of SALARY/(SALARY

- 2000.00). If the returned value exceeds 2.00, the corresponding

ENAME, SALARY, and ratio values are displayed.

For example, consider the two rows describing MOE and LARRY who

have SALARY values of 2000.00. These rows match the WHEN-condition

and return 0.0, a value that is less than 2.00. Hence, data about

MOE and LARRY are not displayed.

Now consider the other four rows describing employees with SALARY

values that are not equal to 2000.00. These rows are tested by the

ELSE-clause. Only CURLY’s salary of 3000.00 causes the system to

evaluate 3000.00/(3000.00 - 2000.00) = 3.0 which exceeds 2.00.

Hence, data about CURLY is displayed.

Alternative Solutions: To be presented in Exercises 26Q and 27Q.

SELECT ENO, ENAME, SALARY, SALARY/(SALARY – 2000.00) RATIO

FROM EMPLOYEE

WHERE (CASE

 WHEN SALARY = 2000.00 THEN 0.0

 ELSE SALARY/(SALARY - 2000.00)

 END) >= 2.00

Free SQL Book, Tim Martyn 658 Copyright Pending, 2022

CASE in the ORDER BY Clause

A CASE-expression can be specified within an ORDER BY clause.

Assume your system does not support the NULLS FIRST or NULLS LAST

options for the ORDER BY clause as described at the end of Chapter

11. Therefore, when you specify an ORDER BY clause, you have to

adopt a do-it-yourself approach to position null values at the

top/bottom of a row sequence.

Sample Query 22.12a: Assume you are using a system (e.g., DB2)

where, by default, null values sort high. Display all information

in the NTAB table. Sort the result by Column A where null values

will sort low.

 A B

 - 10

 - -

 5 5

 5 10

 5 -

Logic: The ORDER BY clause references two columns. The CASE-

expression generates the first column that will contain a 0 or 1

where a 0 is associated with a null value in column A. (These 0/1

values are not displayed in the result.) The second column is Column

A. Hence, the sort sequence is based upon:

 0/1 A

 0 -

 0 -

 1 5

 1 5

 1 5

SELECT A, B

FROM NTAB

ORDER BY CASE WHEN A IS NULL THEN 0

 ELSE 1

 END,

 A;

A B

5 5

5 10

5 -

- 10

- -

NTAB

Free SQL Book, Tim Martyn 659 Copyright Pending, 2022

Sample Query 22.12b Assume you are using a system (e.g., SQL Server)

where, by default, null values sort low. Display all information

in the NTAB2 table. Sort the result by Column A where null values

will sort high.

 A B

 10 -

 15 10

 40 40

 - 30

 - 10

 - -

Logic: Same as preceding sample query. Here, a value of 1 is

associated with each null A value.

SELECT A, B

FROM NTAB2

ORDER BY CASE WHEN A IS NULL THEN 1

 ELSE 0

 END,

 A;

A B

10 -

15 10

 - 30

 - 10

40 40

 - -

NTAB2

Free SQL Book, Tim Martyn 660 Copyright Pending, 2022

Summary

CASE provides an explicit method for implementing “If-Then” logic.

This is an important feature and significantly enhances the power

of SQL.

There are two kinds of CASE-expressions: (1) the Simple-CASE and

(2) the Searched-CASE. The Searched-CASE is more useful because it

can express more complex conditions that may include any comparison

operator (<, >, <=, >=, <>), [NOT] LIKE, [NOT] IN, [NOT] BETWEEN,

or Boolean connector (AND, OR, NOT).

Summary Exercises

Specify CASE-Expressions to satisfy the following query

objectives.

22H. This exercise has the same query objective as Exercise 21H.

Reference the PROJ1PARTS1 table. Produce a result that

displays every part number and name, followed by a character-

string indicating if the QTY column contains a value that is

less than, equal to, or greater than 16. Sort the result by

PNO. The result should look like:

PNO PNAME SIZE

P1 PART1 EQUAL TO 16

P2 PART2 EQUAL TO 16

P4 PART4 GREATER THAN 16

P5 PART5 LESS THAN 16

22I. This exercise has the same query objective as Sample Query

11.13b. Reference the NTAB table. Calculate the grand total

of all values using the two cross-tabulation patterns. (1)

Summarize the subtotals of column values. (2) Summarize the

subtotals of row values. Substitute 6 for any null value in

column A, and substitute 9 for any null value in column B.

The result should look like:

 GRANDTOTAL1 GRANDTOTAL2

70 70

Free SQL Book, Tim Martyn 661 Copyright Pending, 2022

22J. This exercise is a variation on Exercise 22F. For each

department referenced in the EMPLOYEE table, display the

department number followed by three summary totals: (i) The

total of each departmental salary assuming that MOE will be

fired. (ii) The total of each departmental salary assuming

that LARRY will be fired. (iii) The total of each

departmental salary assuming that CURLY will be fired. The

result should look like:

DNO SUMWITHOUTMOE SUMWITHOUTLARRY SUMWITHOUTCURLY

 10 2400.00 400.00 2400.00

 20 12000.00 14000.00 11000.00

 40 500.00 500.00 500.00

22K. This exercise extends the preceding Exercise 22J. Display a

final row in the result table that contains the grand totals

of all salaries. The result should look like:

DNO WITHOUTMOE WITHOUTLARRY WITHOUTCURLY

10 2400.00 400.00 2400.00

20 12000.00 14000.00 11000.00

40 500.00 500.00 500.00

TOTAL 14900.00 14900.00 13900.00

Hint: Consider the UNION ALL operation. Also, regarding the

first column, note that DNO contains integer values, but

“TOTAL” is a character string.

22L. Reference the EMPLOYEE table. For each department that has at

least one employee, display the department number and average

salary followed by a comment that indicates if this

departmental average is less than, equal to, or greater than

the overall average salary of all employees. Sort the result

by department numbers. The result should look like:

DNO AVGSAL COMMENTARY

 10 1200.00 LESS THAN OVERALL DEPARTMENTAL AVERAGE

 20 4666.66 GREATER THAN OVERALL DEPARTMENTAL AVERAGE

 40 500.00 LESS THAN OVERALL DEPARTMENTAL AVERAGE

Free SQL Book, Tim Martyn 662 Copyright Pending, 2022

22M. This exercise is a variation of the preceding Exercise 22L.

Address the circumstance where a department may have only one

or two employees, allowing for the deduction of confidential

individual salaries. For each department that has at least

one employee, display the department number and a count of

the number of employees who work in the department. If the

department has more than two employees, display a comment

indicating if the departmental average is less than, equal

to, or greater than the overall average salary of all

employees. Otherwise, if the department only has one or two

employees, the comment should state “CONFIDENTIAL”. The

result should look like:

DNO EMPCT COMMENTARY

 10 2 CONFIDENTIAL

 20 3 GREATER THAN OVERALL DEPARTMENTAL AVERAGE

 40 1 CONFIDENTIAL

Free SQL Book, Tim Martyn 663 Copyright Pending, 2022

22N. Pivot a table: This is an optional and very challenging

exercise. This exercise asks you to use CASE to “pivot” (or

“rotate”) tabular data into a spreadsheet format. Again, we

recommend using your front-end tool for this kind of report

formatting. Also, some database vendors provide special

purpose built-in functions (e.g., PIVOT) that can pivot

tabular data. [These functions are not covered in this book.

They may be presented in a future edition.]

Query Objective: Represent the following PARTSUPP table in a

spreadsheet format as illustrated below. Assume you know that

supplier numbers range from S1 to S8.

Hint: Form groups of PNO values. Display PNO followed by eight

summaries generated by eight SUM functions, one for each SNO

value. Each SUM function should be similar to that shown below.

SUM (CASE WHEN SNO = 'S1' THEN PSPRICE ELSE 0 END) S1

PARTSUPP Table

PNO SNO PSPRICE

P5 S1 10.00

P1 S2 10.50

P5 S2 10.00

P7 S2 2.00

P3 S3 12.00

P1 S4 11.00

P3 S4 12.50

P4 S4 12.00

P5 S4 11.00

P6 S4 4.00

P7 S4 3.00

P8 S4 5.00

P7 S5 3.50

P6 S6 4.00

P7 S6 3.50

P8 S6 4.00

P6 S8 4.00

P8 S8 3.00

Spreadsheet Format

 S1 S2 S3 S4 S5 S6 S7 S8

P1 0.00 10.50 0.00 11.00 0.00 0.00 0.00 0.00

P3 0.00 0.00 12.00 12.50 0.00 0.00 0.00 0.00

P4 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00

P5 10.00 10.00 0.00 11.00 0.00 0.00 0.00 0.00

P6 0.00 0.00 0.00 4.00 0.00 4.00 0.00 4.00

P7 0.00 2.00 0.00 3.00 3.50 3.50 0.00 0.00

P8 0.00 0.00 0.00 5.00 0.00 4.00 0.00 3.00

Free SQL Book, Tim Martyn 664 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 665 Copyright Pending 2022

 PART VI

 Sub-SELECTs

In Chapter 21, the UNION, INTERSECT, and EXCEPT keywords were

specified between two Sub-SELECTs. In the following Chapters 23-

28, sample queries will illustrate that a Sub-SELECT can be

specified within other SQL clauses as illustrated below.

Again, a Sub-SELECT generates an intermediate result table that is

referenced by the containing “Outer-SELECT” statement.

Comment: Application developers who have written programs in

traditional programming languages (e.g., COBOL, C++, JAVA) should

notice that a Sub-SELECT is analogous to a subprogram.

SELECT ______

FROM (SELECT _____

 FROM ______

 WHERE ______)

WHERE _____

Sub-SELECT

SELECT ______

FROM ______

WHERE ______ = (SELECT ______

 FROM ______

 WHERE ______)
Sub-SELECT

Free SQL Book, Tim Martyn 666 Copyright Pending 2022

Part VI: Chapter Topics

Chapter 23 - Regular Sub-SELECT: This chapter introduces the

“regular” Sub-SELECT. We use of the term “regular” to indicate

that the Sub-SELECT is not a special kind of Sub-SELECT called a

“correlated” Sub-SELECT (to be introduced in Chapter 25).

Chapter 24 - Sub-SELECT in DML: This chapter is a continuation of

Chapter 15 which introduced the DML statements: INSERT, UPDATE, and

DELETE. This chapter will illustrate the specification of Sub-

SELECTs within DML statements.

Chapter 25 - Correlated Sub-SELECT: This chapter introduces a

special variation of Sub-SELECT called a “correlated” Sub-SELECT.

Unlike regular Sub-SELECTs, which are relatively straightforward,

correlated Sub-SELECTs involve more complex logic.

In Chapters 23-25, Sub-SELECTs return intermediate result tables

that are not assigned names. In Chapters 26-27, Sub-SELECTs return

intermediate result tables that are assigned names. These names

are referenced in the Outer-SELECT.

Chapter 26 - Inline Views: An inline View is a Sub-SELECT that is

specified within a FROM-clause.

Chapter 27 - WITH-Clause: A WITH-Clause specifies a Sub-SELECT to

define a “Common Table Expression” (CTE). The WITH-clause provides

the same functionality as an inline view, plus additional

functionality that will be described in this chapter.

Chapter 28 - CREATE VIEW Statement: This chapter introduces the

CREATE VIEW Statement which is part of SQL’s Data Definition

Language.

Free SQL Book, Tim Martyn 667 Copyright Pending 2022

Chapter

 23

“Regular” Sub-SELECT

This chapter introduces the regular Sub-SELECT. “Regular” is an

unofficial term used to indicate that a Sub-SELECT is not a

“correlated” Sub-SELECT (to be introduced in Chapter 25.) In this

chapter, each Sub-SELECT is nested within an "Outer-SELECT" as

illustrated below.

We begin by previewing Sample Query 23.1 which executes:

 SELECT *

 FROM EMPLOYEE

 WHERE SALARY = (SELECT MIN (SALARY) FROM EMPLOYEE)

We suspect that your intuition will guide you to the correct

interpretation of this statement. You are invited to predict the

result before reading Sample Query 23.1.

SELECT ______

FROM ______

WHERE ______ (SELECT ______

 FROM ______

 WHERE ______)
Sub-SELECT

Outer-SELECT

Free SQL Book, Tim Martyn 668 Copyright Pending 2022

Although a Sub-SELECT is usually specified within a WHERE-clause,

it can also be specified within other clauses.

Sample Query 23.15 will specify a Sub-SELECT within a HAVING-

clause that looks like:

Sample Query 23.16 will specify a Sub-SELECT within a SELECT-

clause that looks like:

Sample Query 23.17 will specify multiple Sub-SELECTs within a CASE-

expression that looks like:

SELECT ______

FROM ______

GROUP BY ______

HAVING ______(SELECT ______

 FROM ______

 WHERE ______)

SELECT ____, (SELECT ______

 FROM ______

 WHERE ______)

FROM _____

WHERE _____

SELECT ____,

 CASE

 WHEN ___ = (SELECT ______

 FROM ______

 WHERE ______)

 THEN _____

 WHEN ___ = (SELECT ______

 FROM ______

 WHERE ______)

 THEN _____

 ELSE ____

 END

FROM _____

WHERE _____

Free SQL Book, Tim Martyn 669 Copyright Pending 2022

“Shape” of Intermediate Result Table

Executing a Sub-SELECT generates an intermediate result. We are very

interested in the “shape” (another unofficial term) of this

intermediate result. An intermediate result can look like one of

three general shapes as illustrated below.

Sample Queries 23.1-23.4 will illustrate Sub-SELECTs that return a

single (scalar) value as an intermediate result. Although this

intermediate result looks like a single value, it is really a table

with just one row and one column.

Sample Queries 23.5-23.12 will illustrate Sub-SELECTs that return

multiple values. This “list of values” is really a table with a

single column.

Sample Queries 23.13-23.14 will illustrate Sub-SELECTs that return

a multi-column table as an intermediate result.

Figure 23.1: “Shapes” of Intermediate Results

Single-Column

Table

Multi-Column

Table

Scalar Value

Free SQL Book, Tim Martyn 670 Copyright Pending 2022

Sub-SELECT Returns a Single (Scalar) Value

The next four sample queries illustrate Sub-SELECTs that return a

single value as an intermediate result. This value is referenced by

a WHERE-clause in the Outer-SELECT.

Sample Query 23.1: Reference the EMPLOYEE table. Display all

information about any employee who earns the lowest salary.

 ENO ENAME SALARY DNO

 5000 JOE 400.00 10

Syntax: The Sub-SELECT must be enclosed within parentheses. In

general, a Sub-SELECT may be as complex as any SELECT statement.

Logic: The Sub-SELECT is executed and returns the minimum SALARY

(400.00) as an intermediate result. Then the Outer-SELECT reduces

to:

 SELECT *

 FROM EMPLOYEE

 WHERE SALARY = 400.00

Execution of this statement returns the final result. The final

result would contain multiple rows if multiple employees had the

same minimum salary of $400.00.

This query objective required the Outer-SELECT and Sub-SELECT to

reference the same table (EMPLOYEE). Forthcoming query objectives

will require the Outer-SELECT and Sub-SELECT to reference different

tables.

Exercise:

23A. Display all information about any employee who earns the

largest salary.

SELECT *

FROM EMPLOYEE

WHERE SALARY = (SELECT MIN (SALARY) FROM EMPLOYEE)

Free SQL Book, Tim Martyn 671 Copyright Pending 2022

Sample Query 23.2: Reference the EMPLOYEE table. Display all

information about any employee whose salary is less than the

overall average salary.

 ENO ENAME SALARY DNO

1000 MOE 2000.00 20

2000 LARRY 2000.00 10

4000 SHEMP 500.00 40

5000 JOE 400.00 10

Syntax: Nothing new. In this example, the WHERE-clause specifies a

less-than (<) comparison operator.

Logic: The Sub-SELECT is executed and returns a single-value

(2816.66) as an intermediate result. Then the Outer-SELECT reduces

to:

 SELECT *

 FROM EMPLOYEE

 WHERE SALARY < 2816.66

Execution of this statement produces the final result.

Special-Case Scenario: Recall that aggregate functions (e.g., SUM,

MAX, MIN, AVG) return a null value if the function references a

column containing all null values. Therefore, for the previous two

examples, you should ask: Is SALARY declared as NOT NULL? If yes,

then you do not have to worry about null-value problems. If no, then

you should determine if there are any circumstances where all SALARY

values could be null. If yes, then the function would return a null

value leading to “no rows returned” as a final result.

Exercise:

23B. Display all information about any employee whose salary exceeds

the overall average salary.

SELECT *

FROM EMPLOYEE

WHERE SALARY < (SELECT AVG (SALARY) FROM EMPLOYEE)

Free SQL Book, Tim Martyn 672 Copyright Pending 2022

Sample Query 23.3: Reference the EMPLOYEE table. Display all

information about any employee who works in Department 10 and

earns the largest salary in that department.

 ENO ENAME SALARY DNO

2000 LARRY 2000.00 10

Syntax: Nothing new.

Logic: The Sub-SELECT is executed and returns a single value

(2000.00). Then the Outer-SELECT reduces to:

 SELECT *

 FROM EMPLOYEE

 WHERE DNO = 10

 AND SALARY = 2000.00

Execution of this statement returns the final result. Note that

multiple EMPLOYEE rows would be displayed if multiple employees in

Department 10 earned the same largest salary.

Important Exercise:

23C. Be careful with your logic. Note that the above Sample Query

23.3 specified the same WHERE-clause in the Sub-SELECT and the

Outer-SELECT. Is this an unnecessary redundancy?

(a) What is the final result if you only specify “WHERE

DNO=10” in the Sub-SELECT?

(b) Also, what is the final result if you only specify “WHERE

DNO=10” in the Outer-SELECT?

SELECT *

FROM EMPLOYEE

WHERE DNO = 10

AND SALARY = (SELECT MAX (SALARY)

 FROM EMPLOYEE

 WHERE DNO = 10)

Free SQL Book, Tim Martyn 673 Copyright Pending 2022

The next sample query illustrates that a Sub-SELECT and Outer-SELECT

can reference different tables.

Sample Query 23.4: Display all information out any department

having a budget that exceeds the total salary of all employees.

 DNO DNAME BUDGET

 10 ACCOUNTING 75000.00

 20 INFO. SYS. 20000.00

 40 ENGINEERING 25000.00

Syntax: Nothing new.

Logic: The Sub-SELECT returns a single value (16,900.00). Then, the

outer-SELECT reduces to:

 SELECT *

 FROM DEPARTMENT

 WHERE BUDGET > 16900.00

Execution of this statement returns the final result.

Exercise:

23D. Display the name and salary of any employee who has a salary

that exceeds the smallest BUDGET value in the DEPARTMENT table.

SELECT *

FROM DEPARTMENT

WHERE BUDGET > (SELECT SUM (SALARY) FROM EMPLOYEE)

Free SQL Book, Tim Martyn 674 Copyright Pending 2022

Bottom-Up versus Top-Down Reading of Sub-SELECTs

Assume you are about to analyze a Sub-SELECT that was written by

another user. There are two basic approaches to reading this Sub-

SELECT, bottom-up and top-down. Understanding both approaches can

help you understand another user’s Sub-SELECT and also help you code

your own Sub-SELECTs.

Narrative descriptions of previous sample queries presented a

bottom-up analysis because our initial focus was on the Sub-SELECT.

Bottom-Up Analysis: Review our analysis of the following statement

presented in Sample Query 23.3. Here, the Sub-SELECT initially

produced the largest SALARY (2000.00) for employees in Department

10. Note that our initial focus was on the Sub-SELECT. Thereafter

our focus shifted to the Outer-SELECT.

 SELECT *

 FROM EMPLOYEE

 WHERE DNO = 10

 AND SALARY =

 (SELECT MAX (SALARY)

 FROM EMPLOYEE

 WHERE DNO = 10)

Top-Down Analysis: A top-down analysis begins with the Outer-SELECT.

The above statement is read as:

 SELECT *

 FROM EMPLOYEE

 WHERE DNO = 10

 AND SALARY = “some unknown value”

A Sub-SELECT is coded to return the desired unknown value.

Either the bottom-up or top-down approach can be used to analyze a

regular Sub-SELECT. Chapter 25 will show that the top-down approach

is usually more relevant with correlated Sub-SELECTs.

Free SQL Book, Tim Martyn 675 Copyright Pending 2022

Know Shape of Intermediate Result

Consider the following query objective: Display all information

about LARRY’s department. (There is a potential problem with this

query objective. What is it?) Given the current contents of the

EMPLOYEE table, executing the following statement produces the

correct result.

SELECT * FROM DEPARTMENT

WHERE DNO = (SELECT DNO FROM EMPLOYEE

 WHERE ENAME = 'LARRY')

However, we emphasize that, at some point in the future, this same

statement could produce an error. Examination of the EMPLOYEE table

shows that LARRY works in Department 10. Consider what would happen

if the organization hired another LARRY who is assigned to

Department 30. In this circumstance, the Sub-SELECT would return

two different DNO values. Then the WHERE-clause in the Outer-SELECT

would reduce to:

 WHERE DNO = (10, 30) Error

This is an invalid WHERE-clause because is specifies an equals sign

(=) to compare DNO with multiple values. Therefore, when you analyze

this query objective, you should ask if two employees could have

the same name. You should presume this could happen because the

ENAME column is not defined as PRIMARY KEY or UNIQUE. You could

resolve this problem by re-articulating the query objective to

search for a specific LARRY by referencing his primary-key value

(2000).

SELECT * FROM DEPARTMENT

WHERE DNO = (SELECT DNO FROM EMPLOYEE

 WHERE ENO = 2000)

What if you don’t know the ENO value? Then you could revise the

query objective to display all information about every department

that hires an employee named LARRY. This change requires the Outer-

SELECT to specify the keyword IN.

SELECT * FROM DEPARTMENT

WHERE DNO IN (SELECT DNO FROM EMPLOYEE

 WHERE ENAME = 'LARRY')

The next three sample queries specify IN within the Outer-SELECT

because the Sub-SELECT could return multiple values.

Free SQL Book, Tim Martyn 676 Copyright Pending 2022

IN: Sub-SELECT Returns a Column of Values

The following seven sample queries illustrate Sub-SELECTs that

return a single column with multiple values. Under this

circumstance, the WHERE-clause in the Outer-SELECT must specify IN

or NOT IN as outlined below.

 WHERE ____ [NOT] IN (Sub-SELECT)

Sample Query 23.5: Reference the DEPARTMENT and EMPLOYEE tables.

Display all information about every department that has at

least one employee.

 DNO DNAME BUDGET

 10 ACCOUNTING 75000.00

 20 INFO. SYS. 20000.00

 40 ENGINEERING 25000.00

Syntax: The keyword IN is specified before the Sub-SELECT.

Specifying an equals-sign (=) would cause an error.

Logic: The Sub-SELECT returns multiple values. If you were to

execute the Sub-SELECT as an independent statement, the result would

look like:

DNO

 20

 10

 20

 40

 10

 20

After substituting these values for the Sub-SELECT, the Outer-SELECT

reduces to:

 SELECT *

 FROM DEPARTMENT

 WHERE DNO IN (20, 10, 20, 40, 10, 20)

SELECT *

FROM DEPARTMENT

WHERE DNO IN (SELECT DNO FROM EMPLOYEE)

Free SQL Book, Tim Martyn 677 Copyright Pending 2022

Observe that some values (20 and 10) have duplicates. Because these

duplicate values are meaningless, the system effectively removes

them from the intermediate result. Then the Outer-SELECT reduces

to:

 SELECT *

 FROM DEPARTMENT

 WHERE DNO IN (20, 10, 40)

Execution of this statement returns the final result. Observe that

the result does not include Department 30, the only department

without any employees.

Alternative Solution: The following statement uses a join-

operation to satisfy this query objective. DISTINCT is specified

because duplicate DNO, DNAME, and BUDGET values occur for those

departments that have multiple employees.

 SELECT DISTINCT D.DNO, D.DNAME, D.BUDGET

 FROM EMPLOYEE E, DEPARTMENT D

 WHERE E.DNO = D.DNO

Exercise:

23E. Reference the REGION and STATE tables in the MTPCH database.

Display the name of every REGION that is related to some row

in the STATE table. Specify a Sub-SELECT in your solution.

Free SQL Book, Tim Martyn 678 Copyright Pending 2022

IN versus Inner-Join

The following query objective is the same as Sample Query 16.6 that

specified a join-operation.

Sample Query 23.6: Display the employee number and name of every

employee who works for a department having a budget that is

greater than or equal to $25,000.00.

 ENO ENAME

2000 LARRY

4000 SHEMP

5000 JOE

Syntax & Logic: Nothing new. The Sub-SELECT returns (10, 40). Then

the Outer-SELECT reduces to:

 SELECT ENO, ENAME

 FROM EMPLOYEE

 WHERE DNO IN (10, 40)

Alternative Solution: Shown in Sample Query 16.6.

SELECT E.ENO, E.ENAME

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DNO = D.DNO

AND D.BUDGET >= 25000.00

Form your own opinion about the relative friendliness of the coding

a Sub-SELECT versus a join-operation. (Appendix 23A will discuss

efficiency tradeoffs between Sub-SELECTs and join-operations.)

Exercise:

23F. Reference the REGION and STATE tables. Display the name of

any state that is located in the NORTHEAST region. Specify a

Sub-SELECT in your solution.

23G. Review: Use join-operations to solve the preceding Exercises

23E and 23F.

SELECT ENO, ENAME

FROM EMPLOYEE

WHERE DNO IN (SELECT DNO

 FROM DEPARTMENT

 WHERE BUDGET >= 25000.00)

Free SQL Book, Tim Martyn 679 Copyright Pending 2022

Sample Query 23.7: Only consider departments that have at least

one employee. Display the DNO, DNAME, and BUDGET values for any

such department with a budget that is greater than or equal to

$25,000.00.

 DNO DNAME BUDGET

 10 ACCOUNTING 75000.00

40 ENGINEERING 25000.00

Syntax & Logic: Nothing new.

Alternative Solution: The following solution specifies a join-

operation. DISTINCT is specified because duplicate DNO, DNAME, and

BUDGET values occur for those departments that have multiple

employees.

SELECT DISTINCT D.DNO, D.DNAME, D.BUDGET

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DNO = D.DNO

 AND D.BUDGET >= 25000.00

Exercise:

23H. Reference the REGION and STATE tables. Display the name of

any region with a CLIMATE of “Hot” and is related to some

state. Code two solutions using (i) a Sub-SELECT and (ii) a

join-operation.

Important Exercise:

23I. In the commentary for Sample Query 17.3.2, we considered the

following query objective and concluded that it could not be

satisfied by coding a join-operation:

 Reference the DEPARTMENT and EMPLOYEE tables. Display the

overall total budget of those departments which have at

least one employee.

 Satisfy this query objective by coding a Sub-SELECT.

SELECT DNO, DNAME, BUDGET

FROM DEPARTMENT

WHERE BUDGET >= 25000.00

AND DNO IN (SELECT DNO FROM EMPLOYEE)

Free SQL Book, Tim Martyn 680 Copyright Pending 2022

NOT IN

The next sample query specifies “NOT IN (Sub-SELECT)”.

 Sample Query 23.8: Display the DNO, DNAME and BUDGET values for

any department that does not have any employees.

 DNO DNAME BUDGET

 30 PRODUCTION 7000.00

Syntax: Nothing new.

Logic: The Sub-SELECT returns all DNO values from the EMPLOYEE.DNO

column. After removing duplicate values, the Outer-SELECT becomes:

SELECT DNO, DNAME, BUDGET

FROM DEPARTMENT

WHERE DNO NOT IN (10, 20, 40)

Execution of this statement returns the final result.

Alternative Solutions: Sample Query 25.5 will present another

solution using NOT EXISTS.

Also, for tutorial reasons, Exercise 23.Zg will invite you to code

a very roundabout (and obviously inefficient) solution that

specifies a join-operation and a set-operation.

Exercise:

23J. Reference the REGION and STATE tables. Display the name of

any region that is not associated with a state.

SELECT DNO, DNAME, BUDGET

FROM DEPARTMENT

WHERE DNO NOT IN (SELECT DNO FROM EMPLOYEE)

Free SQL Book, Tim Martyn 681 Copyright Pending 2022

Sample Query 23.9: Display the ENO, ENAME, SALARY, and DNO values

of any employee who does not work in a department with a

budget that is greater than $22,000.00.

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 3000 CURLY 3000.00 20

 6000 GEORGE 9000.00 20

Syntax & Logic: Nothing new. The Sub-SELECT returns 10 and 40. The

outer-SELECT reduces to:

 SELECT ENO, ENAME, SALARY, DNO

 FROM EMPLOYEE

 WHERE DNO NOT IN (10, 40)

Execution of this statement returns the final result.

Alternative Solution: This query objective can be articulated in a

more positive form: “Display the ENAME, SALARY, and DNO values of

any employee who works for a department having a budget that is

less than or equal to $22,000.00.” This observation leads us to

another solution.

 SELECT ENO, ENAME, SALARY, DNO FROM EMPLOYEE

 WHERE DNO IN (SELECT DNO FROM DEPARTMENT

 WHERE BUDGET <= 22000.00)

Exercise:

23K. Reference the EMPLOYEE table. You are asked to display all

information about any employee who is not assigned to some

department. The following statement produces the correct

result.

 SELECT * FROM EMPLOYEE

 WHERE DNO NOT IN (SELECT DNO FROM DEPARTMENT)

 However, why does this statement constitute a “silly” solution?

SELECT ENO, ENAME, SALARY, DNO

FROM EMPLOYEE

WHERE DNO NOT IN (SELECT DNO

 FROM DEPARTMENT

 WHERE BUDGET > 22000.00)

Free SQL Book, Tim Martyn 682 Copyright Pending 2022

Sub-SELECTs and Join-Operations

The next two sample queries demonstrate that a Sub-SELECT and Outer-

SELECT can specify a join-operation.

Sample Query 23.10: Reference the PART, SUPPLIER, and PARTSUPP

tables in the MTPCH database. Display the part number and name

of any part that you can purchase from SUPPLIER2 (i.e., SNAME

value is SUPPLIER2). Code a Sub-SELECT that specifies a join-

operation.

PNO PNAME

P1 PART1

P5 PART5

 P7 PART7

Sample Query 23.11: Reference the PART, SUPPLIER, and PARTSUPP

tables in the MTPCH database. Display the part number, name,

and price for any part that you can purchase from SUPPLIER2.

Code a join-operation in the Outer-SELECT.

PNO PNAME PSPRICE

P1 PART1 10.50

P5 PART5 10.00

P7 PART7 2.00

Important Observation: The SNAME column is not declared as a UNIQUE

column. Hence, the above statements coded IN to account for the

possibility that two or more suppliers could have the same name.

Alternate Solutions: Exercise 23.Zf invites you to code three-table

join solutions for the above sample queries.

SELECT P.PNO, P.PNAME, PS.PSPRICE

FROM PARTSUPP PS, PART P

WHERE PS.PNO = P.PNO

AND PS.SNO IN (SELECT SNO

 FROM SUPPLIER

 WHERE SNAME = 'SUPPLIER2')

SELECT PNO, PNAME

FROM PART

WHERE PNO IN

 (SELECT PS.PNO

 FROM SUPPLIER S, PARTSUPP PS

 WHERE S.SNO = PS.SNO

 AND S.SNAME = 'SUPPLIER2')

Free SQL Book, Tim Martyn 683 Copyright Pending 2022

Multi-level (Nested) Sub-SELECTs

A Sub-SELECT may specify another Sub-SELECT.

Sample Query 23.12: Same as Sample Query 23.10. Display the part

number and name of any part that you can purchase from

SUPPLIER2.

PNO PNAME

P1 PART1

P5 PART5

 P7 PART7

Logic: The system executes the lowest level (innermost) Sub-SELECT,

returning the SNO value (S2) for SUPPLIER2. (Again, we coded IN

because we cannot assume that SNAME is unique.) The statement now

reduces to:

 SELECT PNO, PNAME

FROM PART

WHERE PNO IN (SELECT PNO

 FROM PARTSUPP

 WHERE SNO IN ('S2'))

After executing the above Sub-SELECT, the statement becomes:

SELECT PNO, PNAME

FROM PART

 WHERE PNO IN ('P1', 'P5', 'P7')

Execution of this SELECT produces the final result.

SELECT PNO, PNAME

FROM PART

WHERE PNO IN

 (SELECT PNO

 FROM PARTSUPP

 WHERE SNO IN

 (SELECT SNO

 FROM SUPPLIER S

 WHERE SNAME = 'SUPPLIER2'))

Free SQL Book, Tim Martyn 684 Copyright Pending 2022

Exercises:

23L. Reference the STATE and CUSTOMER tables in the MTPCH database.

Display the name of any state that does not have at least one

customer.

23M. Reference the CUSTOMER and PUR_ORDER tables in the MTPCH

database. Display the number and name of any customer who has

not purchased any parts (i.e., is not related to any purchase

orders).

23N. Reference the STATE, CUSTOMER, and PUR_ORDER tables in the

MTPCH database. Display the name of any state that has a

customer who has not purchased any parts.

23O. Reference the PART, SUPPLIER, and PARTSUPP tables in the MTPCH

database. Display the supplier number and name of any supplier

who can sell you PART5 (i.e., PNAME value is “PART5”). Code

four solutions.

 (a) Code a Sub-SELECT where the Sub-SELECT specifies a two-

table join. (Similar to Sample Query 23.10)

 (b) Code a Sub-SELECT where the Outer-SELECT specifies a two-

table join. (Similar to Sample Query 23.11)

 (c) Code a Sub-SELECT nested within another Sub-SELECT.

(Similar to Sample Query 23.12)

 (d) For review purposes, code a three-table join.

23P. Reference the PART, SUPPLIER, and PARTSUPP tables in the MTPCH

database. Display the supplier number and name of any supplier

who can sell you PART8. (i.e., PNAME value is “PART8”.) Also

display the price (PSPRICE) the supplier charges for this part.

Code two solutions.

 (a) Code a Sub-SELECT where the Outer-SELECT specifies a two-

table join. (Similar to Sample Query 23.11)

 (b) For review purposes, code a three-table join.

Free SQL Book, Tim Martyn 685 Copyright Pending 2022

Sub-SELECT Returns Multiple Columns

The following sample query illustrates that a Sub-SELECT may return

an intermediate result table with more than one column. [This

feature might not be supported on your system.] This sample query

references the PROJMGR table described in the beginning of Part V.

 PROJMGR

 ENO PMNAME MBA RATE DNO

 1000 MOE N 500.00 20

 2500 DICK N 100.00 40

 6000 GEORGE Y 10.00 20

 4500 DON N 70.00 40

Sample Query 23.13: Display all information about any EMPLOYEE row

with ENAME and DNO values that are equal to the corresponding

PMNAME and DNO values in PROJMGR.

 ENO ENAME SALARY DNO

1000 MOE 2000.00 20

6000 GEORGE 9000.00 20

Syntax: The Sub-SELECT returns two columns. Hence, the WHERE-clause

in the Outer-SELECT must specify two columns that are enclosed

within parentheses. The corresponding columns must have compatible

data-types.

Logic: The Sub-SELECT returns a two-column intermediate result that

looks like:

 PMNAME DNO

 MOE 20

 DICK 40

 GEORGE 20

 DON 40

The Outer-SELECT produces a final result by comparing each EMPLOYEE

row’s ENAME and DNO values to the above intermediate result.

SELECT *

FROM EMPLOYEE

WHERE (ENAME, DNO) IN (SELECT PMNAME, DNO

 FROM PROJMGR)

Free SQL Book, Tim Martyn 686 Copyright Pending 2022

Chapters 25-27 will present three alternative solutions for the

following sample query. However, after examining these alternative

solutions, you might conclude that the following solution is the

simplest.

Sample Query 23.14 Display all information about the highest paid

employee in every department that has at least one employee.

ENO ENAME SALARY DNO

 2000 LARRY 2000.00 10

4000 SHEMP 500.00 40

6000 GEORGE 9000.00 20

Syntax & Logic: This Sub-SELECT returns an intermediate result table

with two columns that are compatible with the Outer-SELECTs DNO and

SALARY data-types. This intermediate result looks like:

 DNO MAX (SALARY)

 10 2000.00

 20 9000.00

 40 500.00

For each EMPLOYEE row selected by the Outer-SELECT, the system

compares each pair of DNO and SALARY values to the above pairs of

DNO and MAX (SALARY) values. It there is a match, all data from the

EMPLOYEE row are displayed.

Alternative Solutions: Alternatives solutions will be presented in

Sample Queries 25.1, 26.3, and 27.3.

SELECT *

FROM EMPLOYEE

WHERE (DNO, SALARY) IN (SELECT DNO, MAX (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO)

Free SQL Book, Tim Martyn 687 Copyright Pending 2022

HAVING-Clause Specifies Sub-SELECT

The following sample query illustrates that a Sub-SELECT can be

specified within a HAVING-clause.

Sample Query 23.15: Reference the EMPLOYEE table. Display the DNO

and average departmental salary of any department having an

average departmental salary that exceeds the overall average

salary for all employees.

DNO AVG (SALARY)

20 4666.66

Logic: The Sub-SELECT is executed and returns an overall average of

2816.66. The Outer-SELECT then becomes:

SELECT DNO, AVG (SALARY)

FROM EMPLOYEE

GROUP BY DNO

HAVING AVG (SALARY) > 2816.66

Executing this Outer-SELECT returns the final result.

Exercises:

23Q: Display all information about the lowest paid employee in each

department that has at least one employee.

23R. Reference the EMPLOYEE table. Only consider employees who earn

less than $5,000.00. Display the DNO and minimum employee

salary in those departments having a minimal employee salary

that exceeds the overall average salary for all employees under

consideration.

SELECT DNO, AVG (SALARY)

FROM EMPLOYEE

GROUP BY DNO

HAVING AVG (SALARY) > (SELECT AVG (SALARY)

 FROM EMPLOYEE)

Free SQL Book, Tim Martyn 688 Copyright Pending 2022

SELECT-Clause Specifies Sub-SELECT

The following sample query illustrates a Sub-SELECT specified within

a SELECT-clause.

Sample Query 23.16: Reference the EMPLOYEE table. Consider the

impact of adjusting each employee’s salary to a value that is

equal to the overall average of all current salaries plus 5% of

the employee’s current salary. Display each employee’s number,

name, current salary, and adjusted salary.

ENO ENAME SALARY ADJSAL

1000 MOE 2000.00 2916.66

2000 LARRY 2000.00 2916.66

3000 CURLY 3000.00 2966.66

4000 SHEMP 500.00 2841.66

5000 JOE 400. 00 2836.66

6000 GEORGE 9000.00 3266.66

Logic: For each selected row, the Sub-SELECT is executed and returns

the overall average salary of 2816.66. This value becomes an

intermediate result that is referenced by the Outer-SELECT as shown

below.

SELECT ENO, ENAME, SALARY, 2816.66 + (.05 * SALARY)

FROM EMPLOYEE

Execution of this statement returns the final result.

Alternative Solutions: To be presented in Sample Queries 26.5 and

27.5.

Exercise:

23S. Consider changing each department’s BUDGET value to a value

that is equal to the overall largest BUDGET value minus 10% of

the department’s current BUDGET value. Display each

department’s number, name, current budget, and the adjusted

budget.

SELECT ENO, ENAME, SALARY,

 (SELECT AVG (SALARY) FROM EMPLOYEE) + (.05*SALARY) ADJSAL

FROM EMPLOYEE

Free SQL Book, Tim Martyn 689 Copyright Pending 2022

CASE-Expression Specifies Sub-SELECTs

The following sample query illustrates a SELECT-clause that contains

a CASE-expression where the CASE-expression specifies multiple Sub-

SELECTs.

Sample Query 23.17: For each department that has at least one

employee, display its department number and its average

departmental salary followed a textual comment indicating that

the departmental average is less than, greater than, or equal to

the overall average salary.

DNO AVGSALARY TEXTCOMMENT

 10 1200.00 LESS THAN OVERALL AVERAGE SALARY

 20 4666.66 GREATER THAN OVERALL AVERAGE SALARY

 40 500.00 LESS THAN OVERALL AVERAGE SALARY

Exercise:

23T. For each department that has at least one employee, display

its department number and maximum departmental salary followed

textual comment indicating that departmental maximum value is

less than or equal to the overall maximum salary.

SELECT DNO, AVG (SALARY) AVGSALARY,

CASE

 WHEN AVG (SALARY) < (SELECT AVG(SALARY) FROM EMPLOYEE)

 THEN 'LESS THAN OVERALL AVERAGE SALARY'

 WHEN AVG (SALARY) = (SELECT AVG(SALARY) FROM EMPLOYEE)

 THEN 'EQUAL TO OVERALL AVERAGE SALARY'

 ELSE 'GREATER THAN OVERALL AVERAGE SALARY'

END TEXTCOMMENT

FROM EMPLOYEE

GROUP BY DNO

Free SQL Book, Tim Martyn 690 Copyright Pending 2022

IN and NOT IN with Null Values

Here we go again! Null values make life interesting. Previous

sample queries referenced the DEPARTMENT and EMPLOYEE tables where

the foreign key (EMPLOYEE.DNO) was declared to be NOT NULL. The

absence of null values simplified our logic. We encourage you to

review your understanding of null values by trying the following

exercise. This exercise references the EMPLOYEE3 table which has

one null DNO value.

Important Review Exercise: Predict the result for each of the

following four statements. Then, execute each statement. If any

prediction is wrong, you are encouraged to read the next two pages

very closely.

Hints: Statements S1 and S2 are straightforward. They specify a

Sub-SELECT that cannot return a null value because DEPARTMENT.DNO

is a primary key. Statements S3 and S4 are more interesting because

they contain a Sub-SELECT that returns a null value. Statement S4

is especially tricky.

S1: SELECT ENAME, SALARY

 FROM EMPLOYEE3

 WHERE DNO IN (SELECT DNO FROM DEPARTMENT)

S2: SELECT ENAME, SALARY

 FROM EMPLOYEE3

 WHERE DNO NOT IN (SELECT DNO FROM DEPARTMENT)

S3: SELECT DNO, DNAME, BUDGET

 FROM DEPARTMENT

 WHERE DNO IN (SELECT DNO FROM EMPLOYEE3)

S4: SELECT DNO, DNAME, BUDGET

 FROM DEPARTMENT

 WHERE DNO NOT IN (SELECT DNO FROM EMPLOYEE3)

DEPARTMENT EMPLOYEE3

DNO DNAME BUDGET ENO ENAME SALARY DNO

10 ACCOUNTING 75000.00 1000 MOE 2000.00 99

20 INFO. SYS. 20000.00 2000 LARRY 2000.00 10

30 PRODUCTION 7000.00 3000 CURLY 3000.00 20

40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

5000 JOE 400.00 10

6000 GEORGE 9000.00 -

Free SQL Book, Tim Martyn 691 Copyright Pending 2022

Answers: Most readers will correctly predict the results for

statements S1, S2, and S3. However, many readers will make an

incorrect prediction for statement S4.

S1: SELECT ENAME, SALARY, DNO FROM EMPLOYEE3

WHERE DNO IN (SELECT DNO FROM DEPARTMENT)

ENAME SALARY DNO

LARRY 2000.00 10

CURLY 3000.00 20

SHEMP 500.00 40

JOE 400.00 10

S2: SELECT ENAME, SALARY, DNO FROM EMPLOYEE3

WHERE DNO NOT IN (SELECT DNO FROM DEPARTMENT)

ENAME SALARY DNO

MOE 2000.00 99

 Note that GEORGE (with null DNO) is not displayed.

S3: SELECT DNO, DNAME, BUDGET FROM DEPARTMENT

 WHERE DNO IN (SELECT DNO FROM EMPLOYEE3)

 DNO DNAME BUDGET

 10 ACCOUNTING 75000.00

20 INFO. SYS. 20000.00

40 ENGINEERING 25000.00

S4: SELECT DNO, DNAME, BUDGET

 FROM DEPARTMENT

 WHERE DNO NOT IN (SELECT DNO FROM EMPLOYEE3)

 *** Result table is empty! - “no rows returned.”

 Many readers expect the result table to contain a row for the

PRODUCTION department (DNO = 30), the only department without

employees. What happened? The following page presents the logic

of this statement.

Free SQL Book, Tim Martyn 692 Copyright Pending 2022

Careful! NOT IN with Null Values

Consider Statement S4 shown below.

 SELECT DNO, DNAME, BUDGET

 FROM DEPARTMENT

 WHERE DNO NOT IN (SELECT DNO FROM EMPLOYEE3)

After executing the Sub-SELECT, the statement reduces to:

 SELECT DNO, DNAME, BUDGET

 FROM DEPARTMENT

 WHERE DNO NOT IN (99, 10, 20, 40, null)

The DEPARTMENT.DNO column contains 10, 20, 30, and 40. The 10, 20,

and 40 values fail to match on the NOT IN condition. Now consider

what happens when the system considers the DNO value of 30. Recall

that a NOT IN condition implies that each comma is an “implied-AND.”

(See Chapter 5 - Logic: IN and NOT IN.) Hence, when comparing on

30, the WHERE-clause equates to the following compound-condition.

WHERE 30 <> 99 → TRUE

AND 30 <> 10 → TRUE

AND 30 <> 20 → TRUE

AND 30 <> 40 → TRUE

AND 30 <> null → UNKNOWN “the problem”

This compound WHERE-clause reduces to UNKNOWN because, in order to

be TRUE, all individual conditions must be TRUE. Hence, the row for

Department 30 is not selected.

Conclusion: *** Whenever a Sub-SELECT generates a null value, the

NOT IN condition always evaluates to UNKNOWN, implying that the

Outer-SELECT always yields a “no rows returned” result.

If you want to display information about Department 30, you could

modify S4 as shown below.

 SELECT DNO, DNAME, BUDGET

 FROM DEPARTMENT

 WHERE DNO NOT IN (SELECT DNO

 FROM EMPLOYEE3

 WHERE DNO IS NOT NULL)

Free SQL Book, Tim Martyn 693 Copyright Pending 2022

Exercise:

23U. a. Rewrite the following join-operation using a Sub-SELECT.

SELECT E3.ENAME, E3.SALARY

FROM EMPLOYEE3 E3, DEPARTMENT D

WHERE E3.DNO = D.DNO

b. Is the following statement equivalent to the above

statement?

 SELECT ENAME, SALARY FROM EMPLOYEE3

Free SQL Book, Tim Martyn 694 Copyright Pending 2022

ANY or ALL Reference Sub-SELECT

The keywords ANY and ALL can be used with a comparison operand to

compare a value to an intermediate result produced by a Sub-SELECT.

However, before presenting examples, we emphasize that there is no

good reason to use these keywords. You can always code an alternative

statement that is easier to understand (and probably more

efficient). We present these keywords in case you encounter them

when examining another user’s code.

Example-1: Display the DNAME value of any department with a DNO

value that is equal to any DNO value in the EMPLOYEE table. (I.e.,

Display the DNAME value of any department that has at least one

employee.)

SELECT DNAME FROM DEPARTMENT

WHERE DNO = ANY (SELECT DNO FROM EMPLOYEE)

 Alternative solutions are:

SELECT DNAME FROM DEPARTMENT

WHERE DNO IN (SELECT DNO FROM EMPLOYEE);

SELECT DISTINCT D.DNAME

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO;

Example-2: Display the DNAME of any department with a BUDGET value

that is greater than all EMPLOYEE.SALARY values.

 SELECT DNAME, BUDGET FROM DEPARTMENT

 WHERE BUDGET > ALL (SELECT SALARY FROM EMPLOYEE)

 If a BUDGET value exceeds all SALARY values, it must exceed the

largest value. Hence, an alternative solution is:

 SELECT DNAME, BUDGET FROM DEPARTMENT

 WHERE BUDGET > (SELECT MAX (SALARY) FROM EMPLOYEE)

Free SQL Book, Tim Martyn 695 Copyright Pending 2022

Summary

The specification of a Sub-SELECT allows you to generate an

intermediate result that can be referenced within an Outer-SELECT.

This chapter’s sample queries illustrate that Sub-SELECTs can help

a user satisfy more complex query objectives. Sample queries

illustrated that a Sub-SELECT may be specified within a WHERE-

clause, HAVING-clause, SELECT-clause, or CASE-expression.

From both a syntax and logic perspective, you must understand the

“shape” of the intermediate result generated by the Sub-SELECT.

1. If the Sub-SELECT generates a scalar result, the WHERE-clause
can specify any of the basic comparison operators (=, <, <=,

>, >=, <>).

 Ex: SELECT ...

 FROM ...

 WHERE COL <= (SELECT AVG(X) FROM ...)

2. If the Sub-SELECT generates single-column result, the WHERE-
clause must specify IN or NOT IN.

Ex: SELECT ...

 FROM ...

 WHERE COLA [NOT] IN (SELECT COLX FROM ...)

3. If the Sub-SELECT generates a multi-column result, the Outer-
SELECT’s WHERE-clause must specify IN or NOT IN and the

column-names in the Outer-SELECT must be enclosed within

parentheses.

 Ex: SELECT ...

 FROM ...

 WHERE (COLA, COLB) [NOT] IN

 (SELECT COLX, COLY FROM ...)

Free SQL Book, Tim Martyn 696 Copyright Pending 2022

Summary Exercises

Code Sub-SELECTs for the following Exercises 23V – 23Ze which

reference tables in the MTPCH sample database.

23V. Display all information about the state with the largest

population.

23W. Display all information about any state having a population

that is less than the overall average population.

23X. (i) Display the number and name of every supplier who sells

part P6.

 (ii) Display the number and name of every supplier who does

not sell part P6.

23Y. (i) Display the number and name of every supplier who sells

at least one pink part.

 (ii) Display the number and name of every supplier who does

not sell any pink parts.

23Za. For each region with at least one state, display all

information about the state with the lowest population in the

region.

23Zb. Consider the state with the smallest population in each region

that has at least one state. Display the region number and its

smallest state population if that population value is less than

the overall average population for all states.

23Zc. Reference the PARTSUPP table. Determine the overall average

PSPRICE value. For each row, display its SNO, PNO, and PSPRICE

values, followed by the difference between the PSPRICE and the

overall average PSPRICE value. Sort the result by the fourth

column. Observe that the fourth column will contain negative

values for PSPRICE values that are less than the average.

(Hint: Consider specifying a Sub-SELECT in the main SELECT-

clause.)

23Zd. Modify the above Exercise 23Zc. Only display rows for where

the PSPRICE exceeds the average PSPRICE. (Hint: Consider

specifying the same Sub-SELECT in the main SELECT-clause and

the WHERE-clause.)

Free SQL Book, Tim Martyn 697 Copyright Pending 2022

23Ze. Reference the DEPARTMENT and EMPLOYEE tables. Revisit Sample

Query 17.3.2 where you were asked to summarize a numeric

parent-column for the parent-table participating in a parent-

child join operation: Only consider those departments that

have employees and have a budget that is less than or equal

to $50,000.00. Display the total budget for these

departments.

 Sample Query 17.3.2 considered following the following “almost

correct” (i.e., wrong) “solution.”

 SELECT SUM (DISTINCT D.BUDGET)

 FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DNO = E.DNO

 AND D.BUDGET <= 50000.00

 SUM (DISTINCT D.BUDGET)

 45000.00

 This statement “got lucky” because no two DEPARTMENT rows

happened to have the same BUDGET value. Code a SELECT statement

that constitutes a correct solution.

The following exercises are presented for review purposes.

23Zf. Review Exercise: Satisfy Sample Queries 23.10 and 23.11 using

join-operations.

23Zg. Optional Review Exercise: This is a strange tutorial exercise.

Assume you simply did not want to write a statement that

contains NOT IN. You are invited you to code a very

inconvenient, rather roundabout (and obviously inefficient)

solution to Sample Query 23.8 (Display the DNO, DNAME and

BUDGET values for any department that does not have any

employees.) Generate two intermediate results. The first has

the DNO, DNAME and BUDGET values of all departments. The

second has the same values for those departments that have

employees. Then use EXCEPT to “subtract” the second

intermediate result from the first.

Free SQL Book, Tim Martyn 698 Copyright Pending 2022

The following exercises address some previously described SQL

challenges.

23Zh. Review Sample Query 8.3 which described a common error

shown below.

SELECT *

FROM PRESERVE

WHERE FEE > AVG (FEE)

 Code a correct SELECT statement to satisfy this query

objective.

23Zi. Review the page after Sample Query 7.6 which discussed a

potential problem of dividing-by-zero in a calculated

condition. There we described two potentially problematic

statements.

Statement-A: SELECT PNAME, ACRES/FEE

 FROM PRESERVE

WHERE FEE <> 0 AND ACRES/FEE > 200.00

 Statement-B: SELECT PNAME, ACRES/FEE

 FROM PRESERVE

WHERE ACRES/FEE > 200.00 AND FEE <> 0

Code an alternative equivalent SELECT statement that

satisfies this query objective where you are asked to display

the PNAME and ratio ACRES/FEE for all preserves where this

ratio exceed 200.00.

Free SQL Book, Tim Martyn 699 Copyright Pending 2022

Appendix 23A: Efficiency

Size of Sub-SELECT (Intermediate) Result: Assume a Sub-SELECT

references the TAB2 table which is a very large table. Efficiency

problems may occur if this Sub-SELECT returns a large intermediate

result. This result may have to be written to a temporary disk area

(without an index), and the Outer-SELECT would have to search this

disk area.

Good News Scenarios: Although TAB2 is very large, the following

three statements specify Sub-SELECTs that return small intermediate

results.

--

Statement-1: SELECT *

 FROM TAB1

 WHERE COLA = (SELECT SUM (COLX) FROM TAB2)

The intermediate result produced by the SUM function in the Sub-

SELECT is only a single scalar value. This tiny intermediate result

will incur a trivial storage and processing cost.

--

Statement-2: SELECT *

 FROM TAB1

 WHERE COLA IN (SELECT COLB FROM TAB2

 WHERE COLX > 1000)

The intermediate result would be small if the Sub-SELECT’s WHERE-

clause has good selectivity and only returns a few rows.

--

Statement-3: SELECT *

 FROM TAB1

 WHERE COLA IN (SELECT COLX FROM TAB2)

Assume the data dictionary indicates that column TAB2.COLX has

many duplicate values. Then the intermediate result could be small.

--

Free SQL Book, Tim Martyn 700 Copyright Pending 2022

Bad News Scenario:

Statement-4: SELECT COLA, COLB, COLC

 FROM TAB1

 WHERE COLA IN (SELECT COLX FROM TAB2)

Assume the data dictionary indicates that column COLX has very few

duplicate values. Then the intermediate result will be large.

In this circumstance, your optimizer might be able to avoid storing

and processing a large intermediate result by rewriting the

statement to use a join-operation.

Statement-4a: SELECT T1.COLA, T1.COLB, T1.COLC

FROM TAB1 T1, TAB2 T2

WHERE T1.COLA = T2.COLX

[Note: Assume TAB2 was a small table. Then the Sub-SELECT in

Statement-4 would be fast, and it would produce a small intermediate

result. Hence, Statement-4a could be slower that Statement-4.]

IN versus Join: Many sample queries in this chapter illustrated an

alternative solution that specified an inner-join operation. An

inner-join may be more efficient if the Sub-SELECT produces a large

intermediate result, and the system can use some fast join method.

(Review Appendices 17A, 17B, and 7C which describe efficiency

considerations for two-table inner-join operations.)

Query Rewrite: In some circumstance, if advantageous, the optimizer

may rewrite a Sub-SELECT as a join-operation. Should the user

consider a do-it-yourself query rewrite. Usually No. Ideally, the

optimizer considers all reasonable options and makes the correct

decision regarding query rewrite. However, as previously noted,

optimizers are not perfect. Therefore, there may be a few occasions

where a user can improve query performance by coding an alternative

SELECT statement.

Free SQL Book, Tim Martyn 701 Copyright Pending 2022

Chapter

 24

Sub-SELECT in DML

This chapter describes the specification of Sub-SELECTs within the

INSERT, UPDATE, and DELETE statements. (These DML statements were

introduced in Chapter 15.) This chapter is optional reading for

those users who will only retrieve and never modify data in a

table.

If you intend to execute the sample statements presented in this

chapter, you must create a table called MYEMP by executing the

following CREATE TABLE statement. (This table is not created in the

CREATE-ALL-TABLES Scripts.)

CREATE TABLE MYEMP

 (MYENAME VARCHAR (25),

MYSALARY DECIMAL (7,2),

MYDNO INTEGER)

The MYENAME, MYSALARY, and MYDNO columns have the same data-types

as the corresponding ENAME, SALARY, and DNO columns in the EMPLOYEE

table. For tutorial reasons, this CREATE TABLE statement does not

specify a PRIMARY KEY clause or a UNIQUE clause. Commentary will

discuss potential problems that can occur when a table that does

not have any unique column(s).

Free SQL Book, Tim Martyn 702 Copyright Pending 2022

Sub-SELECT Specified in DML Statements

A Sub-SELECT can be specified within the INSERT, UPDATE, and DELETE

statements. The basic syntax for specifying a Sub-SELECT within an

INSERT statement is outlined in the following skeleton-code.

Within an UPDATE statement, a Sub-SELECT can be specified within

a SET-clause or a WHERE-clause (or both). An outline of the basic

syntax is shown below.

Within a DELETE statement, a Sub-SELECT can be specified within

the WHERE-clause. An outline of the basic syntax is shown below.

INSERT INTO ______

 SELECT ______

 FROM ______

 WHERE ______

DELETE FROM ______

WHERE _____ = (SELECT ______

 FROM ______

 WHERE ______)

UPDATE ____

SET ____ = (SELECT ______

 FROM ______

 WHERE ______)

WHERE ____

UPDATE ____

SET ____ = ______

WHERE ____ = (SELECT ______

 FROM ______

 WHERE ______)

Free SQL Book, Tim Martyn 703 Copyright Pending 2022

INSERT Specifies Sub-SELECT

Assume you have just created the MYEMP table, and this table is

empty. The following INSERT statement copies three columns from all

EMPLOYEE rows into MYEMP.

Sample Statement 24.1: Copy the ENAME, SALARY, and DNO values from

all rows in the EMPLOYEE table into the corresponding columns

in the MYEMP table.

System Response: The system should respond with a message implying

the successful insertion of 6 rows into MYEMP. (On some systems,

this response might not designate the number of affected rows.)

You can verify the successful INSERT operation by executing:

 SELECT * FROM MYEMP

Syntax: INSERT INTO MYEMP is followed by column-names within

parentheses, which is followed by the Sub-SELECT. The Sub-SELECT

can be any valid SELECT statement (except that some systems will

reject an ORDER BY clause). Because this INSERT statement specifies

three columns, the Sub-SELECT must specify three columns. The ENAME

and MYENAME columns must have compatible data-types; likewise for

the SALARY and MYSALARY columns, and the DNO and MYDNO columns.

Logic: The Sub-SELECT selects three columns from all EMPLOYEE rows

and inserts them into MYEMP. None of the selected columns is declared

to be unique. Hence, it is possible that duplicate rows could be

stored in MYEMP.

INSERT INTO MYEMP (MYENAME, MYSALARY, MYDNO)

 SELECT ENAME, SALARY, DNO

 FROM EMPLOYEE

Free SQL Book, Tim Martyn 704 Copyright Pending 2022

UPDATE: Sub-SELECT Specified within the SET-Clause

MYEMP now contains: MYENAME MYSALARY MYDNO

MOE 2000.00 20

LARRY 2000.00 10

CURLY 3000.00 20

SHEMP 500.00 40

JOE 400.00 10

GEORGE 9000.00 20

The following UPDATE statement modifies some of these rows.

Sample Statement 24.2: Update the MYEMP table. Change the MYENAME

and MYSALARY values of all rows having an MYDNO value of 20.

Each new MYENAME value should be set to JOSEPHINE. Each new

MYSALARY value should be set to the average of all current

MYSALARY values.

System Response: The system should respond with a message implying

the successful update of 3 rows. You can verify successful

execution of this UPDATE operation by executing:

 SELECT * FROM MYEMP

Syntax: Sample Statement 15.4 discussed variations of the SET-

clause. This example shows that a column can be set to a value that

is returned by a Sub-SELECT.

 SET Column = (SELECT . . .)

The Sub-SELECT must return a single value that is compatible with

the data-type of the specified column.

Logic: MOE, CURLY, and GEORGE work in Department 20. Hence their

names are changed to JOSEPHINE. The Sub-SELECT generates a value

of 2816.66. Hence, their MYSALARY values are changed to 2816.66.

The following page shows the current contents of the MYEMP table.

UPDATE MYEMP

SET MYENAME = 'JOSEPHINE',

 MYSALARY = (SELECT AVG (MYSALARY) FROM MYEMP)

WHERE MYDNO = 20

Free SQL Book, Tim Martyn 705 Copyright Pending 2022

UPDATE: Sub-SELECT Specified within the WHERE-Clause

MYEMP now contains: MYENAME MYSALARY MYDNO

 JOSEPHINE 2816.66 20

 LARRY 2000.00 10

 JOSEPHINE 2816.66 20

 SHEMP 500.00 40

 JOE 400.00 10

 JOSEPHINE 2816.66 20

Observe that the previous UPDATE operation produced three duplicate

rows in MYEMP. The following UPDATE statement makes additional

changes to this table. This query objective requires the nesting of

Sub-SELECTs.

Sample Statement 24.3: Update the MYEMP table. Determine the

overall minimal salary and those departments with an employee who

earns this minimal salary. Then change the salary of all employees

who work in these departments to $1,500.00. Your statement should

account for the possibility that two or more employees who work

in different departments may earn the same minimal salary.

System Response: The system should respond with a message implying

the successful update of 2 rows.

Syntax and Logic: Nothing New. The one employee (JOE) with lowest

salary ($400.00) works in Department 10. Therefore, the bottom-level

Sub-SELECT returns 400.00 causing the upper-level Sub-SELECT to

return 10. Hence, the MYSALARY values are change for all (2)

employees in Department 10. The code specifies IN because, if

multiple employees earn the same minimal salary, and these employees

work in different departments, then multiple MYDNO values would be

returned.

The following page shows that LARRY and JOE, who work in Department

10, have their salaries changed to 1500.00.

UPDATE MYEMP

SET MYSALARY = 1500.00

WHERE MYDNO IN (SELECT MYDNO

 FROM MYEMP

 WHERE MYSALARY =

(SELECT MIN (MYSALARY)

 FROM MYEMP))

Free SQL Book, Tim Martyn 706 Copyright Pending 2022

DELETE: Sub-SELECT Specified within the WHERE-Clause

MYEMP now contains: MYENAME MYSALARY MYDNO

 JOSEPHINE 2816.66 20

 LARRY 1500.00 10

 JOSEPHINE 2816.66 20

 SHEMP 500.00 40

 JOE 1500.00 10

 JOSEPHINE 2816.66 20

The following DELETE statement deletes some rows from MYEMP. These

rows are identified by MYDNO values that are returned by a Sub-

SELECT.

Sample Statement 24.4: Delete the MYEMP row for every employee

who works in a department where some departmental employee

earns more than $1,000.00.

System Response: The system should respond with a message implying

successful deletion of 5 rows.

Syntax: Nothing New.

Logic: The Sub-SELECT returns 10 and 20. Hence, this statement

deletes all rows for employees who work in Department 10 and

Department 20. After deleting these rows, only one row remains in

MYEMP, corresponding to SHEMP, the only employee who works in

Department 40. MYEMP table now looks like:

 MYENAME MYSALARY MYDNO

 SHEMP 500.00 40

Design Comment: Consider the MYEMP table shown at the top of this

page. Observe that you could not delete or change just one of the

three rows describing JOSEPHINE because there is no column or

combination of columns that is unique. Therefore, whenever you

create a table, you are strongly encouraged to designate some

column or combination of columns as its primary-key.

DELETE FROM MYEMP

WHERE MYDNO IN (SELECT MYDNO

 FROM MYEMP

 WHERE MYSALARY > 1000.00)

Free SQL Book, Tim Martyn 707 Copyright Pending 2022

Summary

The specification of a Sub-SELECT within a DML statement is a

relatively straightforward extension of the concepts and techniques

introduced in Chapter 15 (DML Statements) and Chapter 23 (Regular

Sub-SELECTs).

You should be extremely careful with your logic when you execute a

DML statement. Storing bad data in a table can become very

problematic and especially embarrassing if other users subsequently

access this bad data.

Finally, if you are an applications developer who executes DML

statements within a production environment, you are strongly

encouraged to read Chapter 29 on Transaction Processing.

Summary Exercises

24A. Delete all rows from the MYEMP table.

24B. Copy the ENAME, SALARY and DNO values from EMPLOYEE into

MYEMP. Only copy rows for employees having a salary that is

less $8,000.00.

24C. Update the MYEMP table. Change the MYENAME values of all rows

having an MYDNO value of 10. All modified MYENAME values should

be the same as the name of the MYEMP employee having the largest

salary.

24D. Delete MYEMP rows corresponding to employees who have the same

name as the highest paid employee. Assume that multiple

employees can have the same largest salary.

24E. Drop the MYEMP table.

Free SQL Book, Tim Martyn 708 Copyright Pending 2022

Appendix 24A: Efficiency

In a production environment, DML statements are usually embedded

within application programs or stored procedures written by

application developers. The following discussion shows that

(sometimes) you can significantly improve efficiency by coding a

Sub-SELECT to embody a program’s logic within a single SQL

statement. Consider the following example where you want to update

a table called STUFF.

Method-A: The following skeleton-code is specified within an

application program or stored procedure.

The above procedure shows three steps: (1) Execute a SELECT

statement that returns data to the procedure. (2) Process this data

to produce some result. (3) Store this result in the database via

an UPDATE operation. This method could be inefficient because (i)

two SQL statements are executed, and (ii) a large result could be

returned in Step-1 and subsequently processed in Step-2.

Method-B: Sometimes (but not always) you can embody all the logic

and processing within a single UPDATE statement that specifies a

Sub-SELECT.

This approach is more efficient because only one SQL statement is

executed, all logic and processing are implemented within the

database engine, and no data is transferred from the STUFF table to

the front-end tool.

UPDATE STUFF

SET __ = (SELECT ____

 FROM STUFF

 WHERE ____)

WHERE ____

STUFF

D

B

M

S

D

B

M

S

STUFF

Step-1: SELECT____

 FROM STUFF

 WHERE ____;

Step-2: Process Data;

Step-3: UPDATE STUFF

 SET _____

 WHERE ____;

Free SQL Book, Tim Martyn 709 Copyright Pending 2022

Appendix 24B: Accuracy of Dictionary Statistics

We have seen that the optimizer examines the data dictionary to

learn the number of rows in a table and other relevant statistics.

Thus far, we have assumed these statistics are accurate. In this

appendix, we consider inaccurate statistics, approximately accurate

statistics, and statistics that are 100% accurate.

The accuracy of dictionary statistics is considered here because

this chapter’s sample queries illustrated that a single DML

statement can make significant changes to a table. For example, a

single INSERT statement can insert multiple rows into a table.

(Also, Chapter 15 showed how an UPDATE statement can modify multiple

columns in multiple rows, and a DELETE statement can delete multiple

rows.) Significant changes to a table, when recorded in the data

dictionary, will influence the optimizer. This raises the question

about when such changes are reflected in dictionary statistics.

In principle, dictionary statistics could be automatically updated

after the execution of each INSERT, UPDATE, and DELETE statement.

However, this could hurt efficiency. For example, after each INSERT

and DELETE operation, the table row-count (and other statistics)

would have to be adjusted; and, column statistics would have to be

updated for each column, especially if a column is described by a

histogram. For this reason, most systems do not update dictionary

statistics on a real-time basis. Instead, the DBA periodically

executes a utility program that scans database tables and indexes

and writes relevant statistical information into the data

dictionary.

The following pages present three scenarios where dictionary

statistics are (1) inaccurate, (2) approximately accurate, and (3)

100% accurate. Each scenario references one of the following

dictionary statistics.

• ROWCOUNT contains the number of rows in a designated table.

• DISTINCTVAL contains the number of distinct values in a

designated column.

• MAXCOLVAL contains the largest value in a designated column.

The above statistics have generic names. Your reference manual will

present the proper names for your system. This manual will also

show that your data dictionary stores many statistical facts. A

complete discussion of dictionary statistics is beyond the scope of

this book.

Free SQL Book, Tim Martyn 710 Copyright Pending 2022

Scenario-1: Inaccurate Statistics

The following scenario illustrates how an inaccurate ROWCOUNT

value can influence an optimizer to generate an inefficient

application plan.

For tutorial reasons, we assume the optimizer will decide to scan

a table if its ROWCOUNT value is less than 200. (This is an

oversimplification. The optimizer will also consider the number of

rows stored on a physical page and how these pages are distributed

across a disk.)

Consider table TAB1 with columns COLA, COLB, and COLC where there

is a unique index (XCOLA) on column COLA. Assume TAB1 has 50 rows.

Time-1: The DBA executes a utility program that reads TAB1 and

updates relevant data dictionary statistics. The ROWCOUNT

value for TAB1 is set to 50.

Time-2: A user executes the following SELECT statement.

 SELECT * FROM TAB1 WHERE COLA = 25

 The optimizer decides to scan TAB1 because it is small table.

(Its ROWCOUNT value of 50 is less than 200.) This is a good

decision that should produce an efficient application plan.

Time-3 – Time-999: Multiple application programs execute INSERT

statements that insert a total of 40,000 new rows. These

changes are not recorded in the data dictionary.

Time-1000: A user executes the SELECT statement similar to that

executed at Time-2.

 SELECT * FROM TAB1 WHERE COLA = 100

 Again, the optimizer decides to scan TAB1 because it

incorrectly believes TAB1 is small table. (The ROWCOUT value

is still 50.) This is a bad decision that produces an

inefficient application plan. If the ROWCOUNT value were set

to the actual number of rows (40,050), the optimizer would

decide to use the XCOLA index to directly access the desired

row. The overall performance penalty could be costly if many

similar SELECT statements were executed after Time-1000.

[If reasonable, the DBA should have executed the dictionary update

utility program after Time-999.]

Free SQL Book, Tim Martyn 711 Copyright Pending 2022

Scenario-2: Approximately Accurate Statistics

In most circumstances, the optimizer only requires data dictionary

statistics to be approximately accurate (good enough).

Consider the MYCUSTOMER table where column CNO is the primary key.

The other columns contain demographic data. Three of these other

columns are the FOOTSIZE, SEX, and STATECODE columns. The only

index on this table is a unique index (XCNO) on the CNO column.

Also, the data dictionary does not contain a histogram of values

for any column in this table.

Example-1: The optimizer examines a ROWCOUNT statistic.

Time-1: The DBA executes a utility program that updates dictionary

statistics for the MYCUSTOMER table. Assume the ROWCOUNT

value for MYCUSTOMER is set to 14 million.

Time-2: A user executes the following SELECT statement.

 SELECT CNO, SEX, FOOTSIZE

 FROM MYCUSTOMER

 WHERE CNO = 222222222

Because the ROWCOUNT value is large (14000000), the optimizer

decides to generate an (efficient) application plan that uses

the XCNO index to retrieve the one row for Customer 222222222.

Time-3 – Time-999: Many application programs execute INSERT

statements that cause the MYCUSTOMER table to grow to about

15 million rows. This statistical change is not recorded in

the data dictionary.

Time-1000: A user executes the SELECT statement similar to that

executed at Time-2.

 SELECT CNO, FOOTSIZE, STATECODE

 FROM MYCUSTOMER

 WHERE CNO = 888888888

 Because the ROWCOUNT value is unchanged (14000000), the

optimizer again generates an application plan that uses the

XCNO index to retrieve the desired row. This is a good plan

that provides the same efficiency advantage as the Time-2

query.

Free SQL Book, Tim Martyn 712 Copyright Pending 2022

Example-2: The optimizer examines DISTINCTVAL statistics.

Time-1: The DBA executes a utility program that updates data

dictionary statistics for the MYCUSTOMER table. Assume that

the following statistics are set as:

DISTINCTVAL for SEX: 2

DISTINCTVAL for STATECODE: 25

Time-2: A user executes a SELECT statement with a WHERE-clause

that specifies the following compound-condition.

 STATECODE = 'NY' OR SEX = 'F'

After examining DISTINCTVAL values for the SEX and STATECODE

columns, the optimizer deduces that there is a 50% (1/2) chance

a hit on the SEX = 'F' condition and only a 4% (1/25) chance

of a hit on the STATECODE = 'NY' condition. Hence, the optimizer

decides to apply Logical Law 2a [C1 OR C2 = C2 OR C1] to

rewrite the above compound-condition. (You may wish to review

Appendix 4C.) The above compound-condition is rewritten as:

 SEX = 'F' OR STATECODE = 'NY'

Time-3 – Time-999: Over time, the MYCUSTOMER table grows. Many

application programs execute INSERT statements. After Time-

9999, the SEX column now has 5 distinct values, and the

STATECODE column now has 33 distinct values. These statistical

changes are not recorded in the data dictionary.

Time-1000: A user executes a SELECT statement with a compound-

condition that is similar to the Time-2 condition.

STATECODE = 'RI' OR SEX = 'M'

 The optimizer examines the (unchanged) DISTINCTVAL values for

the SEX and STATECODE columns and again, following the same

logic, decides to rewrite the above compound-condition as:

 SEX = 'M' OR STATECODE = 'RI'

 This rewritten compound-condition provides the same

efficiency advantages as the Time-2 condition. If the

optimizer had access to the actual number of distinct column

values, it would make the same decision because there is a

20% (1/5) chance a hit on the SEX = 'M' condition and only

a 3% (1/33) chance of a hit on the STATECODE = 'RI' condition.

Free SQL Book, Tim Martyn 713 Copyright Pending 2022

Scenario-3: Statistic Must be 100% Accurate

In a few circumstances, the optimizer requires a dictionary

statistic to be 100% accurate. One circumstance involves the

application of Logical Law 2c [C1 OR TRUE = TRUE] that was

described in Appendix 4C.

Time-1: The DBA executes a utility program that updates data

dictionary statistics for the MYCUSTOMER table. Assume that

the following statistic is set as:

MAXCOLVAL for FOOTSIZE: 16.0

Time-2: A user executes a SELECT statement with a WHERE-clause

that specifies the following compound-condition.

SEX = ’F’ OR FOOTSIZE <= 17.0

After examining the MAXCOLVAL for FOOTSIZE, the optimizer

deduces that FOOTSIZE <= 17.0 must be true for all rows.

Therefore, the optimizer applies Logical Law 2c to rewrite the

compound-condition as:

SEX = ’F’ OR FOOTSIZE <= 17.0

SEX = ’F’ OR TRUE

TRUE

 Hence, the optimizer formulates an application plan that

directs the system to retrieve all MYCUSTOMER rows without

expending any effort to examine the SEX and FOOTSIZE values.

Time-3: An application program executes an SQL statement on

MYCUSTOMER. The data dictionary is not updated; hence the

MAXCOLVAL for FOOTSIZE remains unchanged.

Time-4: A user executes the same Time-2 SELECT statement with the

same compound-condition:

SEX = ’F’ OR FOOTSIZE <= 17.0

In this circumstance, the optimizer decides not to apply

Logical Law 2c because it may or may not be the case that, at

Time-3, an INSERT or UPDATE operation caused some FOOTSIZE

value to become larger than 17.0. Hence the FOOTSIZE <= 17.0

condition may or may not be true for all rows, implying that

Law 2c should not be applied.

Free SQL Book, Tim Martyn 714 Copyright Pending 2022

Conclusion: Before the optimizer can apply Logical Law 2c, it must

know that the MAXCOLVAL value for the FOOTSIZE column is 100%

accurate. This is not possible if the MYCUSTOMER table could

possibly be changed after relevant dictionary statistics have been

updated.

This conclusion restricts the optimizer’s use of Logical Law 2c.

However, there are some important special case circumstances where

the optimizer can apply this logical law (and any other logical law

that requires a dictionary statistic to be 100% accurate). These

circumstances that are described below.

• The optimizer knows that a table is a read-only table, or the

entire database is read-only (e.g., data warehouse). Here all

DML operations are applied in an off-line environment, and

dictionary statistics are updated after these operations.

Thereafter, no on-line operation is allowed to change a table.

• The DBA specifies a CHECK clause in the CREATE TABLE statement

that specifies the valid values of a column. (Chapter 13

described the CHECK clause.) For example, the following CHECK

clause guarantees that every FOOTSIZE value must be less than

or equal to 16.0.

CHECK (FOOTSIZE <= 16.0)

• Some database systems allow the DBA to optionally designate

the real-time update of dictionary statistics.

Free SQL Book, Tim Martyn 715 Copyright Pending 2022

 Chapter

 25

Correlated Sub-SELECTs

This chapter introduces a variation of the Sub-SELECT called the

correlated Sub-SELECT. Correlated Sub-SELECTs behave significantly

different than regular Sub-SELECTs. Correlated Sub-SELECTs can be

very useful, but their logic is more complex. For this reason,

many users attempt to code alternative solutions using other SQL

techniques that will be described in the next few chapters. Despite

the possibility of coding alternative solutions, you should

understand correlated Sub-SELECTs.

We begin by presenting some important preliminary observations

that should help you understand the basic syntax and logic of a

correlated Sub-SELECT.

Comment for Application Developers: We previously noted that a Sub-

SELECT is analogous to a subprogram. Now we note that a regular Sub-

SELECT is analogous to a subprogram that does not have an argument.

In this chapter, we will see that a correlated Sub-SELECT is

analogous to a subprogram with an argument.

Free SQL Book, Tim Martyn 716 Copyright Pending 2022

Three Important Preliminary Observations

Consider the following two statements.

Regular SELECT *

Sub-SELECT: FROM EMPLOYEE

 WHERE SALARY = (SELECT MAX (SALARY)

 FROM EMPLOYEE)

Correlated SELECT *

Sub-SELECT: FROM EMPLOYEE EX

 WHERE SALARY = (SELECT MAX (SALARY)

 FROM EMPLOYEE

 WHERE DNO = EX.DNO)

You should already understand the first statement (described in

Sample Query 23.1) that specifies a regular Sub-SELECT. The second

statement specifies a correlated Sub-SELECT. For the moment, don’t

worry about its query objective. (Don’t try to “understand” it.)

Instead, we want to focus on the “mechanical” differences between

these two statements.

Observation-1: Consider each Sub-SELECT isolated from its Outer-

SELECT.

Regular Sub-SELECT: SELECT MAX (SALARY)

 FROM EMPLOYEE)

Correlated Sub-SELECT: SELECT MAX (SALARY)

FROM EMPLOYEE

 WHERE DNO = EX.DNO

The above regular Sub-SELECT (not embedded in an Outer-SELECT)

will successfully execute and return a result. However, if you

attempt to execute the above correlated Sub-SELECT (not embedded

in an Outer-SELECT), it will fail because the system will not

understand EX.

*** Important! From a purely mechanical viewpoint, this is how you

can always distinguish a regular Sub-SELECT from a correlated Sub-

SELECT. A regular Sub-SELECT can always be extracted and

independently executed. (This was true for every Sub-SELECT

presented in the previous two chapters.) However, if you extract

and attempt to execute a correlated Sub-SELECT, it will fail. This

observation applies to all correlated Sub-SELECTs presented in

this book.

Free SQL Book, Tim Martyn 717 Copyright Pending 2022

Observation-2: Consider each *Outer-SELECT isolated from its Sub-

SELECT.

 Regular Outer-SELECT: SELECT *

 FROM EMPLOYEE

 WHERE SALARY = ____

 Correlated Outer-SELECT: SELECT *

 FROM EMPLOYEE EX

 WHERE SALARY = ____

Within the context of the correlated Sub-SELECT, the EX (table

alias) in the Outer-SELECT’s FROM-clause is a “correlation-name.”

We recommend that you always specify a correlation-name whenever

you code a correlated Sub-SELECT. However, there are circumstances

(Sample Query 25.3) where you can ignore this recommendation.

Observation-3: We ask an important question that relates to Sub-

SELECT logic: “How many times is the Sub-SELECT executed?”

Regular Sub-SELECT: A regular Sub-SELECT, as illustrated in the

previous two chapters, is executed once.

Correlated Sub-SELECT: Logically*, a correlated Sub-SELECT is

executed for each selected row in the outer-table. For example, if

the Outer-SELECT retrieves a million rows, then (in principle, and

maybe in fact) the correlated Sub-SELECT is executed a million

times! Hence, a correlated Sub-SELECT behaves very differently than

a regular Sub-SELECT.

*Physically (under-the-hood), the system may be able to satisfy

the query objective without implementing the repetitive execution

of the correlated Sub-SELECT. (Appendix 25A offers more insight

into this matter.)

Free SQL Book, Tim Martyn 718 Copyright Pending 2022

Correlated Sub-SELECT

The following sample query has the same query objective as Sample

Query 23.14.

Sample Query 25.1: Display all information about the highest paid

employee in every department that has at least one employee.

ENO ENAME SALARY DNO

 2000 LARRY 2000.00 10

4000 SHEMP 500.00 40

6000 GEORGE 9000.00 20

General Logic: The system considers the table that is referenced

in the Outer-SELECT. This is the EMPLOYEE table shown below. (This

same EMPLOYEE table happens to be referenced in the Sub-SELECT.

Sample Query 23.3 will show that the Outer-SELECT and Sub-SELECT

may reference different tables.)

EMPLOYEE

ENO ENAME SALARY DNO

1000 MOE 2000.00 20

2000 LARRY 2000.00 10

3000 CURLY 3000.00 20

4000 SHEMP 500.00 40

5000 JOE 400.00 10

6000 GEORGE 9000.00 20

For each EMPLOYEE row, the Outer-SELECT’s WHERE-clause effectively

asks: “Is the SALARY value in this row equal to the highest salary

for this employee’s department?” (The Sub-SELECT finds the highest

salary for the department.) If the answer is “yes,” the row is

placed in the result table. Otherwise, the row is not placed in the

result table. The following pages present a row-by-row detail

description of this process.

SELECT *

FROM EMPLOYEE EX

WHERE SALARY = (SELECT MAX (SALARY)

 FROM EMPLOYEE

 WHERE DNO = EX.DNO)

Free SQL Book, Tim Martyn 719 Copyright Pending 2022

Detail Logic: We walk through the processing of each row in the

EMPLOYEE table. We begin by noting that the first row is the “current

row” being “pointed at” by EX.

• Consider the 1st row: Does this row represent the highest paid
employee in his department? Specifically, is MOE the highest

paid employee in Department 20?

 To answer this question the system must determine the maximum

salary for employees who work in Department 20. The correlated

Sub-SELECT returns this maximum salary.

 The current row (the first EMPLOYEE row) is “pointed to” by EX.

Therefore, EX.DNO represents the current DNO value. In this case

its value is 20. After substituting 20 for EX.DNO, the Sub-SELECT

becomes:

 SELECT MAX (SALARY)

 FROM EMPLOYEE

 WHERE DNO = 20

 Execution of this Sub-SELECT returns 9000.00, the largest SALARY

value for Department 20. Hence the Outer-SELECT reduces to:

 SELECT *

 FROM EMPLOYEE EX

 WHERE SALARY = 9000.00

Within the context of a correlated Sub-SELECT, this Sub-SELECT asks

the system to only display the current row (the one pointed at by

EX) if its SALARY value is 9000.00. This is not true. MOE’s salary

is 2000.00, not 9000.00. Hence MOE’s row does not appear in the

result table. This completes processing for the first row. The

system now iterates such that EX references the next (the second)

row.

Important (Again): The above Outer-SELECT does not ask the system

to: “Display all rows where SALARY is 9000.00.” The specification

of EX asks the system to display just the current row if its SALARY

value is 9000.00.

ENO ENAME SALARY DNO

1000 MOE 2000.00 20

EX

Free SQL Book, Tim Martyn 720 Copyright Pending 2022

• Consider the 2nd row: Does this row represent the highest paid
employee in his department? Specifically, is LARRY the highest

paid employee in Department 10?

 Because the second row is the current row, EX.DNO now has a value

of 10. Hence, the Sub-SELECT becomes:

 SELECT MAX (SALARY)

 FROM EMPLOYEE

 WHERE DNO = 10

 Execution of this Sub-SELECT returns 2000.00, the largest SALARY

for Department 10. Hence, the Outer-SELECT reduces to:

 SELECT *

 FROM EMPLOYEE EX

 WHERE SALARY = 2000.00

LARRY’s salary is 2000.00. Therefore, his row is placed in the

result table. The system now iterates such that EX references the

next (the third) row.

• Consider the 3rd row:

 Because the third row is the current row, EX.DNO has a value of

20. The Sub-SELECT becomes:

 SELECT MAX (SALARY)

 FROM EMPLOYEE

 WHERE DNO = 20

 The Sub-SELECT returns 9000.00. The Outer-SELECT becomes:

 SELECT *

 FROM EMPLOYEE EX

 WHERE SALARY = 9000.00

 CURLY’s salary is not 9000.00. Hence CURLY’s row is not placed in

the result table. The system now iterates such that EX references

the next (the fourth) row.

ENO ENAME SALARY DNO

3000 CURLY 3000.00 20

E

X

ENO ENAME SALARY DNO

2000 LARRY 2000.00 10

EX

Free SQL Book, Tim Martyn 721 Copyright Pending 2022

Similar processing occurs for the remaining rows.

• 4th row:

 SHEMP works in Department 40. After substituting 40 for EX.DNO,

the Sub-SELECT returns 500.00. SHEMP’s salary is 500.00. Hence

SHEMP’s row is placed into result table.

• 5th row:

 JOE works in Department 10. After substituting 10 for EX.DNO, the

Sub-SELECT returns 2000.00. JOE’s salary is 400.00. Hence JOE’s

row is not placed into result table.

• 6th row:

 GEORGE works in Department 20. After substituting 20 for EX.DNO,

the Sub-SELECT returns 9000.00. GEORGE’s salary is 9000.00. Hence

GEORGE’s row is placed into result table.

In general, this query objective requires the comparison of each

employee’s salary to the highest salary for his department.

Therefore, the Sub-SELECT specified EX.DNO to reference the DNO

value of each EMPLOYEE row.

Observe that the Outer-SELECT referenced the EMPLOYEE table which

has 6 rows. Hence, the correlated Sub-SELECT was executed 6 times.

(This repeated execution of a correlated Sub-SELECT has obvious

efficiency implications that will be discussed in Appendix 25A.)

Alternative Solutions: See Sample Queries 23.14, 26.3, and 27.3.

Exercises:

25A. Display all information about the lowest paid employee in each

department.

25B. Display the name and salary of any employee whose salary is

less than the average employee salary for his department.

ENO ENAME SALARY DNO

4000 SHEMP 500.00 40

E

X

ENO ENAME SALARY DNO

5000 JOE 400.00 10

E

X

ENO ENAME SALARY DNO

6000 GEORGE 9000.00 20

E

X

Free SQL Book, Tim Martyn 722 Copyright Pending 2022

Sample Query 25.2: Reference the PARTSUPP table in the MTPCH

database. Recall that PARTSUPP.PSPRICE represents the price paid

to a supplier for a part. The objective is to find the supplier(s)

with the lowest price for each part. Specifically, for every part

that can be purchased from some supplier, display the PNO, SNO,

and PSPRICE values corresponding to the lowest PSPRICE. Observe

that, for a given part, multiple suppliers may offer the same

lowest price. Sort the result by SNO within PNO.

PNO SNO PSPRICE

P1 S2 10.50

P3 S3 12.00

P4 S4 12.00

P5 S1 10.00

P5 S2 10.00

P6 S4 4.00

P6 S6 4.00

P6 S8 4.00

P7 S2 2.00

P8 S8 3.00

Syntax & Logic: The system iterates over every row in the table

referenced by the Outer-SELECT (PARTSUPP). For each such row, the

system substitutes the current PNO value for PSX.PNO and then

executes the Sub-SELECT. The Sub-SELECT returns the lowest PSPRICE

value for the current PNO. If the current PSPRICE matches the lowest

price, the current PNO, SNO, and PSPRICE values are placed in the

result table.

Observe that P2 is missing because no supplier supplies this part.

Also observe that, for parts P5 and P6, multiple suppliers offer

the same lowest price.

SELECT *

FROM PARTSUPP PSX

WHERE PSPRICE = (SELECT MIN (PSPRICE)

 FROM PARTSUPP

 WHERE PNO = PSX.PNO)

ORDER BY PNO, SNO

Free SQL Book, Tim Martyn 723 Copyright Pending 2022

Sometimes the Correlation-Name is Optional

In the previous two sample queries, the Outer-SELECT and the Sub-

SELECT referenced the same tables. When this occurs, to avoid

ambiguity, you must specify an explicit correlation-name (e.g., EX

and PSX). Frequently, the Outer-SELECT and Sub-SELECT will reference

different tables. When this occurs, the specification of an explicit

correlation-name becomes optional. Then, if you do not specify an

explicit correlation-name, the table-name serves as the correlation-

name.

Sample Query 25.3: Reference the PARTSUPP and LINEITEM tables in

the MTPCH database. Recall that the LINEITEM.LIPRICE represents

the price that a customer paid for a part. Display all information

in every PARTSUPP row with a PSPRICE that exceeds the average

LIPRICE for the corresponding part.

 PNO SNO PSPRICE

P8 S4 5.00

Syntax: The Sub-SELECT and Outer-SELECT reference different tables.

Here, the Outer-SELECT’s table-name (PARTSUPP) serves as the

correlation-name. We generally recommend specifying an explicit

correlation-name as illustrated below.

 SELECT *

 FROM PARTSUPP PSX

 WHERE PSPRICE > (SELECT AVG (LIPRICE)

 FROM LINEITEM

 WHERE PNO = PSX.PNO)

Logic: Nothing new. Notice that each line-item is associated with

the supplier (SNO) who supplied the part (PNO). This result implies

that Supplier S4 may be charging too much for Part P8.

SELECT *

FROM PARTSUPP

WHERE PSPRICE > (SELECT AVG (LIPRICE)

 FROM LINEITEM

 WHERE PNO = PARTSUPP.PNO)

Free SQL Book, Tim Martyn 724 Copyright Pending 2022

EXISTS

The following sample query specifies “EXISTS (correlated Sub-

SELECT)”. We will see that EXISTS is logically equivalent to IN.

(But don’t jump to the erroneous conclusion that NOT EXISTS is

always equivalent to NOT IN. This issue will be considered in Sample

Query 25.6.) If you are inclined to avoid correlated Sub-SELECTs,

then you might also be inclined to avoid EXISTS and simply code a

statements that specifies IN within the context of a regular Sub-

SELECT. This is not a bad idea, but we strongly encourage you to

understand EXISTS and NOT EXISTS for reasons that will be described

later in this chapter.

Sample Query 25.4: Same as Sample Query 23.5. Reference the

DEPARTMENT and EMPLOYEE tables. Display all information about

every department that has at least one employee.

DNO DNAME BUDGET

 10 ACCOUNTING 75000.00

 20 INFO. SYS. 20000.00

 40 ENGINEERING 25000.00

Logic: The system examines every row in the DEPARTMENT table. For

each DEPARTMENT row, the system (in principle) executes the

correlated Sub-SELECT to determine if there exists any EMPLOYEE

row having the same DNO value as the current DEPARTMENT row.

Specifically, for each DEPARTMENT row, the Sub-SELECT returns some

value ('X') to represent a “hit,” meaning that some EMPLOYEE row

has a DNO value equal to the current DEPARTMENT.DNO value (DX.DNO).

Under this circumstance, the current DEPARTMENT row is displayed.

If the Sub-SELECT does not return an 'X' (a “no-hit”), the current

DEPARTMENT row is not displayed.

Comment: The letter 'X' (the hit indicator) is an arbitrary value.

Some users code “SELECT *” in the Sub-SELECT.

SELECT *

FROM DEPARTMENT DX

WHERE EXISTS (SELECT 'X'

 FROM EMPLOYEE

 WHERE DNO = DX.DNO)

Free SQL Book, Tim Martyn 725 Copyright Pending 2022

Detail Logic: We walk through this process for the first three

DEPARTMENT rows.

• Assume the 1st row is:

 The current DEPARTMENT row is “pointed at” by DX. Hence DX.DNO

has value of 10. After substituting 10 for DX.DNO, the Sub-

SELECT becomes:

 SELECT 'X' FROM EMPLOYEE WHERE DNO = 10

 Executing the Sub-SELECT produces a “hit” on some EMPLOYEE row,

either LARRY or JOE. The Sub-SELECT returns some value. (The fact

that it returns “X” is not relevant.) Hence, the current row is

placed into the result table.

• Assume the 2nd row is:

 After substituting 20 for DX.DNO, the Sub-SELECT becomes:

 SELECT 'X' FROM EMPLOYEE WHERE DNO = 20

 Executing the Sub-SELECT produces a “hit.” Hence the current row

is placed into the result table.

• Assume the 3rd row is:
X

After substituting 30 for DX.DNO, the Sub-SELECT becomes:

 SELECT 'X' FROM EMPLOYEE WHERE DNO = 30

 Executing this Sub-SELECT produces a “no hit.” Hence the current

row is not placed into the result table.

Important Exercise:

25C. Code two alternative solutions for this Sample Query 25.4. The

first solution should specify IN. The second solution should

specify a join-operation.

DNO DNAME BUDGET

10 ACCOUNTING 75000.00

DX

DNO DNAME BUDGET

20 INFO. SYS. 20000.00

DX

X

DNO DNAME BUDGET

30 PRODUCTION 7000.00

DX

Free SQL Book, Tim Martyn 726 Copyright Pending 2022

NOT EXISTS

The next sample query specifies “NOT EXISTS (correlated Sub-

SELECT)”. In this sample query, NOT EXISTS is logically equivalent

to NOT IN. However, Sample Query 25.6 will show that this equivalency

does not always apply.

Sample Query 25.5: Same as Sample Query 23.8. Reference the

DEPARTMENT and EMPLOYEE tables. Display the DNAME and BUDGET

values for any department that does not have any employees.

 DNAME BUDGET

 PRODUCTION 7000.00

Logic: NOT EXISTS evaluates to True if the Sub-SELECT returns a “no

hit.” For example, when the system considers Department 30, the Sub-

SELECT becomes:

 SELECT 'X' FROM EMPLOYEE WHERE DNO = 30

This Sub-SELECT returns a “no hit”. Hence, the NOT EXISTS evaluates

to True, and the name and budget of Department 30 are placed in the

result table. Conversely, execution of the Sub-SELECT for

Departments 10, 20, and 40 returns X (a hit); the NOT EXISTS

comparisons evaluate to False; and, data about these departments

are not displayed.

Alternative Solution: Many users are inclined to avoid correlated

Sub-SELECTs. They prefer to code the solution shown in Sample Query

23.8.

 SELECT DNAME, BUDGET

 FROM DEPARTMENT

 WHERE DNO NOT IN (SELECT DNO FROM EMPLOYEE)

SELECT DNAME, BUDGET

FROM DEPARTMENT DX

WHERE NOT EXISTS (SELECT 'X'

 FROM EMPLOYEE

 WHERE DNO = DX.DNO)

Free SQL Book, Tim Martyn 727 Copyright Pending 2022

Important! NOT EXISTS is Not Equivalent to NOT IN

Once again, we must consider null values. The previous Sample Query

25.5 illustrated an example where NOT EXISTS and NOT IN produced

the same result. However, given the presence of null values, the

following sample query will illustrate that NOT IN is not equivalent

as NOT EXISTS.

Sample Query 25.6: Reference the DEPARTMENT and EMPLOYEE3 tables.

Display all information about any employee assigned to a

department that is not represented in the DEPARTMENT table. (This

includes any employee with a null DNO value.)

ENO ENAME SALARY DNO

1000 MOE 2000.00 99

6000 GEORGE 9000.00 -

Logic: MOE appears in the result because his DNO value (99) is not

in the DEPARTMENT.DNO column. GEORGE also appears in the result

because his DNO value (null) is not in the DEPARTMENT.DNO column.

When EX is pointing at GEORGE’s row, the Sub-SELECT returns a “no

hit,” and therefore the NOT EXISTS condition evaluates to True,

selecting GEORGE’s row for display. Notice the difference between

this logic and the following statement that specifies NOT IN.

SELECT * FROM EMPLOYEE3

WHERE DNO NOT IN (SELECT DNO FROM DEPARTMENT)

ENO ENAME SALARY DNO

1000 MOE 2000.00 99

This statement does not display GEORGE’s row. The regular SUB-SELECT

returns (10, 30, 30, 40), and GEORGE’s null DNO value does not match

any value on this list. (You may want to review NOT IN logic in

Chapter 5.)

Conclusion: NOT IN will not match on a null value. NOT EXISTS will

match on a null value.

Alternative Solution: See solution for Exercise 25Q.

SELECT *

FROM EMPLOYEE3 EX

WHERE NOT EXISTS (SELECT 'X'

 FROM DEPARTMENT

 WHERE DNO = EX.DNO)

Free SQL Book, Tim Martyn 728 Copyright Pending 2022

Select Rows with Unique Values in a Column

The following sample query uses a correlated Sub-SELECT to compare

a table with itself.

Sample Query 25.7: Reference the EMPLOYEE table. Display all

information about any employee whose salary is unique. This means

that no other employee earns the same salary. (Recall that SALARY

is not defined as a PRIMARY KEY or UNIQUE column. Hence the SALARY

column may contain some duplicate values.)

ENO ENAME SALARY DNO

3000 CURLY 3000.00 20

4000 SHEMP 500.00 40

5000 JOE 400.00 10

6000 GEORGE 9000.00 20

Logic: Consider why the Sub-SELECT must specify “AND ENO <> EX.ENO”.

Without this condition, each EMPLOYEE row would match itself. This

example shows the advantage of knowing about primary-key and unique

columns. Because ENO is the primary-key, we know that its value

cannot be equal any another ENO value within the EMPLOYEE table.

Exercises:

25D. Reference the STATE and CUSTOMER tables in the MTPCH database.

Write three different statements to display all information

about every state that has at least one customer. The first

statement should specify EXISTS; the second statement should

specify IN; the third statement should specify a join-

operation.

25E. Reference the STATE and CUSTOMER tables in the MTPCH database.

Write two different statements to display all information

about every state that does not have any customers. The first

statement should specify NOT EXISTS, and the second statement

should specify NOT IN.

SELECT *

FROM EMPLOYEE EX

WHERE NOT EXISTS (SELECT 'X'

 FROM EMPLOYEE

 WHERE SALARY = EX.SALARY

 AND ENO <> EX.ENO)

Free SQL Book, Tim Martyn 729 Copyright Pending 2022

Correlated Sub-SELECT Specified within SELECT-Clause

The next sample query is a variation of Sample Query 23.16 which

illustrated a regular Sub-SELECT specified within a SELECT-clause.

The following sample query illustrates a correlated Sub-SELECT

specified within a SELECT-clause.

Sample Query 25.8: Reference the EMPLOYEE table. Consider adjusting

each employee’s salary to a value that is equal to the employee’s

departmental average salary plus 5% of the employee’s current

salary. Display each employee number, name, and current salary,

followed by the adjusted salary.

ENO ENAME SALARY ADJSALARY

1000 MOE 2000.00 4766.66

2000 LARRY 2000.00 1300.00

3000 CURLY 3000.00 4816.66

4000 SHEMP 500.00 525.00

5000 JOE 400.00 1220.00

6000 GEORGE 9000.00 5116.66

Syntax: The FROM-clause in the Outer-SELECT specifies E as a

correlation-name. The Sub-SELECT uses this correlation-name to

reference a specific DNO value.

Logic: The Sub-SELECT is executed for each EMPLOYEE row. It returns

the departmental average salary for the current row’s DNO value (the

value pointed to by E.DNO). This departmental average is added to

5% of the employee’s current salary.

Alternative Solutions: See Exercises 26N and 27N.

SELECT ENO, ENAME, SALARY,

(SELECT AVG (SALARY) FROM EMPLOYEE WHERE DNO = E.DNO)

 + (.05 * SALARY) ADJSALARY

FROM EMPLOYEE E

Free SQL Book, Tim Martyn 730 Copyright Pending 2022

Ancient History: Do-It-Yourself LEFT OUTER JOIN

In early versions of SQL, before relational database systems

directly supported OUTER JOIN, users had to code do-it-yourself

logic to implement an outer-join operation. The following statement

illustrates an example which is presented for tutorial purposes

only.

Sample Query 25.9: Similar to Sample Query 19.5 which specified LEFT

OUTER JOIN. Reference the DEPARTMENT and EMPLOYEE tables.

Display all information about every department along with all

information about employees who work in those departments.

Sort the result by the first column.

 DNO DNAME BUDGET ENO ENAME SALARY DNO1

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 1000 MOE 2000.00 20

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 20 INFO. SYS. 20000.00 6000 GEORGE 9000.00 20

 30 PRODUCTION 7000.00 No Emp 0.00 0

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Optional Exercise:

25F. Write an ancient history solution for a full outer-join of

the DEPARTMENT and EMPLOYEE3 tables.

SELECT D.DNO, D.DNAME, D.BUDGET,

 E.ENO, E.ENAME, E.SALARY, E.DNO

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

UNION ALL

SELECT DNO, DNAME, BUDGET,

 'No Emp ', ' ', 0, 0

FROM DEPARTMENT DX

WHERE NOT EXISTS (SELECT 'X'

 FROM EMPLOYEE

 WHERE DNO = DX.DNO)

ORDER BY 1

Free SQL Book, Tim Martyn 731 Copyright Pending 2022

"FOR ALL" (Double NOT EXISTS)

The following sample query presents the most complex SELECT

statement in this book! Fortunately, you can skip this example

without any loss of continuity. However, this example is

interesting.

Consider all parts (P1–P8) described in the PART table. Examination

of the PARTSUPP table shows that no individual supplier sells all

parts. However, Supplier S4 sells all parts except Part P2. To allow

Supplier S4 to sell all parts, we must insert a new row in PARTSUPP

table by executing the following statement.

You should execute this INSERT statement if you intend to execute

the following SELECT statement. However, remember to delete this

new row afterwards.

Sample Query 25.10: Display the supplier number and name of any

supplier who sells all parts described in the PART table.

 SNO SNAME

 S4 SUPPLIER4

This result shows that only Supplier S4 sells all parts.

Syntax: Nothing New.

SELECT SNO, SNAME

FROM SUPPLIER S

WHERE NOT EXISTS

 (SELECT 'X'

 FROM PART P

 WHERE NOT EXISTS

 (SELECT 'X'

 FROM PARTSUPP PS

 WHERE PS.PNO = P.PNO

 AND PS.SNO = S.SNO))

INSERT INTO PARTSUPP VALUES ('P2', 'S4', 12.00)

Free SQL Book, Tim Martyn 732 Copyright Pending 2022

Logic: We want to code a SELECT statement that embodies the logical

notion of “FOR ALL.” The problem is that SQL does not provide a

keyword that directly supports the FOR ALL concept. However, it is

possible to write an equivalent statement by coding two correlated

Sub-SELECTs that specify NOT EXISTS before each Sub-SELECT. This

approach specifies a "double-negative" logic. (Example: “I ain’t

got no money” implies that I do have some money.)

We begin our explanation of this “Double-NOT-EXISTS” code by asking

you to temporarily ignore the outermost SELECT. Focus on the Sub-

SELECTs and make two changes.

 (i). Substitute PNO for 'X' in the first Sub-SELECT

 (ii). Substitute 'S1' for S.SNO in the second Sub-SELECT

The modified Sub-SELECTs look like:

 SELECT PNO change (i)

 FROM PART P

 WHERE NOT EXISTS

 (SELECT 'X'

 FROM PARTSUPP PS

 WHERE PS.PNO = P.PNO

 AND PS.SNO = 'S1') change (ii)

This code asks the system to display the PNO values of all parts

not sold by supplier S1. Executing this statement would produce:

 PNO

P1

P2

P3

P4

P6

P7

P8

This intermediate result tells us that Supplier S1 does not sell

parts P1-P4 and P6-P8. (Supplier S1 only sells part P5.) If you

substitute any SNO value, except S4, into the above statement and

execute it, you will always get a “hit” representing a list of

parts that are not sold by the supplier.

Free SQL Book, Tim Martyn 733 Copyright Pending 2022

However, if you substitute S4, you get a “no-hit,” implying that

Supplier S4 sells all parts. More explicitly, substituting S4 for

S.SNO we have.

SELECT PNO

FROM PART P

WHERE NOT EXISTS

 (SELECT 'X'

 FROM PARTSUPP PS

 WHERE PS.PNO = P.PNO

 AND PS.SNO = 'S4')

Executing this statement produces a “no-hit.”

Double-Negative Logic: For a given supplier, if there are no parts

that are not sold by the supplier, then the supplier sells all

parts.

Consider the outermost SELECT and assume that S points to the

SUPPLIER row for S4. Because the Sub-SELECTs generate a no-hit, we

have:

 SELECT SNO, SNAME

 FROM SUPPLIER S

 WHERE NOT EXISTS (no-hit)

The NOT EXISTS (no-hit) returns True. Hence, the SNO and SNAME

values for Supplier S4 will be displayed.

In general, the outermost SELECT asks the system to iterate through

all SUPPLIER rows, substituting each row’s SNO value for S.SNO on

each iteration. With the exception of S4, the nested Sub-SELECTs

always produce a hit, implying those rows are not selected by the

outermost-SELECT. Every SUPPLIER row, except the S4 row, fails the

outermost NOT EXISTS condition.

Finally, Don’t Forget: Delete the previously inserted PARTSUPP row

by executing:

DELETE FROM PARTSUPP WHERE PNO = 'P2' AND SNO = 'S4'

Free SQL Book, Tim Martyn 734 Copyright Pending 2022

Summary

Avoid correlated Sub-SELECTs? Most users feel that correlated Sub-

SELECTs are more complex than regular Sub-SELECTs. They also contend

that the iterative execution of a correlated Sub-SELECT implies that

a correlated Sub-SELECT incurs a higher performance cost. Therefore,

they avoid correlated Sub-SELECTs and attempt to formulate

alternative solutions. We briefly comment on these issues below.

1. Complexity: Correlated Sub-SELECTs are usually more complex
than regular Sub-SELECTs. With the exception of Sample Query

25.10 (double NOT EXISTS), future chapters will present

alternative solutions for all other sample queries presented

in this chapter. Most users would prefer these alternative

solutions.

2. Efficiency: Many SQL reference manuals present efficiency

guidelines, and some of these manuals discourage correlated

Sub-SELECTs. However, while this may be a pretty good

guideline, there are exceptions to this guideline. Appendix

25A will discuss these exceptions.

Free SQL Book, Tim Martyn 735 Copyright Pending 2022

Summary Exercises

Code solutions that specify correlated Sub-SELECTs unless directed

otherwise.

25G. Reference the PRESERVE table. Determine the largest preserve

(greatest number of acres) in each state. Display the state

code followed the preserve number, name, and acreage.

25H. Code an alternative solution to the preceding Exercise 25G.

Specify a regular Sub-SELECT that returns multiple columns.

Hint: Review Exercise 23.14. [Skip this exercise if your system

does not allow regular Sub-SELECTs to return multiple columns.]

25I. Reference the PARTSUPP table in the MTPCH database. The basic

objective is to display information about each part having a

price that is less than the average price for the part.

Specifically, for every part that you can purchase from some

supplier, display the PNO, SNO, and PSPRICE values for any part

having a price that is less than the average price for the

part. Sort the result by SNO within PNO.

25J. Reference the PARTSUPP and SUPPLIER tables in the MTPCH

database. Modify the above Exercise 25I to include the name of

the supplier.

25K. Sample Query 21.3 specified an INTERSECT operation (shown

below) to display the employee numbers and names of all

persons who are described in both the EMPLOYEE and PROJMGR

tables.

SELECT ENO, ENAME

FROM EMPLOYEE

INTERSECT

SELECT ENO, PMNAME

FROM PROJMGR

ORDER BY 1

 a. Code an alternative solution using EXISTS.

 b. Code another alternative solution using IN.

Free SQL Book, Tim Martyn 736 Copyright Pending 2022

25L. Sample Query 21.4 specified an EXCEPT operation (shown below)

to display the employee number and name of every employee who

is not a project manager.

SELECT ENO, ENAME

FROM EMPLOYEE

EXCEPT

SELECT ENO, PMNAME

FROM PROJMGR

ORDER BY 1

 a. Code an alternative solution using NOT EXISTS.

 b. Code another alternative solution using NOT IN.

c. Important Question: How do you know that, in this

circumstance, the NOT EXISTS and NOT IN solutions are

equivalent to each other?

25M1. Reference the DEPARTMENT and EMPLOYEE tables. Assume that

management is considering adjusting each department’s budget.

Each new departmental budget might be changed to twice the

total salary of all employees who work in the department.

Before implementing this change, management asks you to

produce a report that displays each department’s number,

name, current budget, and the proposed new budget. If a

department does not have any employees, then display a null

value for the proposed new budget. The result should look

like:

 DNO DNAME BUDGET NEWDBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 -

 40 ENGINEERING 25000.00 1000.00

 Your solution should specify a correlated Sub-SELECT within

the SELECT-clause as shown in Sample Query 25.8. (The

following Exercise 25M2 suggests an alternative solution.)

25M2. This is an optional exercise. Code an alternative solution

for the preceding Exercise 25M1. Instead of coding a Sub-

SELECT, your solution should specify a left outer-join

operation and group by the DNO, DNAME, and BUDGET columns.

Free SQL Book, Tim Martyn 737 Copyright Pending 2022

25N. Exercise 23I asked you to code a regular Sub-SELECT to satisfy

the query objective: Reference the DEPARTMENT and EMPLLOYEE

tables. Display the overall total budget of those departments

which have at least one employee. Code another solution using

a correlated Sub-SELECT. The result should look like:

 TOTBUDGET

 120000.00

25O. This exercise modifies Exercise 25M1. The user does not want

to see any null values in the report. Therefore, if a

department does not have any employees, the new budget should

be the same as the current budget. The result should look

like:

 DNO DNAME BUDGET NEWBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 7000.00

 40 ENGINEERING 25000.00 1000.00

 Code two solutions, each having the same basic structure as

the solution for Exercise 25Ma.

 The first should use the COALESCE function to substitute the

current BUDGET value for a null value in the NEWBUDGET column.

The basic structure of the SELECT-clause is:

 SELECT ... COALESCE ((correlated Sub-SELECT...), BUDGET)

 NEWBUDGET

 The second solution should specify a CASE-expression to

substitute the current BUDGET value for a null value in the

NEWBUDGET column. The basic structure of the CASE-expression

is:

 CASE (SELECT COUNT(*) FROM EMPLOYEE

 WHERE DNO=D.DNO)

 WHEN 0 THEN . . .

 ELSE (correlated Sub-SELECT . . .)

 END NEWBUDGET

Free SQL Book, Tim Martyn 738 Copyright Pending 2022

25P. Review Exercise: Same as for Sample Query 25.7. Reference the

EMPLOYEE table. Display all information about any employee

whose salary is unique. This means that no other employee earns

the same salary.

 Do not specify a correlated Sub-SELECT. Code a regular Sub-

SELECT that joins the EMPLOYEE table with itself to retrun

ENO values of any employee who has the same salary as

another employee.

25Q. Review Exercise: Same as for Sample Query 25.6. Reference the

DEPARTMENT and EMPLOYEE3 tables. Display all information about

any employee assigned to a department that is not represented

in the DEPARTMENT table. (This includes any employee with a

null DNO value.)

 Code a roundabout solution that specifies NOT IN and UNION ALL.

Free SQL Book, Tim Martyn 739 Copyright Pending 2022

Appendix 25A: Efficiency

A correlated Sub-SELECT is (in principle) executed multiple times,

once for each row selected by the Outer-SELECT. This observation

leads to a general recommendation that you should avoid correlated

Sub-SELECTs. However, this appendix will present some caveats to

this recommendation.

Case Study: Reconsider the following Statement-4 presented in

Appendix 23A. There we assumed that:

• TAB2 was a very large table, and

• The regular Sub-SELECT produced a large intermediate result

Statement-4: SELECT COLA, COLB, COLC

 FROM TAB1

 WHERE COLA IN (SELECT COLX FROM TAB2)

In Appendix-23A, these assumptions motivated us to consider

rewriting Statement-4 using an inner-join. Here we consider

rewriting this statement using a correlated Sub-SELECT that

specifies EXISTS.

Statement-5: SELECT COLA, COLB, COLC

FROM TAB1 T1

WHERE EXISTS (SELECT 'X'

 FROM TAB2

 WHERE COLA = T1.COLA)

Query Rewrite: The following page describes circumstances where

Statememt-5 may be more efficient than Statement-4. Again, we remind

you that, ideally, your optimizer should automatically rewrite a

SELECT statement into the most efficient form. The ideal optimizer

is not influenced by the idiosyncratic coding style of the user.

However, because real-world optimizers are not perfect, occasionally

you may have to consider adopting a do-it-yourself approach.

Free SQL Book, Tim Martyn 740 Copyright Pending 2022

Correlated Sub-SELECTs: Efficiency Considerations

Below we analyze the preceding Statement-5 to illustrate potential

efficiency advantages for a correlated Sub-SELECT.

Size of TAB1: When analyzing Statement-4, the size of the TAB1, the

table referenced in the Outer-SELECT, was not a factor because a

regular Sub-SELECT is only executed once. With Statement-5, the size

of TAB1 becomes a factor because the correlated Sub-SELECT is

executed for each row in TAB1. Therefore, the overall cost for this

correlated Sub-SELECT will be less expensive if TAB1 only has a few

rows.

Cost for Each Execution of a Correlated Sub-SELECT: Even if the

correlated Sub-SELECT is executed many times, each execution could

be fast because:

1. Unlike a regular Sub-SELECT, each execution of a correlated

Sub-SELECT is not required to retrieve and save any

intermediate results. EXISTS simply looks for a “hit or no-

hit” response.

2a. Assume there is no index on TAB2.COLA. Then the Sub-SELECT has

to scan the TAB2 table. But it rarely has to scan all TAB2

rows. The EXISTS condition is only looking for a hit on some

COLA value. The entire TAB2 table is only scanned when it

searches for a T1.COLA value that is not present in TAB2.

2b. Alternatively, assume there is an index on TAB2.COLA. (This is

likely because TAB2.COLA is a frequently primary key or a

foreign-key.) This index could be very helpful. The correlated

Sub-SELECT would directly search of the index to quickly

conclude hit or no-hit. There is no need to follow index

pointers to retrieve rows from the TAB2 table.

Conclusion: In some circumstances, correlated Sub-SELECTs that

specify EXISTS or NOT EXISTS can be very efficient.

Free SQL Book, Tim Martyn 741 Copyright Pending 2022

Appendix 25B: Theory

We offer a few brief comments for those readers who have taken a

mathematics course that covered the predicate calculus. Other

readers can skip this appendix without any loss of continuity.

In Appendix 1B, we noted that SQL is derived from Codd’s Relational

Calculus and his Relational Algebra. Previous theory appendices

focused on associating SQL with the Relational Algebra. Having

completed this chapter, we can now associate SQL with some concepts

and symbols that are used within the Relational Calculus.

The Relational Calculus inherits two symbols from the Predicate

Calculus. These symbols are the backwards-E that represents “there

exists” and the upside-down-A that represents “for all.”

 (There Exists)

 (For All)

• The EXISTS condition (Sample Query 25.4) is based on the
symbol from the Relational Calculus. The NOT EXISTS condition

(Sample Query 25.5) corresponds to the ~ symbol (there does
not exist). Some mathematics books represent NOT EXISTS by

specifying a slash (/) overlaid on top of .

• The narrative for Sample Query 25.10 noted that SQL does not

have a keyword for the symbol. This situation required coding

a more complex SELECT statement that specified two ~
comparisons.

Suggestion: If you intend to investigate the Relational Calculus,

you are encouraged to do some preliminary reading about the

Predicate Calculus.

Free SQL Book, Tim Martyn 742 Copyright Pending 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 743 Copyright Pending 2022

Chapter

 26

Inline Views

This chapter introduces a variation of the Sub-SELECT called an

inline view, also known as a dynamic view, table-expression, or

derived table.

From a syntax perspective, the basic observation is that an inline

view is a Sub-SELECT that is specified within a FROM-clause as

illustrated below.

The system executes the Sub-SELECT to derive an intermediate-

result table (the inline view). The keyword AS is used to assign

a name to this table. Then the Outer-SELECT will use this name to

reference the intermediate-result table.

The inline view disappears after the Outer-SELECT completes

execution.

This chapter begins with an overly simplistic tutorial sample

query. Subsequent sample queries will be more realistic.

SELECT ______

FROM (SELECT ______

 FROM ______

 WHERE ______) AS __

WHERE ______

Free SQL Book, Tim Martyn 744 Copyright Pending 2022

Mundane Tutorial Example

Sample Query 26.1: Reference the EMPLOYEE table. Only consider

employees who work in Department 20 and earn less than $8,000.00.

Display each employee’s name followed by an amount equal to his

salary plus $250.00.

For tutorial purposes, we use a roundabout method to satisfy this

query objective. Generate an intermediate-result table (an inline

view) called TEMP20 that contains the ENAME and SALARY values of

every employee who works in Department 20. Then reference TEMP20 to

display the ENAME and SALARY + $250.00 values for every row having

a SALARY that is less than $8,000.00.

ENAME SALARY + 250.00

MOE 2250.00

CURLY 3250.00

Syntax & Logic: The Sub-SELECT is specified in the FROM-clause and

is enclosed within parentheses. It produces an intermediate-result

table (the inline view) called TEMP20 that looks like:

 TEMP20

ENAME SALARY

MOE 2000.00

CURLY 3000.00

GEORGE 9000.00

Then the Outer-SELECT reduces to:

SELECT TEMP20.ENAME, TEMP20.SALARY+250.00

FROM TEMP20

WHERE TEMP20.SALARY <= 8000.00

Execution of this statement produces the final result. Then TEMP20

“goes away” when the statement terminates.

SELECT TEMP20.ENAME, TEMP20.SALARY+250.00

FROM (SELECT ENAME, SALARY

 FROM EMPLOYEE

 WHERE DNO = 20) AS TEMP20

WHERE TEMP20.SALARY < 8000.00

Free SQL Book, Tim Martyn 745 Copyright Pending 2022

Minimum of Maximum Values (“Mini-Max” Value)

Sample Query 9.13 noted that some systems do not allow you to nest

an aggregate function within another aggregate function. For

example, these systems would reject an aggregate function that looks

like: MIN (MAX (Column)). Specifying an inline view allows you to

bypass this limitation.

Sample Query 26.2: Reference the EMPLOYEE table. Determine the

maximum salary in each department. Then display the smallest

of these maximum values. (I.e., Display the “min of the

maxes.”)

MINIMAX

 500.00

Syntax: Within an inline view, you must assign a column alias to

any column that is derived by an expression or function. For this

reason, we assigned MAXSAL as the column-alias for the MAX (SALARY)

column.

Logic: The Sub-SELECT returns an intermediate-result table (the

inline view) called TMAXES that looks like:

TMAXES

DNO MAXSAL

10 2000.00

 20 9000.00

 40 500.00

Then the Outer-SELECT reduces to:

SELECT MIN (MAXSAL) MINIMAX

FROM TMAXES

Execution of this statement produces the final result. Thereafter

TMAXES is no longer available.

SELECT MIN (MAXSAL) MINIMAX

FROM (SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES

Free SQL Book, Tim Martyn 746 Copyright Pending 2022

Sample Query 26.3: Display all information about the highest paid

employee in every department that has at least one employee.

(Same as Sample Queries 23.14 and 25.1.)

ENO ENAME SALARY DNO

2000 LARRY 2000.00 10

4000 SHEMP 500.00 40

6000 GEORGE 9000.00 20

Logic: This is the same inline view (TMAXES) that was specified in

the previous Sample Query 26.2. It returns the same intermediate

result table called that looks like:

TMAXES

DNO MAXSAL

10 2000.00

 20 9000.00

 40 500.00

Then the EMPLOYEE TABLE is joined with TMAXES.

SELECT E.ENO, E.ENAME, E.SALARY, E.DNO

FROM EMPLOYEE E, TMAXES

WHERE E.DNO = TMAXES.DNO

AND E.SALARY = TMAXES.MAXSAL

If an EMPLOYEE row has a DNO value that equals TMAXES.DNO and a

SALARY value that equals TMAXES.MAXSAL, then this row corresponds

to the highest paid employee in the DNO department.

Alternative Solutions: Sample Queries 23.14, 25.1, and 27.3.

SELECT E.ENO, E.ENAME, E.SALARY, E.DNO

FROM EMPLOYEE E,

 (SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES

WHERE E.DNO = TMAXES.DNO

AND E.SALARY = TMAXES.MAXSAL

Free SQL Book, Tim Martyn 747 Copyright Pending 2022

Exercises

Solve the following exercises by coding inline views. These

exercises reference the EMPLOYEE table

26A. Determine the total salary for each department. Then display

the largest of these totals. The result should look like:

 LARGESTTOTAL

 14000.00

26B. Determine the average salary for each department. Then

display the smallest of these averages. The result should

look like:

 SMALLESTAVG

 500.00

26C. Display all information about the lowest paid employee in

each department. The result should look like:

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

26D. For each department, display all information about every

departmental employee who has a salary that is greater than

or equal to the average salary for the department. The result

should look like:

 ENO ENAME SALARY DNO

 2000 LARRY 2000.00 10

 4000 SHEMP 500.00 40

 6000 GEORGE 9000.00 20

Free SQL Book, Tim Martyn 748 Copyright Pending 2022

Multiple Inline Views

The following sample query specifies two inline views, TMAXES and

DMIN.

Sample Query 26.4: Whenever a department’s highest paid employee

has a salary that exceeds the smallest departmental budget,

display both DNO values (with column headings that distinguish

each value) along with the corresponding maximum salary and

minimum budget values.

 MAXSALDEPT MAXSAL MINBUDGETDEPT MINBUDGET

20 9000.00 30 7000.00

Syntax: The FROM-clause defines two inline views called TMAXES and

DMIN. A comma must separate the Sub-SELECT specification of each

inline view.

 FROM (SELECT . . .) AS TMAXES,

 (SELECT . . .) AS DIM

Logic: The idea is to generate two intermediate-result tables (two

inline views) and then join them by matching on a greater-than

comparison.

The Sub-SELECT for the first inline view is:

(SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES

SELECT TMAXES.DNO MAXSALDEPT, TMAXES.MAXSAL,

 DMIN.DNO MINBUDGETDEPT, DMIN.BUDGET MINBUDGET

FROM (SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES,

 (SELECT DNO, BUDGET

 FROM DEPARTMENT

 WHERE BUDGET = (SELECT MIN (BUDGET)

 FROM DEPARTMENT)) AS DMIN

WHERE TMAXES.MAXSAL > DMIN.BUDGET

Free SQL Book, Tim Martyn 749 Copyright Pending 2022

It creates an intermediate-result table that looks like:

TMAXES

DNO MAXSAL

10 2000.00

20 9000.00

40 500.00

The Sub-SELECT for the second inline view is:

(SELECT DNO, BUDGET

 FROM DEPARTMENT

 WHERE BUDGET = (SELECT MIN (BUDGET)

 FROM DEPARTMENT)) AS DMIN

It creates an intermediate-result table that looks like:

DMIN

DNO BUDGET

 30 7000.00

Then, the system produces the final result by joining the two

intermediate-result tables with the join-condition:

 TMAXES.MAXSAL > DMIN.BUDGET

Exercises:

26E1. Will this SELECT statement work if two departments have the

same minimal budget? Will it work if two departmental employees

have the same maximum salary?

26E2. Reference the PARTSUPP and LINEITEM tables. For each part

sold, the actual selling price (LIPRICE) is always greater than

or equal to the part’s purchase price (PSPRICE). Hence, a

part’s average selling price is always greater than or equal

to its average purchase price. Display information about any

part where the difference between these averages is less than

75 cents. For any such part, display its part number followed

by its average purchase price and average selling price. The

result should look like:

 PNO AVGPS AVGLI

 P7 3.00 3.50

Free SQL Book, Tim Martyn 750 Copyright Pending 2022

Inline View with One-Row and One-Column

The following inline view generates an intermediate-result table

(TEMP) with just one row and one column.

Sample Query 26.5: Same as Sample Query 23.16. Reference the

EMPLOYEE table. Consider the impact of adjusting each employee’s

salary to a value that is equal to the overall average of all

current salaries plus 5% of the employee’s current salary. Display

each employee number, name, current salary, and adjusted salary.

ENO ENAME SALARY ADJSAL

1000 MOE 2000.00 2916.66

2000 LARRY 2000.00 2916.66

3000 CURLY 3000.00 2966.66

4000 SHEMP 500.00 2841.66

5000 JOE 400. 00 2836.66

6000 GEORGE 9000.00 3266.66

Logic: The Sub-SELECT returns an intermediate-result table with one

row and one column that looks like:

 TEMP

 EMPAVGSAL

 2816.66

The Outer-SELECT does not specify a join-condition. Hence the system

executes a cross-product on EMPLOYEE and TEMP to produce the

following intermediate cross-product result:

ENO ENAME SALARY DNO EMPAVGSAL

1000 MOE 2000.00 20 2816.66

2000 LARRY 2000.00 10 2816.66

3000 CURLY 3000.00 20 2816.66

4000 SHEMP 500.00 40 2816.66

5000 JOE 400. 00 10 2816.66

 6000 GEORGE 9000.00 20 2816.66

Finally, the Outer-SELECT clause produces the final result.

Alternative Solutions: Sample Queries 23.16 and 27.5.

SELECT ENO, ENAME, SALARY,

 TEMP.EMPAVGSAL + (.05*SALARY) ADJSAL

FROM EMPLOYEE,

 (SELECT AVG (SALARY) EMPAVGSAL FROM EMPLOYEE) AS TEMP

Free SQL Book, Tim Martyn 751 Copyright Pending 2022

The following sample query uses coding methods introduced in the

previous two sample queries. It specifies two inline views, TEMP1

and TEMP2, where TEMP2 has just one row with one column.

Sample Query 26.6: Same as Sample Query 23.17. For each department

referenced in the EMPLOYEE table, display its department number

and its average departmental salary followed by a comment

indicating that the departmental average is less than, greater

than, or equal to the overall average salary.

DNO DEPTAVGSAL COMMENT

 10 1200.00 LESS THAN OVERALL AVERAGE SALARY

 20 4666.66 GREATER THAN OVERALL AVERAGE SALARY

 40 500.00 LESS THAN OVERALL AVERAGE SALARY

Syntax and Logic: Nothing New.

Alternative Solutions: Sample Query 23.17 and 27.6

SELECT TEMP1.DNO, TEMP1.DEPTAVGSAL,

 CASE

 WHEN TEMP1.DEPTAVGSAL < TEMP2.EMPAVGSAL

 THEN 'LESS THAN OVERALL AVERAGE SALARY'

 WHEN TEMP1.DEPTAVGSAL = TEMP2.EMPAVGSAL

 THEN 'EQUAL TO OVERALL AVERAGE SALARY'

 ELSE 'GREATER THAN OVERALL AVERAGE SALARY'

 END COMMENT

FROM

 (SELECT DNO, AVG (SALARY) DEPTAVGSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TEMP1,

 (SELECT AVG (SALARY) EMPAVGSAL FROM EMPLOYEE) AS TEMP2

Free SQL Book, Tim Martyn 752 Copyright Pending 2022

Identical Sub-SELECTs

The following sample query specifies two inline views, TMAXES1 and

TMAXES2, with identical Sub-SELECTs that generate identical

intermediate-result tables. Redundant inline views are usually

written by a person who does not know about the WITH-clause that

will be introduced in the following chapter.

Sample Query 26.7: Extend Sample Query 26.2 which asked you to

display the “min of the maximum” departmental salaries. Also

display the DNO value of the department that has this “mini-

max” value.

DNO MINIMAX

 40 500.00

Syntax & Logic: Nothing new. Both inline views happen to return

intermediate-result tables with the same data.

Common Error: To avoid coding redundant Sub-SELECTS, some users

make a common error by attempting to execute.

SELECT DNO, MAXSAL

FROM (SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES

WHERE MAXSAL = (SELECT MIN (MAXSAL) FROM TMAXES)

This statement will generate an error. The Sub-SELECT specified

within the WHERE-clause is not allowed to reference TMAXES (even

though it appears to be reasonable).

Alternative (Preferred) Solution: Sample Query 27.7.

SELECT TMAXES1.DNO, TMAXES1.MAXSAL MINIMAX

FROM (SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES1

WHERE TMAXES1.MAXSAL =

(SELECT MIN (MAXSAL)

 FROM (SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES2)

Free SQL Book, Tim Martyn 753 Copyright Pending 2022

Syntax Variations

When coding an inline view, some systems allow the following

variations in syntax.

You do not need to specify the keyword AS. For example, in Sample

Query 26.1, TEMP20 could be specified as shown below.

SELECT TEMP20.ENAME, TEMP20.SALARY+250.00

FROM (SELECT ENAME, SALARY

 FROM EMPLOYEE

 WHERE DNO = 20) TEMP20

WHERE TEMP20.SALARY < 8000.00

Furthermore, sometimes, an view does not need to have a name, as

illustrated below.

SELECT ENAME, SALARY+250.00

FROM (SELECT ENAME, SALARY

 FROM EMPLOYEE

 WHERE DNO = 20)

 WHERE SALARY < 8000.00

We generally discourage these syntactical variations. It is

conceptually cleaner to explicitly assign a name to aa inline view

using the keyword AS.

Exercise:

26F. Reference the EMPLOYEE table. Display the department number

and total salary of the department having the largest total

salary. The result should look like:

 DNO LARGESTTOTAL

 20 14000.00

Free SQL Book, Tim Martyn 754 Copyright Pending 2022

Summary

Primary Advantage: Inline views are very useful. Sometimes, when

you analyze a query objective, you might say to yourself “This

SELECT statement would simple if I had a table that looked like:”

Therefore, although you do not have any such table, you might be

able to generate the desired table as an intermediate-result table

by coding an inline view.

Inline View Specifies a Correlated Sub-SELECT: For tutorial

purposes, this chapter’s sample queries illustrated inline views

that specified regular (non-correlated) Sub-SELECTs. The following

statement illustrates that you can code an inline view (DMAXSAL)

that specifies a correlated Sub-SELECT. (The code for DMAXSAL was

explained in Sample Query 25.1.)

SELECT DMAXSAL.ENO, DMAXSAL.ENAME, DMAXSAL.SALARY

FROM (SELECT *

 FROM EMPLOYEE EX

 WHERE SALARY = (SELECT MAX (SALARY)

 FROM EMPLOYEE

 WHERE DNO = EX.DNO)) AS DMAXSAL

 WHERE DMAXSAL.SALARY > 5000.00

Terminology: We have been very casual in our use the term “inline

view.” Sometimes we use this term to refer to the Sub-SELECT per

se. Other times we use this term to refer to the intermediate-result

table that is generated by the Sub-SELECT.

“Temporary Table:” You might be inclined to think of an inline view

as a “temporary table.” While this term may be conceptually valid,

we do not use this term because some systems use it to refer to a

different (but similar) type of table. (Applications developers

should be interested in temporary tables. See Appendix 28B.)

Free SQL Book, Tim Martyn 755 Copyright Pending 2022

Summary Exercises

Solutions for the following exercises should specify inline views.

26G. Reference the EMPLOYEE table. Determine the average salary in

each department. Then display the largest of these averages.

The result should look like:

 MAXAVGSAL

 4666.66

26H. Reference the PRESERVE table. For each state, display the state

code and preserve’s number, name, acreage for every preserve

that is larger than the average preserve acreage for the state.

The result should look like:

 STATE PNO PNAME ACRES

 AZ 7 MULESHOE RANCH 49120

 MA 9 DAVID H. SMITH 830

 MA 12 MOUNT PLANTAIN 730

 MT 2 PINE BUTTE SWAMP 15000

26I. This exercise has the same query objective as Exercise 25Ma.

Your solution should specify an inline view.

 Reference the DEPARTMENT and EMPLOYEE tables. Assume that

management is considering adjusting each department’s budget.

Each new departmental budget might be changed to twice the

total salary of all employees who work in the department.

Before implementing this change, management asks you to

produce a report that displays each department’s number,

name, current budget, and the proposed new budget. If a

department does not have any employees, then display a null

value for the proposed new budget. The result should look

like:

 DNO DNAME BUDGET NEWDBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 -

 40 ENGINEERING 25000.00 1000.00

Free SQL Book, Tim Martyn 756 Copyright Pending 2022

26J. This exercise modifies the preceding Exercise 26I. (It also

has same query objective as Exercise 25N.) The user does not

want to see any null values in the report. Therefore, if a

department does not have any employees, the new budget should

be the same as the current budget. The result should look like:

 DNO DNAME BUDGET NEWDBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 7000.00

 40 ENGINEERING 25000.00 1000.00

 Code two solutions which specify inline views.

 The first solution should use the COALESCE function to

substitute the current BUDGET value for a null value in the

NEWBUDGET column.

 The second solution should specify a CASE-expression to

substitute the current BUDGET value for a null value in the

NEWBUDGET column.

26K. Extend Sample Query 26.3. (Display all information about the

highest paid employee in each department that has employees.)

Also display the department name along with the department

number. The result should look like:

ENO ENAME SALARY DNO DNAME

2000 LARRY 2000.00 10 ACCOUNTING

4000 SHEMP 500.00 40 ENGINEERING

6000 GEORGE 9000.00 20 INFO. SYS.

26L. Same query objective as Exercise 23S. Consider changing each

DEPARTMENT.BUDGET value to a value that is equal to the largest

BUDGET value minus 10% of the department’s current BUDGET

value. Display each department number, name, current budget,

and the adjusted budget. (Hint: Review Sample Query 26.5) The

result should look like:

 DNO DNAME BUDGET ADJBUDGET

 10 ACCOUNTING 75000.00 67500.00

 20 INFO. SYS. 20000.00 73000.00

 30 PRODUCTION 7000.00 74300.00

 40 ENGINEERING 25000.00 72500.00

Free SQL Book, Tim Martyn 757 Copyright Pending 2022

26M. Reference the PARTSUPP and LINEITEM tables. For each part,

display its part number, its largest purchase price, and its

lowest selling price, if this largest purchase price is

greater than its lowest selling price. The result should look

like:

PNO MAXPAID MINSOLD

P3 12.50 12.00

P7 3.50 3.00

P8 5.00 4.00

 Hint: Specify two inline views that look like:

26N. Specify an inline view to satisfy Sample Query 25.8. Reference

the EMPLOYEE table. Consider adjusting each employee’s salary

to a value that is equal to the employee’s departmental average

salary plus 5% of the employee’s current salary. Display each

employee number, name, and current salary, followed by the

adjusted salary. The result should look like:

ENO ENAME SALARY ADJUSTEDSALARY

1000 MOE 2000.00 4766.66

2000 LARRY 2000.00 1300.00

3000 CURLY 3000.00 4816.66

4000 SHEMP 500.00 525.00

5000 JOE 400.00 1220.00

6000 GEORGE 9000.00 5116.66

BOUGHT

PNO MAXPS

P1 11.00

P3 12.50

P4 12.00

P5 11.00

P6 4.00

P7 3.50

P8 5.00

SOLD

PNO MINLI

P1 11.50

P3 12.00

P4 13.00

P5 11.00

P6 5.00

P7 3.00

P8 4.00

Free SQL Book, Tim Martyn 758 Copyright Pending 2022

26O. Use an inline view to enhance Sample Query 23.16. Reference

the EMPLOYEE table. Consider the impact of adjusting each

employee’s salary to a value that is equal to the overall

average of all current salaries plus 5% of the employee’s

current salary. Display each employee number, name, current

salary, and adjusted salary. Also, display a narrative label

“SALARY INCREASED” or “SALARY DECREASED” or “NO CHANGE” in

the last column in result table. The result should look like:

ENO ENAME SALARY ADJSAL NARRATIVE

1000 MOE 2000.00 2916.66 SALARY INCREASED

2000 LARRY 2000.00 2916.66 SALARY INCREASED

3000 CURLY 3000.00 2966.66 SALARY DECREASED

4000 SHEMP 500.00 2841.66 SALARY INCREASED

5000 JOE 400. 00 2836.66 SALARY INCREASED

6000 GEORGE 9000.00 3266.66 SALARY DECREASED

26P. Reference the PRESERVE table. For each row, if its FEE value

is not zero, calculate the ratio of ACRES divided by FEE. The

result should look like:

 PNAME RATIO

 HASSAYAMPA RIVER 220.00

 RAMSEY CANYON 126.66

 PAPAGONIA-SONOITA CREEK 400.00

 Review the page after Sample Query 7.6 and Exercise 23Zi.

Your solution should specify an inline view.

26Q. Code an alternative solution for Sample Query 23.11. Do not

display information about any employee with a SALARY value of

2000.00. For other employees, display the ENO, ENAME, SALARY,

and ratio of SALARY/(SALARY–2000.00) if this ratio is greater

than or equal to 2.00. (Notice that, when a SALARY value equals

2000.00, we have a divide-by-zero problem.)

Free SQL Book, Tim Martyn 759 Copyright Pending 2022

Chapter

 27

WITH-Clause:

Common Table Expressions

This chapter introduces the WITH-clause which defines a Common

Table Expression (CTE).

A CTE offers the same basic functionality as an inline view. To

demonstrate this point, the first seven sample queries in this

chapter have the same query objectives as the first seven sample

queries in the preceding Chapter 26. Furthermore, Sample Query

27.7 will show that a CTE offers an additional advantage not

offered by an inline view.

The following skeleton-code illustrates a WITH-clause that defines

a CTE called HAPPY.

The WITH-clause is specified before the Main-SELECT. The above

WITH-clause generates a CTE (an intermediate-result table) called

HAPPY. HAPPY is subsequently referenced within the Main-SELECT,

and, like an inline view, disappears when the statement terminates.

WITH HAPPY AS

 (SELECT ______

 FROM ______

 WHERE ______)

SELECT ______

FROM HAPPY

WHERE ______

CTE

“Main-SELECT”

Free SQL Book, Tim Martyn 760 Copyright Pending 2022

Mundane Tutorial Example

Sample Query 26.1 defined an intermediate-result table (TEMP20) by

coding an inline view where the Sub-SELECT was coded in a FROM-

clause. The following sample query defines the same intermediate-

result table with the same name (TEMP20) by coding the same Sub-

SELECT within a WITH-clause.

Sample Query 27.1: Same as Sample Query 26.1. Generate a CTE (an

intermediate-result table) called TEMP20 that contains the ENAME

and SALARY values of every employee who works in Department 20.

Then reference TEMP20 to display the ENAME and SALARY + $250.00

values for every row with a SALARY value that is less than

$8,000.00.

ENAME SALARY + 250.00

MOE 2250.00

CURLY 3250.00

Syntax: The basic syntax of the WITH-clause is:

 WITH CTE-name AS (SELECT . . .)

Here, TEMP20 inherits its column-names (ENAME and SALARY) from the

Sub-SELECT. The following Sample Query 27.2 will show how to

explicitly assign column-names to a CTE.

Logic: The intermediate-result generated by the CTE looks like:

 TEMP20

 ENAME SALARY

 MOE 2000.00

 CURLY 3000.00

 GEORGE 9000.00

Execution of the Main-SELECT that references TEMP20 produces the

final result.

WITH TEMP20 AS

(SELECT ENAME, SALARY

 FROM EMPLOYEE

 WHERE DNO = 20)

SELECT ENAME, SALARY + 250.00

FROM TEMP20

WHERE SALARY < 8000.00

Free SQL Book, Tim Martyn 761 Copyright Pending 2022

Minimum of Maximum Values (“Mini-Max” Value)

Sample Query 27.2: Same as Sample Query 26.2. Reference the EMPLOYEE

table. Determine the maximum salary in each department. Then

display the smallest of these maximum values. (I.e., Display

the “min of the maxes.”)

MINMAX

500.00

Syntax: Unlike the preceding sample query, the CTE name (TMAXES) is

followed by column names (DNO, MAXSAL) specified within parentheses.

In particular, if the Sub-SELECT generates a derived value (e.g.,

MAX (SALARY)), then a column-name must be assigned. Alternatively,

a column-name can be assigned within the Sub-SELECT as shown below.

WITH TMAXES AS

 (SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT MIN(MAXSAL) MINMAX

FROM TMAXES

Logic: The intermediate-result generated by the CTE looks like:

TMAXES

DNO MAXSAL

10 2000.00

 20 9000.00

 40 500.00

Executing the Main-SELECT against TMAXES produces the final

result.

Alternative Solutions: Sample Queries 23.17 and 26.2.

WITH TMAXES (DNO, MAXSAL) AS

 (SELECT DNO, MAX (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT MIN(MAXSAL) MINMAX

FROM TMAXES

Free SQL Book, Tim Martyn 762 Copyright Pending 2022

The following sample query has already been solved by coding a

regular Sub-SELECT that returns multiple columns (Sample Query

23.14), a correlated Sub-SELECT (Sample Query 25.1), and an inline

view (Sample Query 26.3). Many users would consider the following

statement that codes a CTE to be the simplest solution.

Sample Query 27.3: Same as Sample Query 26.3. Display all

information about the highest paid employee in each department

that has at least one employee.

ENO ENAME SALARY DNO

2000 LARRY 2000.00 10

4000 SHEMP 500.00 40

6000 GEORGE 9000.00 20

Logic: This is the CTE (TMAXES) that was specified in the previous

Sample Query 27.2. The Sub-SELECT returns an intermediate result

table called TMAXES that looks like:

TMAXES

DNO MAXSAL

 10 2000.00

 20 9000.00

 40 500.00

TMAXES is joined with EMPLOYEE. If an EMPLOYEE row has a DNO value

that equals TMAXES.DNO, and a SALARY value that equals

TMAXES.MAXSAL, then this EMPLOYEE row corresponds to the highest

paid employee in the DNO department.

Alternative Solution: Sample Query 26.3.

WITH TMAXES (DNO, MAXSAL) AS

(SELECT DNO, MAX (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT ENO, ENAME, SALARY, EMPLOYEE.DNO

FROM EMPLOYEE, TMAXES

WHERE EMPLOYEE.DNO = TMAXES.DNO

AND EMPLOYEE.SALARY = TMAXES.MAXSAL

Free SQL Book, Tim Martyn 763 Copyright Pending 2022

Exercises

The following exercises have the same query objectives as Exercises

26A-26D. Solve by coding WITH-clauses. These exercises reference

the EMPLOYEE table.

27A. Determine the total salary for each department. Then display

the largest of these totals. The result should look like:

 LARGESTTOTAL

 14000.00

27B. Determine the average salary for each department. Then

display the smallest of these averages. The result should

look like:

 SMALLESTAVG

 500.00

27C. Display all information about the lowest paid employee in

each department. The result should look like:

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

27D. For each department, display all information about every

departmental employee who has a salary that is greater than

or equal to the average salary for the department. The result

should look like:

 ENO ENAME SALARY DNO

 2000 LARRY 2000.00 10

 4000 SHEMP 500.00 40

 6000 GEORGE 9000.00 20

Free SQL Book, Tim Martyn 764 Copyright Pending 2022

WITH-Clause Generates Multiple CTEs

The following WITH-clause specifies multiple CTEs.

Sample Query 27.4: Same as Sample Query 26.4. Whenever a

department’s highest paid employee has a salary that exceeds the

smallest departmental budget, we want to display both DNO values

along with the corresponding maximum salary and minimum budget

values.

 MAXSALDEPT MAXSAL MINBUDGETDEPT MINBUDGET

20 9000.00 30 7000.00

Syntax & Logic: The WITH-clause specifies two CTEs called TMAXES

and DMIN. A comma must separate the specification of each CTE.

Then the Main-SELECT joins these CTEs.

Exercise:

27E. Same as Exercise 26E2. Reference the PARTSUPP and LINEITEM

tables. For each part sold, the actual selling price (LIPRICE)

is always greater than or equal to the part’s purchase price

(PSPRICE). Hence, a part’s average selling price is always

greater than or equal to its average purchase price. Display

information about any part where the difference between these

averages is less than 75 cents. For any such part, display its

part number followed by its average purchase price and average

selling price. The result should look like:

 PNO AVGPS AVGLI

 P7 3.00 3.50

WITH

 TMAXES (DNO, MAXSAL) AS

(SELECT DNO, MAX (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO),

DMIN (DNO, BUDGET) AS

 (SELECT DNO, BUDGET

 FROM DEPARTMENT

 WHERE BUDGET = (SELECT MIN (BUDGET)

 FROM DEPARTMENT))

SELECT TMAXES.DNO MAXSALDEPT, TMAXES.MAXSAL,

 DMIN.DNO MINBUDGETDEPT, DMIN.BUDGET MINBUDGET

FROM TMAXES, DMIN

WHERE TMAXES.MAXSAL > DMIN.BUDGET

Free SQL Book, Tim Martyn 765 Copyright Pending 2022

CTE with One-Row and One-Column

The following WITH-clause generates a CTE called TEMP with just one

row and one column.

Sample Query 27.5: Same as Sample Query 26.5. Reference the

EMPLOYEE table. Consider the impact of adjusting each employee’s

salary to a value that is equal to the overall average of all

current salaries plus 5% of the employee’s current salary. Display

each employee number, name, current salary, and adjusted salary.

ENO ENAME SALARY ADJSAL

1000 MOE 2000.00 2916.66

2000 LARRY 2000.00 2916.66

3000 CURLY 3000.00 2966.66

4000 SHEMP 500.00 2841.66

5000 JOE 400. 00 2836.66

6000 GEORGE 9000.00 3266.66

Logic: The intermediate-result generated by the CTE looks like:

 TEMP

 EMPAVGSAL

 2816.66

The Main-SELECT does not specify a join-condition. Hence the system

executes a cross-product on EMPLOYEE and TEMP to produce the

following cross-product intermediate result:

ENO ENAME SALARY DNO EMPAVGSAL

1000 MOE 2000.00 20 2816.66

2000 LARRY 2000.00 10 2816.66

3000 CURLY 3000.00 20 2816.66

4000 SHEMP 500.00 40 2816.66

5000 JOE 400. 00 10 2816.66

 6000 GEORGE 9000.00 20 2816.66

Finally, the Main-SELECT produces the final result.

Alternative Solutions: Sample Queries 23.16 and 26.5.

WITH TEMP (EMPAVGSAL) AS

 (SELECT AVG (SALARY)FROM EMPLOYEE)

SELECT ENO, ENAME, SALARY,

 TEMP.EMPAVGSAL + (.05*SALARY) ADJSAL

FROM EMPLOYEE, TEMP

Free SQL Book, Tim Martyn 766 Copyright Pending 2022

The following sample query uses coding techniques that were

introduced in the previous two sample queries. It specifies a WITH-

clause that defines two common table expressions, TEMP1 and TEMP2.

Note that TEMP2 has just one row with one column.

Sample Query 27.6: Same as Sample Query 26.6. For each department

referenced in the EMPLOYEE table, display its department number

and its average departmental salary followed a comment indicating

that the departmental average is less than, greater than, or equal

to the overall average salary.

DNO DEPTAVSAL COMMENTS

 10 1200.00 LESS THAN OVERALL AVERAGE SALARY

 20 4666.66 GREATER THAN OVERALL AVERAGE SALARY

 40 500.00 LESS THAN OVERALL AVERAGE SALARY

Syntax and Logic: Nothing New.

Alternative Solutions: Sample Queries 23.17 and 26.6.

WITH TEMP1 (DNO, DEPTAVGSAL) AS

 (SELECT DNO, AVG (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO),

 TEMP2 (EMPAVGSAL) AS

 (SELECT AVG (SALARY) FROM EMPLOYEE)

SELECT TEMP1.DNO, TEMP1.DEPTAVGSAL,

 CASE

 WHEN TEMP1.DEPTAVGSAL < TEMP2.EMPAVGSAL

 THEN 'LESS THAN OVERALL AVERAGE SALARY'

 WHEN TEMP1.DEPTAVGSAL = TEMP2.EMPAVGSAL

 THEN 'EQUAL TO OVERALL AVERAGE SALARY'

 ELSE 'GREATER THAN OVERALL AVERAGE SALARY'

 END COMMENTS

FROM TEMP1, TEMP2

Free SQL Book, Tim Martyn 767 Copyright Pending 2022

Multiple References to Same CTE

The two inline views in Sample Query 26.7 coded identical Sub-

SELECTs that generated identical intermediate-result tables. The

following WITH-clause allows you to avoid this undesirable

redundancy.

Sample Query 27.7: Same as Sample Query 26.7. Display the “minimum

of the maximum” departmental salaries and the DNO value of the

department that has this “mini-max” value.

DNO MINIMAX

40 500.00

Syntax & Logic: The WITH-clause codes a CTE called TMAXES that is

referenced twice in the Main-SELECT.

Alternative Solution: Sample Query 26.7.

Exercise:

27F. Same as Exercise 26F. Display the department number and total

salary of the department having the largest total salary. The

result should look like:

 DNO LARGESTTOTAL

 20 14000.00

WITH TMAXES AS

(SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT DNO, MAXSAL MINIMAX

FROM TMAXES

WHERE MAXSAL = (SELECT MIN (MAXSAL)

 FROM TMAXES)

Free SQL Book, Tim Martyn 768 Copyright Pending 2022

Summary

When compared to an inline view, a Common Table Expression offers

four potential advantages.

1. The Main-SELECT can specify multiple references to same CTE.
This advantage was illustrated in previous Sample Query 27.7.

The WITH-clause defined TMAXES that was referenced twice in

the Main-SELECT. This advantage does not apply to inline

views.

2. CTEs may be friendlier: Defining an intermediate-result table
just once at the beginning of a statement seems to be

conceptually tidier than defining an inline view in a FROM-

clause “somewhere in the middle” of a statement. Also,

regarding the previous advantage, the SELECT statement for

Sample Query 27.7 is smaller and simpler than the statement

for Sample Query 26.7 because the CTE is only specified once.

3. Possible efficiency benefits: Sample Query 26.7 defined two
identical Sub-SELECTs. Some systems might execute both of

these Sub-SELECTs. This double execution of the same Sub-

SELECT is obviously inefficient. This possible inefficiency

would not apply to a CTE where its Sub-SELECT is (presumably)

only executed once.

4. Recursive CTEs: The WITH-clause can be used to define a

“recursive” CTE, a topic that will be introduced in Chapter

30.

Finally, you must understand both inline views and common table

expressions, especially if you will read SELECT statements that were

written by other users.

Free SQL Book, Tim Martyn 769 Copyright Pending 2022

Summary Exercises

The following Exercises 27G-27Q have the same query objectives as

Exercises 26G-26Q. Utilize the WITH-clause to satisfy these query

objectives.

27G. Reference the EMPLOYEE table. Determine the average salary in

each department. Then display the largest of these averages.

The result should look like:

 MAXAVGSAL

 4666.66

27H. Reference the PRESERVE table. For each state, display the state

code and preserve’s number, name, acreage for every preserve

that is larger than the average preserve acreage for the state.

The result should look like:

 STATE PNO PNAME ACRES

 AZ 7 MULESHOE RANCH 49120

 MA 9 DAVID H. SMITH 830

 MA 12 MOUNT PLANTAIN 730

 MT 2 PINE BUTTE SWAMP 15000

27I. This exercise has the same query objective as Exercises 25M1

and 26I. Reference the DEPARTMENT and EMPLOYEE tables. Assume

that management is considering adjusting each department’s

budget. Each new departmental budget might be changed to twice

the total salary of all employees who work in the department.

Before implementing this change, management asks you to produce

a report that displays each department’s number, name, current

budget, and the proposed new budget. If a department does not

have any employees, then display a null value for the proposed

new budget. The result should look like:

 DNO DNAME BUDGET NEWDBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 -

 40 ENGINEERING 25000.00 1000.00

Free SQL Book, Tim Martyn 770 Copyright Pending 2022

27J. This exercise modifies the preceding Exercise 27I. (It also

has same query objective as Exercise 25N.) The user does not

want to see any null values in the report. Therefore, if a

department does not have any employees, the new budget should

be the same as the current budget. The result should look like:

 DNO DNAME BUDGET NEWDBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 7000.00

 40 ENGINEERING 25000.00 1000.00

 Code two solutions which specify WITH-clauses.

 The first solution should use the COALESCE function to

substitute the current BUDGET value for a null value in the

NEWBUDGET column.

 The second solution should specify a CASE-expression to

substitute the current BUDGET value for a null value in the

NEWBUDGET column.

27K. Extend Sample Query 27.3. (Display all information about the
highest paid employee in each department that has at least one

employee.) Also display the department name along with the

department number. The result should look like:

ENO ENAME SALARY DNO DNAME

2000 LARRY 2000.00 10 ACCOUNTING

4000 SHEMP 500.00 40 ENGINEERING

6000 GEORGE 9000.00 20 INFO. SYS.

27L. Consider changing each DEPARTMENT.BUDGET value to a value that

is equal to the largest BUDGET value minus 10% of the

department’s current BUDGET value. Display each department

number, name, current budget, and the adjusted budget. (Hint:

Review Sample Query 27.5) The result should look like:

 DNO DNAME BUDGET ADJBUDGET

 10 ACCOUNTING 75000.00 67500.00

 20 INFO. SYS. 20000.00 73000.00

 30 PRODUCTION 7000.00 74300.00

 40 ENGINEERING 25000.00 72500.00

Free SQL Book, Tim Martyn 771 Copyright Pending 2022

27M. Reference the PARTSUPP and LINEITEM tables. For each part,

display its part number, its largest purchase price, and its

lowest selling price, if this largest purchase price is

greater than its lowest selling price. The result should look

like:

PNO MAXPAID MINSOLD

P3 12.50 12.00

P7 3.50 3.00

P8 5.00 4.00

 Hint: Specify two common table expressions for the following

tables that look like:

27N. Specify a WITH-clause to satisfy Sample Query 25.8. Reference

the EMPLOYEE table. Consider adjusting each employee’s salary

to a value that is equal to the employee’s departmental average

salary plus 5% of the employee’s current salary. Display each

employee number, name, and current salary, followed by the

adjusted salary. The result should look like:

ENO ENAME SALARY ADJUSTEDSALARY

1000 MOE 2000.00 4766.66

2000 LARRY 2000.00 1300.00

3000 CURLY 3000.00 4816.66

4000 SHEMP 500.00 525.00

5000 JOE 400.00 1220.00

6000 GEORGE 9000.00 5116.66

BOUGHT

PNO MAXPS

P1 11.00

P3 12.50

P4 12.00

P5 11.00

P6 4.00

P7 3.50

P8 5.00

SOLD

PNO MINLI

P1 11.50

P3 12.00

P4 13.00

P5 11.00

P6 5.00

P7 3.00

P8 4.00

Free SQL Book, Tim Martyn 772 Copyright Pending 2022

27O. Reference the EMPLOYEE table. Consider the impact of adjusting

each employee’s salary to a value that is equal to the overall

average of all current salaries plus 5% of the employee’s

current salary. Display each employee number, name, current

salary, and adjusted salary. Also, display a narrative label

“SALARY INCREASED” or “SALARY DECREASED” or “NO CHANGE” in

the last column in result table. The result should look like:

ENO ENAME SALARY ADJSAL NARRATIVE

1000 MOE 2000.00 2916.66 SALARY INCREASED

2000 LARRY 2000.00 2916.66 SALARY INCREASED

3000 CURLY 3000.00 2966.66 SALARY DECREASED

4000 SHEMP 500.00 2841.66 SALARY INCREASED

5000 JOE 400. 00 2836.66 SALARY INCREASED

6000 GEORGE 9000.00 3266.66 SALARY DECREASED

.

27P. Reference the PRESERVE table. For each row, if its FEE value

is not zero, calculate the ratio of ACRES divided by FEE. The

result should look like:

 PNAME RATIO

 HASSAYAMPA RIVER 220.00

 RAMSEY CANYON 126.66

 PAPAGONIA-SONOITA CREEK 400.00

 Hint: Review the page after Sample Query 7.6 and Exercise

26P. .

27Q. Code an alternative solution for Sample Query 23.11 (and

Exercise 26Q). Do not display information about any employee

with a SALARY value of 2000.00. For other employees, display

the ENO, ENAME, SALARY, and ratio of SALARY/(SALARY–2000.00)

if this ratio is greater than or equal to 2.00. (Notice that,

when a SALARY value equals 2000.00, we have a divide-by-zero

problem.)

Free SQL Book, Tim Martyn 773 Copyright Pending 2022

27R. Same as Sample Query 20.15: Display the following information

about regions, states, customers, purchase-orders, and line-

items.

• Display the region number and name of all regions, including
regions without any states.

• Display the code and name for all states, including states
without any customers.

• Display customer number and name for those customers that
have at least one purchase-order.

• Display each customer’s purchase-order numbers, including
numbers for purchase-orders that do not have any line-

items.

• Display each line-item’s line-number and part-number

values.

Specify a CTE called CUST_WITH_PO which executes an INNER JOIN

to join the CUSTOMER and PUR_ORDER tables. Then the following code

would represent a sequence of join-operations that traverse a five-

level hierarchy.

 FROM REGION R

 LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUST_WITH_PO CWPO

 ON ST.STCODE = CWPO.STCODE

 LEFT OUTER JOIN LINEITEM LI

 ON PO.PONO = LI.PONO

LOJ

LOJ

LOJ

STATE

REGION

CUST_WITH_PO

LINEITEM

Free SQL Book, Tim Martyn 774 Copyright Pending 2022

27S. Same as Sample Query 20.16: Display the following information

about regions, states, customers, purchase-orders, and line-

items.

• Display the region number of any region that has at least
one state.

• Display the code of any state that has at least one customer.

• Display the number and name of all customers, including
customers without purchase- orders.

• Display each customer’s purchase-order numbers if the

purchase-order has at least one line-item.

• Display the line-number and corresponding part-number of
each line-item.

Think of the INNER JOIN operations forming two intermediate join-

results in tables called MATCHING_R_ST_C and MATCHING_PO_LI. Then

the following code would represent a sequence of LEFT OUTER JOIN

operations that traverse a four-level hierarchy.

 FROM MATCHING_R_ST_C RSTC

 LEFT OUTER JOIN MATCHING_PO_LI POLI

 ON RSTC.CNO = POLI.CNO

LOJ

MATCHING_PO_LI

MATCHING_R_ST_C

Free SQL Book, Tim Martyn 775 Copyright Pending 2022

Chapter

 28
CREATE VIEW Statement

This is an optional chapter that is primarily directed towards

application developers. However, super-users are invited to read

on.

Assume you find yourself frequently coding the same Sub-SELECT to

specify an inline view or a common table expression. It may be

more convenient to execute a CREATE VIEW statement that permanently

defines the Sub-SELECT and assigns it a name for future reference.

For example, assume you have a table called JUNK. To create a view

on this table called HAPPY, you could execute a CREATE VIEW

statement that looks like:

Thereafter, you can execute any number of SELECT statements that

reference the same HAPPY view as shown below.

These SELECT statements illustrate reuse of the HAPPY table (view),

versus recoding the same inline view or CTE in multiple SELECT

statements.

Your DBA might not grant you permission to execute a CREATE VIEW

statement. Instead, she may offer to create the HAPPY view for

you. This could be productive because the DBA may want to allow

other users to access HAPPY.

CREATE VIEW HAPPY

AS SELECT A, B, C

 FROM JUNK

 WHERE X = 100

SELECT * FROM HAPPY;

SELECT * FROM HAPPY WHERE B = C;

SELECT A, C FROM HAPPY WHERE B = 9;

Free SQL Book, Tim Martyn 776 Copyright Pending 2022

CREATE VIEW Statement

The following CREATE VIEW statement specifies the Sub-SELECT that

defined the TEMP20 inline view in Sample Query 26.1.

Sample Statement 28.1: Create a view called TEMP20 that contains

the ENAME, and SALARY columns from the EMPLOYEE table and

only contains those rows with a DNO value of 20.

System Response: The system should respond with a message

indicating the successful creation of a view. Verify the creation

of this view by executing: SELECT * FROM TEMP20. The result table

should look like:

ENAME SALARY

MOE 2000.00

CURLY 3000.00

GEORGE 9000.00

Syntax: The basic CREATE VIEW syntax is:

 CREATE VIEW view-name AS

 SELECT ...

 FROM ...

 WHERE ...

In this example, the TEMP20 view inherits its column-names (ENAME,

and SALARY) from the EMPLOYEE table. Sample Statement 28.4 will

show how to explicitly assign names to a view’s columns.

Logic: The CREATE VIEW statement assigns a name (TEMP20) to the

Sub-SELECT and saves the named Sub-SELECT in the system’s data

dictionary.

Terminology: A “base table” is created by a CREATE TABLE statement.

A “view” is created by a CREATE VIEW statement. A view is a “virtual

table;” it is not a base table. Where appropriate, we will use the

generic term “table” to encompass both base tables and views.

CREATE VIEW TEMP20

AS SELECT ENAME, SALARY

 FROM EMPLOYEE

 WHERE DNO = 20

Free SQL Book, Tim Martyn 777 Copyright Pending 2022

SELECT Statement References a View

The following two sample queries demonstrate that a SELECT statement

references a view just like any other table.

Sample Query 28.2: Reference the TEMP20 table (view). Display the

ENAME column followed by SALARY + 250.00 for any row with a

SALARY value that is less than 8,000.00. (Same query objective

as Sample Queries 26.1 and 27.1).

ENAME SALARY+250.00

MOE 2250.00

CURLY 3250.00

Sample Query 28.3: Reference TEMP20. Display the ENAME column

followed by SALARY+100.00 for any row where its ENAME value

ends with the letter E.

ENAME SALARY+100.00

 MOE 2100.00

 GEORGE 9100.00

Logic: When TEMP20 was created, the system did not immediately

execute its Sub-SELECT and save the result table. Instead, when

the above sample queries were executed, the system accessed the

data dictionary to retrieve the Sub-SELECT associated with TEMP20,

and then it executed this Sub-SELECT to produce the TEMP20

intermediate-result table.

The system executed the view’s Sub-SELECT twice, once for each of

the above sample queries. It did not execute the Sub-SELECT once

and save the result. This approach is necessary because the

underlying base table (EMPLOYEE) could have been changed sometime

after you executed Sample Query 28.2 but before you executed Sample

Query 28.3.

Comment: Unless told otherwise, some users may (incorrectly) think

that TEMP20 is just another base table. This should not cause any

problems.

SELECT ENAME, SALARY+250.00

FROM TEMP20

WHERE SALARY < 8000.00

SELECT ENAME, SALARY+100.00

FROM TEMP20

WHERE ENAME LIKE '%E'

Free SQL Book, Tim Martyn 778 Copyright Pending 2022

Renaming Columns in Views

The CREATE VIEW statement shown in Sample Statement 28.1 illustrated

that, sometimes, you do not need to explicitly assign column-names

in a view. The next example illustrates a circumstance where you

must explicitly assign column-names.

Sample Statement 28.4: Create a view called DEPTSTATSV. For each

department that has at least one employee, DEPTSTATSV should

contain the department’s DNO value, a column called MAXSAL with

the largest departmental salary, a column called MINSAL with the

smallest departmental salary, and a column called TOTALSAL with

the sum of departmental salaries.

System Response: The system should respond with a message

indicating the successful creation of a view. Verify this by

executing: SELECT * FROM DEPTSTATSV. The result should look like:

 DNO MAXSAL MINSAL TOTALSAL

10 2000.00 400.00 2400.00

20 9000.00 2000.00 14000.00

 40 500.00 500.00 500.00

Syntax: CREATE VIEW ____ (COL1, COL2, COL3, ...)

 AS SELECT...

 FROM ...

 WHERE ...

This view requires the explicit assignment of column-names because

some of the view’s columns (e.g., MAXSAL, MINSAL, and TOTALSAL)

contain derived data (i.e., data that is derived by executing an

expression or function).

View Naming Convention: Notice the letter V in DEPTSTATSV. Some

designers will specify the letter V as the first or last letter in

a view’s name. This convention is optional. Notice that we did not

follow this convention when we created the DEPT20 view.

CREATE VIEW DEPTSTATSV (DNO, MAXSAL, MINSAL, TOTALSAL)

AS

 SELECT DNO, MAX(SALARY), MIN(SALARY), SUM(SALARY)

 FROM EMPLOYEE

 GROUP BY DNO

Free SQL Book, Tim Martyn 779 Copyright Pending 2022

The following sample queries reference the DEPTSTATSV view.

Sample Query 28.5: Reference DEPTSTATSV. Display the smallest MAXSAL

value. (I.e., Display the “mini-max” of departmental salaries.

This is the same query objective as Sample Queries 26.2 and

27.2)

MINMAX

 500.00

Sample Query 28.6: Reference DEPTSTATSV. Display the mini-max

departmental salary along with DNO value of the department that

has this mini-max value. (Same query objective as Sample

Queries 26.5 and 27.5).

DNO MINIMAX

40 500.00

Sample Query 28.7: Reference the EMPLOYEE and DEPTSTATSV tables.

Display all information about the highest paid employee in each

department. (Same query objective as Sample Queries 26.3 and

27.3).

 ENO ENAME SALARY DNO

2000 LARRY 2000.00 10

4000 SHEMP 500.00 40

6000 GEORGE 9000.00 20

SELECT E.ENO, E.ENAME, E.SALARY, E.DNO

FROM EMPLOYEE E, DEPTSTATSV D

WHERE E.DNO = D.DNO

AND E.SALARY = D.MAXSAL

SELECT MIN (MAXSAL) FROM DEPTSTATSV

SELECT DNO, MAXSAL MINIMAX

FROM DEPTSTATSV

WHERE MAXSAL = (SELECT MIN (MAXSAL)

 FROM DEPTSTATSV)

Free SQL Book, Tim Martyn 780 Copyright Pending 2022

View Definition Can Specify Almost Any SQL Operation

The following CREATE VIEW statement effectively pre-joins the

EMPLOYEE and DEPARTMENT tables to represent data about employees

and related departments.

Sample Statement 28.8: Create a view called EMPDEPTV that contains

data from the EMPLOYEE and DEPARTMENT tables. The view should

contain the employee number, name, and salary of every employee

along with the number, name, and budget of the employee’s

department.

System Response: The system should respond with a message

indicating the successful creation of the view. Verify the creation

of this view by executing: SELECT FROM EMPDEPTV. The result should

look like:

ENAME ENO SALARY DNO DNAME BUDGET

MOE 1000 2000.00 20 INFO. SYS. 20000.00

LARRY 2000 2000.00 10 ACCOUNTING 75000.00

CURLY 3000 3000.00 20 INFO. SYS. 20000.00

SHEMP 4000 500.00 40 ENGINEERING 25000.00

JOE 5000 400.00 10 ACCOUNTING 75000.00

GEORGE 6000 9000.00 20 INFO. SYS. 20000.00

 ,

Syntax: A view’s Sub-SELECT can specify most SELECT clauses (e.g.,

WHERE, HAVING, INNER JOIN, OUTER JOIN, UNION, etc.). However, there

is an issue regarding the ORDER BY clause. In Chapter 1 we noted

that tables do not have any predefined sort sequence; and, a view

is a virtual table. Hence, in principle, the CREATE VIEW statement

should not specify an ORDER BY clause. But! Some systems (e.g.,

ORACLE and SQL Server) allow you to specify an ORDER BY clause in a

CREATE VIEW statement. Other systems (e. g., DB2) will reject the

ORDER BY clause.

Logic: The following page illustrates multiple SELECT statements

that reference EMPDEPTV. These statements are smaller and simpler

than the corresponding SELECT statements shown in Chapters 16 and

17 because they do not have to specify join-operations.

CREATE VIEW EMPDEPTV

AS

SELECT E.ENAME, E.ENO, E.SALARY, E.DNO,

 D.DNAME, D.BUDGET

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DNO = D.DNO

Free SQL Book, Tim Martyn 781 Copyright Pending 2022

Friendlier SELECT Statements

The following SELECT statements do not specify join-operations

because EMPDEPTV has effectively pre-joined the DEPARTMENT and

EMPLOYEE tables.

Sample Query 16.4: For each employee earning a salary that is less than

$3,000.00, display the name of his department followed by his name and

salary.

SELECT DNAME, ENAME, SALARY FROM EMPDEPTV

WHERE SALARY < 3000.00

Sample Query 16.5: Only consider employees having a salary less than

$999.00. If any such employee works for a department having a budget

that is less than or equal to $75,000.00, display the department’s DNO

and BUDGET values along with the employee’s ENAME and SALARY values.

SELECT DNO, BUDGET, ENAME, SALARY FROM EMPDEPTV

WHERE SALARY < 999.00 AND BUDGET <= 75000.00

Sample Query 16.7: Only consider departments with employees. Display

the DNAME and BUDGET values for any such department having a budget that

is greater than or equal to $25,000.00.

SELECT DISTINCT DNAME, BUDGET FROM EMPDEPTV

WHERE BUDGET >= 25000.00

Sample Query 17.2: For all employees, display their ENO and SALARY

values along with the DNO and BUDGET values of the department they

work for. Also display the ratio of each employee’s salary to his

department’s budget.

SELECT ENO, SALARY, DNO, BUDGET, SALARY/BUDGET

FROM EMPDEPTV

Sample Query 17.4.1: For each department that has employees, display the

department name and total salary of all employees who work in that

department.

 SELECT DNAME, SUM (SALARY) FROM EMPDEPTV

 GROUP BY DNAME

Sample Query 17.9: Does any employee have a salary that that exceeds

one third of his own departmental budget? If yes, display the employee’s

name, salary, and department number, followed by the budget amount for

his department.

SELECT ENAME, SALARY, DNO, BUDGET FROM EMPDEPTV

 WHERE SALARY > (BUDGET * 0.333)

Free SQL Book, Tim Martyn 782 Copyright Pending 2022

Other View Topics

Views Defined on Views: A view can be defined on another view.

Assume you have created a base table called JUNK with columns A, B,

C, and X. The following CREATE VIEW statements create two views.

The first CREATE VIEW statement creates the DOOPYV view that

references the JUNK table. The second CREATE VIEW statement creates

the VERYDOOPYV view that references the first view (DOOPYV).

A SELECT statement that references the VERYDOOPY view indirectly

references the DOOPYV view which then indirectly references the JUNK

table.

View Dependencies: This is another know-your-data consideration. In

general, if you have permission to create/drop tables and views,

then you must be aware of any view dependencies (i.e., which views

depend upon which tables, and which views depend upon other views).

If you drop a base table, then any view which is directly or

indirectly dependent on this table becomes invalid. Hence, all

SELECT statements that reference this view would fail. For example,

if you dropped the above JUNK table, the any reference to the

VERYDOOPYV or DOOPYV views would return an error. (Information about

view dependencies is stored in the system’s data dictionary.)

DROP VIEW: The DROP VIEW statement is similar to DROP TABLE. To drop

a view, you execute:

 DROP VIEW view-name

After dropping a view, any attempt to execute a SELECT statement

that directly or indirectly references the view will return an

error.

JUNK

DOOPYV

VERYDOPPYV

CREATE VIEW DOOPYV AS

 SELECT A, B, C

 FROM JUNK

 WHERE X = 100;

CREATE VIEW VERYDOOPYV AS

 SELECT A, C

 FROM DOOPYV

 WHERE B = 2000,

Free SQL Book, Tim Martyn 783 Copyright Pending 2022

Summary

The CREATE VIEW statement assigs a name to a Sub-SELECT and saves

the Sub-SELECT in the system’s data dictionary. (The CREATE VIEW

statement does not execute the Sub-SELECT and save the result

table.)

Subsequently, when a SQL statement references a view, the view’s

Sub-SELECT is executed to generate an intermediate-result table.

Discussion of Sample Queries 28.2 and 28.3 noted that, although this

intermediate-result disappears when the statement terminates, the

view’s definition remains in the system’s data dictionary for future

reuse.

Advantages of Views: Views offer many advantages. Some (not all)

of these advantages are described below.

Simplification of User Queries: A designer can create views that

contain derived data such as a statistical summary (Sample Statement

28.4) or pre-joined data from multiple tables (Sample Statement

28.8). Then users can formulate relatively simple queries against

these views. Frequently, users who write queries against a “table”

are unaware that the table is really a view.

Support Database Security: A DBA might not give every departmental

manager access all EMPLOYEE data because it contains confidential

data (SALARY) about all employees. Assume a department manager

should only be allowed to access data about employees who work in

his department. In this circumstance, the DBA could deny all

managers access to the EMPLOYEE table. Instead, the DBA would

create a view for each department (e.g., DEPT20 view) and grant

access privileges on each view to the appropriate manager.

Avoid De-normalized Base Tables: (Optional Reading): Appendix 16A

described de-normalized tables and problems associated with

executing INSERT, UPDATE, and DELETE statements against such

tables. Therefore, designers generally avoid creating de-

normalized base tables. Instead, to facilitate friendlier user

queries, some designers create de-normalized views (e.g., Sample

Statement 28.8).

Free SQL Book, Tim Martyn 784 Copyright Pending 2022

Potential Disadvantages of Views: Again, no free lunch.

Knowing-Your-Data: Creating too many views can challenge knowing-

your-data because the same data may be stored in multiple “tables.”

For example, the ENO, ENAME, and SALARY values are (logically)

stored in both the EMPLOYEE table and the EMPDEPTV “table.” Also,

from the DBA’s perspective, too many views increase the complexity

of managing view dependency.

View Update Problem: This chapter does not illustrate any INSERT,

UPDATE, or DELETE statements that reference a view. In some

circumstances, you can successfully execute these statements

against a view, with the intention of indirectly modifying an

underlying base table. However, in other circumstances, executing

an INSERT, UPDATE, or DELETE statement against a view may produce

an error. In practice, most DBAs require all INSERT, UPDATE, or

DELETE statement to reference base tables. (Theory Comment: This

book does not discuss the “view update problem.”)

Comments for Application Developers

The CREATE VIEW statement is part of SQL’s Data Definition

Language. Therefore, you might not have permission to execute this

statement in a production environment. If you think that a view

would be helpful, you could ask your DBA to create one for you. If

your request is denied, you can still specify an inline view or a

common table expression in your SELECT statement. Alternatively,

you might create a “Temporary Table” that will be described in

Appendix 28B. You are encouraged to read this appendix. It

describes how a temporary table can preserve an intermediate-

result for a “little while longer” so that you can reference it in

multiple SQL statements.

Free SQL Book, Tim Martyn 785 Copyright Pending 2022

Summary Exercises

Exercises 28A – 28F assume that the DEPTSTATSV and EMPDEPTV tables

(views) already exist because Sample Statements 28.4 and 28.8 have

been executed.

28A. Same query objective as Exercise 27A. Reference the

DEPTSTATSV table. Determine the total salary for each

department. Then display the largest of these totals. The

result should look like:

 LARGESTTOTAL

 14000.00

28B. Same query objective as Exercise 27C. Reference the EMPLOYEE

and DEPTSTATSV tables. Display all information about the

lowest paid employee in each department. The result should

look like:

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

28C. Same query objective as Exercise 27E. Reference the DEPTSTATSV

table. Display the department number and total salary of the

department having the largest total salary. The result should

look like:

 DNO LARGESTTOTAL

 20 14000.00

28D. Expand upon the previous Exercise 28C. Reference the

DEPARTMENT and DEPTSTATSV tables. Display the department name

along with the department number. The result should look like:

 DNO DNAME LARGESTTOTAL

 20 INFO. SYS. 14000.00

Free SQL Book, Tim Martyn 786 Copyright Pending 2022

28E. Reference the EMPDEPTV table. Display the employee number and

name of any employee whose salary exceeds $2,000.00 and works

in the Accounting Department. The result should look like:

 ENO ENAME

 2000 LARRY

28F. Reference the EMPDEPTV and DEPTSTATSV tables. For any

department where the difference between the largest and

smallest employee salaries exceeds $3,000.00, display the

department name, followed by the name and salary of each of

its employees. The result should look like:

 DNAME ENAME SALARY

 INFO. SYS. MOE 2000.00

 INFO. SYS. CURLY 3000.00

 INFO. SYS. GEORGE 9000.00

28G. (a) The DEPTSTATSV view does not contain the average salary

for each department. Create another view called

DEPTSTATSV2 that contains the same data as DEPTSTATSV

plus another column called AVGSAL that contains the

average salary for each department.

 (b) Reference the above DEPTSTATSV2. Display the smallest of

average departmental salaries. The result should look

like:

 MINAVG

 500.00

 (c) Reference the EMPLOYEE and DEPTSTATSV2 tables. For each

department, display all information about every

departmental employee who has a salary that is greater

than or equal to the average salary for the department.

The result should look like:

 ENO ENAME SALARY DNO

 2000 LARRY 2000.00 10

 4000 SHEMP 500.00 40

 6000 GEORGE 9000.00 20

(d) Drop the DEPTSTATSV2 view.

Free SQL Book, Tim Martyn 787 Copyright Pending 2022

28H. This exercise is a variation of Exercise 27M.

 Reference the PARTSUPP and LINEITEM tables to create a view

called BOUGHT_SOLD_STATS. This view contains each part

number, its largest purchase price (MAXPAID), and its lowest

selling price (MINSOLD). Hint: Modify the solution to

Exercise 27M. Data for the BOUGHT_SOLD_STATS view should look

like:

 PNO MAXPAID MINSOLD

 P1 11.00 11.50

 P3 12.50 12.00

 P4 12.00 13.00

 P5 11.00 11.00

 P6 4.00 5.00

 P7 3.50 3.00

 P8 5.00 4.00

 Display any row in BOUGHT_SOLD_STATS where this largest

purchase price is greater than its lowest selling price. The

result should look like:

 PNO MAXPAID MINSOLD

 P3 12.50 12.00

 P7 3.50 3.00

 P8 5.00 4.00

 Drop the BOUGHT_SOLD_STATS view

Free SQL Book, Tim Martyn 788 Copyright Pending 2022

Appendix 28A: Efficiency & Theory

This appendix examines query rewrite in the context of view

processing. Previous commentary indicated that, when a SELECT

statement references a view, the system accesses and executes the

Sub-SELECT associated with the view to generate an intermediate-

result. While this is logically correct, the system may be able to

improve efficiency by rewriting the SELECT statement before

execution. We describe this process below.

Theory: Sets and Subsets

View Definition: Assume the DBA created the following view called

HAPPY that is based on JUNK. Notice that HAPPY is a subset of JUNK.

User Query: Assume a user executes a SELECT-statement that

references HAPPY. Because the result table is a subset of HAPPY,

it is also a subset of JUNK.

JUNK

JUNK

 HAPPY

JUNK

 HAPPY

Result Table

CREATE VIEW HAPPY

AS SELECT A, B, C

 FROM JUNK

 WHERE X = 100

SELECT A, B

FROM HAPPY

WHERE C = 9

Assume that JUNK is a

valid base table (a set).

Free SQL Book, Tim Martyn 789 Copyright Pending 2022

Optimizer Query Rewrite: Given the previous SELECT-statement, the

optimizer modifies it by changing its FROM-clause and WHERE-clause.

It substitutes JUNK for HAPPY in the FROM-clause; and then it

modifies the WHERE-clause by AND-connecting the view’s WHERE-

condition (X = 100). The rewritten SELECT statement looks like:

Rewritten Statement: SELECT A, B

 FROM JUNK

 WHERE C = 9

 AND X = 100

Potential Efficiency: Sometimes, view processing can improve

efficiency. For example, assume that:

 JUNK is very large (millions of rows)

 90% of these rows have an X value of 100.

 There is no index on column X.

 1% of the rows have a C value of 9.

 There is an index on column C.

Without Query Rewrite: Re-consider the Sub-SELECT specified in the

CREATE VIEW statement.

 SELECT A, B, C

 FROM JUNK

 WHERE X = 100

If the system initially executed this statement, it would build

HAPPY as an intermediate-result table by scanning the very large

JUNK table to find and save 90% of its rows where X = 100. HAPPY

would be very large and would not have any index on it. Thereafter,

the system would scan this large intermediate-result to find all

rows where C = 9.

With Query Rewrite: When the system executes the rewritten

statement (shown above), it would use the index on column C to

directly access the matching 1% of rows where C = 9. As each row is

retrieved, the system examines its X value. If this X value is 100,

the row placed in the final result table. This plan is more efficient

because there is no scanning of a large table, and no storing and

subsequent scanning of a large intermediate-result table.

Free SQL Book, Tim Martyn 790 Copyright Pending 2022

Appendix 28B: Temporary Tables

Preliminary Comment: This appendix is primarily directed towards

application developers, but super-users are invited to read this

appendix.

In normal circumstances, as illustrated throughout this book, a

result table disappears after a SELECT statement terminates.

However, on some systems, you can temporarily save a result table

as a “temporary” table that can be referenced by subsequent SELECT

statements. You can create a Temporary Table for this purpose if

the subsequent SELECT-statements are executed within the same

session.

Session: A session begins when you initially connect to a database,

and the session ends when you disconnect from the database. (With

some systems, an automatic connection occurs when you initiate a

front-end tool, and an automatic disconnection occurs when you shut

down the tool.)

Temporary Table: A temporary table is created and populated within

a session. This table is “temporarily saved” during the session so

that it can be queried by subsequent SELECT-statements. A temporary

table automatically disappears when the session terminates. You can

also explicitly drop a temporary table before the session

terminates.

Syntax: Different database systems use different syntax to create a

temporary table. An outline of the basic syntax for three systems

is shown below.

SQL Server: CREATE TABLE #EMPTEMP

 (Column-definitions)

ORACLE: CREATE GLOBAL TEMPORARY TABLE EMPTEMP

 (Column-definitions)

DB2: DECLARE GLOBAL TEMPORARY TABLE EMPTEMP

 (Column-definitions)

Each of the above statements usually require other clauses to be

specified. Details are not covered in this appendix.

Free SQL Book, Tim Martyn 791 Copyright Pending 2022

Sample Session: The following figure outlines the creation of a

temporary table. Note that multiple SELECT-statements reference this

table. This example uses SQL Server syntax where the names of

temporary tables begin with the # symbol.

Characteristics of Temporary Tables:

• A temporary table is private to the user’s session. No other

user can access this table.

• Unlike creating a base table, no metadata describing a

temporary table is stored in the system’s data dictionary.

• Executing INSERT, UPDATE, and DELETE statements against a

temporary table is usually efficient because the system incurs

less overhead cost associated with transaction processing. The

following chapter on Transaction Processing (COMMIT & ROLLABCK)

introduces this topic.

Recommendation: We have only outlined basic concepts. If you intend

to utilize temporary tables, you must read specific details in your

SQL Reference Manual.

[Begin Session - System Specific]

CREATE TABLE #TEMPDEPT

(DNO CHAR(4) NOT NULL,

 TOTSAL DECIMAL (9,2) NOT NULL,

 AVGSAL DECIMAL (9,2) NOT NULL,

 MAXSAL DECIMAL (9,2) NOT NULL,

 MINSAL DECIMAL (9,2) NOT NULL);

INSERT INTO #TEMPDEPT

 SELECT DNO, SUM(SALARY), AVG (SALARY),

 MAX(SALARY), MIN(SALARY)

 FROM EMPLOYEE

 GROUP BY DNO;

SELECT TOTSAL, AVGSAL

FROM #TEMPDEPT

WHERE DNO = 20;

SELECT MINSAL, MAXSAL

FROM #TEMPDEPT

WHERE DNO = 10;

DROP TABLE #TEMPDEPT

[End Session- System Specific]

Create temporary table

Populate temporary table

Reference temporary table

Reference temporary table

Drop temporary table

Free SQL Book, Tim Martyn 792 Copyright Pending 2022

Concluding Efficiency Appendices: 28C - 28D - 28E

Previous efficiency appendices presented “bits and pieces” of

information about query performance and optimization. The following

three appendices (especially Appendix 28E) bring these bits and

pieces together into a more coherent framework. (These appendices

are not explicitly related to the content of Chapter 28. They are

identified as Appendix 28C-28E only because they follow Appendices

28A-28B.)

Appendix 28C: Explaining an Application Plan

Previous efficiency appendices have described how physical design

decisions and SQL code can influence an optimizer to include

specific operations (e.g., table scan) within an application plan.

However, we have not yet shown how you can obtain a complete

description of all operations within an application plan. This

appendix will do so. It describes how you can ask your optimizer

to generate an “explanation” of your application plan.

Appendix 28D: Optimizer Hints

 After viewing an explanation of your application plan, you might

conclude that this plan should be modified to improve efficiency.

For this reason, most systems provide some method for a user to

specify a “hint.” A hint encourages the optimizer to generate a

different (presumably more efficient) application plan. This

appendix will describe hints along with their advantages and

disadvantages.

Appendix 28E: Tuning SELECT Statements

 This final chapter appendix concludes by presenting a general

strategy for tunning SELECT-statements. It incorporates the

material presented in the previous two appendices.

Note: Book-Appendix-III presents a brief summary of this book’s

chapter appendices. This summary also presents additional

commentary on efficiency considerations.

Free SQL Book, Tim Martyn 793 Copyright Pending 2022

Appendix 28C: Explaining an Application Plan

Assume that you have just executed a SELECT statement that

satisfied your query objective. Now you might ask: What is the

application plan that was generated by the optimizer for this

statement? You might ask this question because your SELECT

statement had a slow response time, and you want to tune it. Or,

you are simply curious. Explaining an application plan can be a

productive learning experience.

Many front-end tools provide an “Explain-Button” that produces a

graphical/textual explanation of an application plan. However, you

must have a general understanding of the optimization process

before you can interpret this explanation. This book’s efficiency

appendices offered a starting point. With this basic knowledge,

you should be able to read and understand your system’s reference

manuals that discuss query performance, query optimization, and

the explanation of application plans.

The explanation of an application plan describes a sequence of

steps where each step identifies an internal operation with related

information about:

• A table scan.

• An index access. If an index was used, was it used to provide

direct access to rows in a table, support an index-only

search, or return rows in some useful row sequence?

• Join-methods. For each join-operation, the plan indicates the

join-method (e.g., Nested-Loop, Match-Merge).

• Join-sequence. If three or more tables were joined, the plan

identifies which two tables were joined first, second, etc.

Also, if the SELECT-statement was executed, an explanation might

contain statistics indicating the processing time for each step in

the plan. (E.g., How long did it take to scan a table?)

Free SQL Book, Tim Martyn 794 Copyright Pending 2022

Graphical Notation: Most Explain-Methods produce some graphical

representation of an application plan. In the following graphs, a

table is represented by a rectangle; a table scan is represented

by an oval; a sort operation is represented by a trapezoid; an

index access is represented by triangle; and a join-operation is

represented by a diamond. These graphical plans should be read in

a bottom-up, left-to-right manner.

Sample Application Plan:

SELECT *

FROM T1

WHERE COLX = 100

Table T1 is accessed by a Table Scan operation to retrieve rows

with a COLX value of 100.

Sample Application Plan:

SELECT *

FROM T1, T2, T3

WHERE T1.COLA = T2.COLB

AND T2.COLX = T3.COLY

AND T1.COLA < 25

The optimizer decides to initially join Tables T2 and T3 using a

Match-Merge (MM) join-method. But first, Table T2 must be sorted

by COLX to facilitate the logic of the match-merge join.

The next step uses a Nested-Loop (NL) join-method to join the T2-

T3 join-result to Table T1 by using the XT1COLA index to directly

access rows in T1.

T1

Table Scan

COLX = 100

Result

 Result

NL-Join

XT1COLA

COLA <25

T1 T3

MM-Join

T2

Sort

COLX

Free SQL Book, Tim Martyn 795 Copyright Pending 2022

“EXPLAIN” Statements: The activation of the Explain-Button will

(under-the-hood) execute a SQL statement that generates the

explanation. Examples of these statements are:

• DB2: EXPLAIN statement

• ORACLE: EXPLAIN PLAN statement

• SQL Server: SHOWPLAN_ALL statement

You can directly execute these statements. However, these

statements are relatively complex, have many options, and may

return their explanations in a rather unfriendly format, typically

as rows in a special “Plan-Table.” Hence, it is usually easier to

use your front-end tool.

Setup of Explain-Feature: Some front-end tools only require that

you activate the Explain-Button immediately before you execute a

SELECT statement. Other front-end tools require you to follow some

multi-step process to setup an explanation. See your reference

manual for details.

Optional Exercise: Explain a few SELECT-statements from this book.

(Note: Because all sample tables are very small, it is highly

unlikely that the plan will utilize an index for a direct-access

search. Also, indexes have only been created for the primary-key

and other unique columns.)

Free SQL Book, Tim Martyn 796 Copyright Pending 2022

Appendix 28D: Optimizer Hints

Assume you want to tune the following SELECT statement because its

execution time is very slow.

 SELECT T1.PK, T1.COLA, T1.COLB

FROM T1, T2

WHERE T1.PK = T2.FK

AND T2.FK > 100

You have already examined the metadata information about tables T1

and T2 and concluded that the optimizer is using accurate

statistics. Also, you have determined that there is a unique index

(XT1PK) on the primary-key T1.PK column, and there is a non-unique

index (XT2FK) on the foreign-key T2.FK column.

You have explained this SELECT statement, and the explanation shows

that the optimizer decided not to use the XT2FK index. Then, after

“playing optimizer” in your own mind, you conclude that using this

index could enhance efficiency. You believe this index should

improve the T2.FK > 100 condition, and it may also improve the

join-operation.

Next you formulate and explain multiple equivalent SELECT

statements. However, you become grumpy because all application

plans fail to utilize this presumably useful XT2FK index. You curse

your (apparently) stupid optimizer! Then, as a last act of

desperation, you decide to specify a “hint.”

Hints: A hint is a “directive” that a user can present to the

optimizer telling it to include a specific action in an application

plan. Here, you want to tell the optimizer to utilize the XT2FK

index.

This directive is called a “hint” because, sometimes, the optimizer

may not follow the directive. For example, the DBA can setup the

optimizer to ignore user-specified hints; or, unknown to the user,

the DBA has dropped the XT2FK index.

Coding Hints: Different systems provide different methods for

specifying a hint. The next page illustrates the specification of

hints (in bold font) using ORACLE and SQL Server.

Free SQL Book, Tim Martyn 797 Copyright Pending 2022

ORACLE: SELECT /*+ INDEX(T2 XT2FK) */

 T1.PK, T1.COLA, T1.COLB

FROM T1, T2

WHERE T1.PK = T2.FK

AND T2.FK > 100

SQL Server: SELECT T1.PK, T1.COLA, T1.COLB

FROM T1, T2 WITH (INDEX(XT2FK))

WHERE T1.PK = T2.FK

AND T2.FK > 100

After specifying this hint, an explanation should show that the

optimizer decides to use the XT2FK index. Hopefully, this hint

improves efficiency.

Your SQL reference manual will describe all hints provided by your

system.

Cautionary Comments about Hints:

• What if the DBA drops the XT2FK index before this SELECT

statement is executed? In this circumstance, the optimizer

will ignore the hint and re-optimize the statement.

• Without dropping the XT2FK index, assume the DBA creates

another index that provides better performance than the XT2FK

index. The optimizer would still obey the hint. In this

circumstance, the hint becomes a directive to do the wrong

thing.

• If users specify too many hints, the overall effectiveness of

the DBA’S physical database design could be compromised.

• Finally, a new version of your database system may include an

improved optimizer that could render your hint irrelevant.

Conclusion: It’s fun to “play optimizer.” But, for very practical

reasons, you should think twice before specifying a hint in a

production environment.

Final Comment: Hits are philosophically repugnant. An ideal

optimizer should not require any performance hints from a user.

However, occasionally, a hint can be useful.

Free SQL Book, Tim Martyn 798 Copyright Pending 2022

Appendix 28E: Tuning SELECT Statements

Users rarely have permission to take all possible actions that can

improve the efficiency of a SELECT statement. However,

occasionally, a user can take an action that may be helpful. Below

we describe these actions in a conceptual overview of tuning a

SELECT statement.

Assume your SELECT statement has a slow response time.

Step-1: Only tune a SELECT-statement if the payoff could be

significant. Ask: Do I have a real problem? For example,

assume your SELECT statement is just a “little bit” slow.

Then, most likely, your statement is “good enough - hence no

problem.” Alternatively, what if this SELECT statement is

embedded within an application program or stored procedure

that is executed many times every minute/second? This could

be a real problem. Although a slow response time may not be

a problem for the single execution of a statement, the total

cost for multiple executions could be significant.

Step-2: Don’t bother the DBA unless it becomes necessary. If

necessary, collect relevant information to present to her.

The following steps identify this information.

Step-3: Collect statistics about the size of relevant tables.

Although you may have an accurate estimate about the size of

each table, the optimizer might not have access to this

information. Examine the statistical information stored in

your system’s dictionary tables to verify that the stored

statistics are realistic estimates. (The MetaData Panel in

your front-end tool might be able to display this

information.) If these statistics are not realistic

estimates, you may have discovered the source of your problem.

Ask the DBA to update these statistics. Then re-execute your

SELECT-statement. Proceed to the following Step-4 if the

response time is still too slow.

Step-4: Explain your SELECT statement. If you think the

optimizer did a good job, proceed to Step-7. Otherwise, if

you think the optimizer could have generated a more efficient

plan, proceed to the following Step-5.

Free SQL Book, Tim Martyn 799 Copyright Pending 2022

Step-5: Rewrite your SELECT statement as one or more equivalent

SELECT statements. Then, explain each statement. (In this

book, we have suggested alternative statements for many

sample queries. Also, your SQL reference manual may identify

problematic SQL code and propose alternative coding

solutions.) Execute an alternative statement if its

application plan differs from the original problematic plan.

If response time has improved, you may have solved your

problem. Otherwise, proceed to the following Step-6.

Step-6: If all else fails, and you are desperate, consider coding

a hint. Then explain and test your statement with the hint.

However, even if the response time improves, do not commit to

implementing the hint in a production environment until after

you have moved onto the following Step-7.

Step-7: Describe your problem to the DBA. Present the following

information to her.

• Size of relevant tables and other statistics (e.g.,

histograms of relevant column values).

• Description of relevant indexes.

• Equivalent SELECT statements with corresponding explanations,

and response times for those statements with different

application plans.

• Hints that improved response time.

• Finally, you might consider “playing DBA.” For example,

although you are not authorized to create a new index, you

can still speculate about the benefit of a new index and

present your speculation to your DBA.

Free SQL Book, Tim Martyn 800 Copyright Pending 2022

What can the DBA do to improve my response time?

A lot!

The DBA controls many performance factors that have not been

addressed in this book. These include creating a special table

structure (e.g., clustered table), a special type of index (e.g.,

bitmap index), increasing the size of a memory buffer, assigning

multiple tables to the same tablespace, and partitioning a table

to facilitate parallel processing. Furthermore, in some

circumstances, the DBA may be able to store your data on a faster

data storage device. (See the following page.) Finally, the DBA

will be aware of potential problems outside the database system

per se, such as bottlenecks associated with your communications

network or operating system.

Tunning a single SELECT statement is a local concern (your concern)

whereas physical database design is a global concern. Physical

database design attempts to produce an overall efficient design

for all applications which specify many different types of SQL

statements. The DBA must consider overall thruput, not just the

response times for a specific application program. For example,

Appendix 2A presented a design scenario where the DBA, after

considering overall cost/benefit tradeoffs, rejected a user’s

apparently reasonable request to create a new index.

Finally, your DBA might agree with your suggestion to create a new

index to help your SELECT statement. This new index may also help

other SQL applications. Therefore, your DBA might say: “Good idea.

Let’s do it and see what happens.”

Free SQL Book, Tim Martyn 801 Copyright Pending 2022

Data Storage Devices

In this book, we have assumed that database data is stored on

conventional disk, which is relatively slow because of mechanical

disk arm movement and rotational delay. Some modern database

systems offer the following more efficient data storage options.

• Massively Parallel Processing (MPP): Data is stored on arrays

of conventional disks, controlled by multiple controllers

that can process data in parallel.

• Solid State Drive (SSD): An SSD does not suffer the mechanical

drawbacks associated with conventional disk. Today, SSD has

become very common and is found in personal computers.

• Main Memory Database: MMP storage and SSD are external to

main memory. Like conventional disk, data must be transferred

between these storage devices and main memory. A Main Memory

Database is very fast because it eliminates this data transfer

time by keeping most (maybe all) database data in a special

type of main memory where data is not lost when the system

crashes.

Data storage technology will continue to improve into the

foreseeable future, and this technology will entail different

methods of physical design and query optimization. This

observation supports the following conclusion.

Conclusion

Blazing fast data storage technology

 +

Good physical database design

+

Very smart optimizers

imply that, in the near future, most applications developers who

design and implement conventional business applications will

encounter fewer SQL tunning problems.

This conclusion justifies this book’s focus on correctness.

[However, more challenging application domains present caveats to

this conclusion. See Book Appendix IV.]

Free SQL Book, Tim Martyn 802 Copyright Pending 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 803 Copyright Pending 2022

PART VII

 Special Topics

This part of the book includes two chapters on two special topics,

Transaction Processing and Recursive Queries. After reading the

following overview, you may decide to bypass one or both of the

following chapters.

Chapter 29 - Transaction Processing: COMMIT & ROLLBACK

Chapter 15 introduced SQL’s DML statements (INSERT, UPDATE, and

DELETE), and Chapter 24 showed that these statements may contain

Sub-SELECTs. Those chapters, like all previous chapters, presented

sample statements that were executed using an interactive front-

end tool. However, in most real-world applications, DML statements

are executed as embedded statements within an application program

or stored procedure. Within this context, the idea of “transaction

processing” becomes relevant.

This chapter is a “must read” if you are an applications developer

who intends to write programs/procedures with embedded SQL.

(Super-users are invited to read this chapter because the basic

concepts are not complex, and the chapter is relatively short.)

This chapter introduces transaction processing concepts and two

relevant SQL statements, COMMIT and ROLLBACK.

The optional appendices are rather long and extend our discussion

of transaction processing beyond the COMMIT and ROLLBACK

statements.

Free SQL Book, Tim Martyn 804 Copyright Pending 2022

Chapter 30 - Recursive Queries

Thus far, this book has implicitly assumed that a database

relationship is a relationship between two different tables as

illustrated below.

Chapter 30 will introduce “Recursive Queries” that reference

“Recursive Tables” which are tables that participate in “Recursive

Relationships.” A recursive relationship relates a table to itself

as illustrated below.

Section-A presents sample queries that reference the recursive

REMPLOYEE table shown below. This table is recursive because its

SENO column contains the employee number of an employee’s

supervisor, who is another employee and therefore is represented

by another row in the same REMPLOYEE table. The SENO column is a

foreign-key that references the primary-key (ENO) in some other

REMPLOYEE row.

Section-B presents a recursive design that specifies a many-to-

many recursive relationship. Finally, Section-C presents some

special case scenarios where a recursive query can be satisfied by

coding a non-recursive SELECT statement.

TableX

TableY

TableA

TableB

TableM

TableN

REMPLOYEE

ENO (PK)

ENAME

SALARY

SENO (FK)

Reports-To

Free SQL Book, Tim Martyn 805 Copyright Pending 2022

Chapter

 29
Transaction Processing:

COMMIT and ROLLBACK

This short chapter is primarily directed towards application

developers who embed DML statements (INSERT, UPDATE, and DELETE)

within application programs and stored procedures.

This chapter begins by describing the concept of a transaction as

a “logical unit of work.” In this book, a transaction will always

contain one or more SQL statements.

Casually speaking, we will see that: the COMMIT statement tells

the system to terminate the transaction and make its database

changes permanent; and the ROLLBACK statement tells the system to

terminate the transaction and undo its changes to the database.

The following pages present four database update scenarios where

each scenario executes a COMMIT or ROLLACK statement. The first

three scenarios illustrate COMMIT and/or ROLLBACK statements

embedded within a program/procedure. The fourth scenario

demonstrates that you can execute a COMMIT or ROLLBACK statement

using an interactive front-end tool.

Transaction processing also supports database concurrency and

database recovery. Database concurrency is introduced in Appendix

29B.

Free SQL Book, Tim Martyn 806 Copyright Pending 2022

What is a Transaction?

A transaction is a logical unit of work. The classic example of a

transaction is the transfer of funds from one bank account to

another. A business user would consider this transfer of funds to

be a single business transaction. However, from a SQL perspective,

this transaction involves the execution two UPDATE statements

against two different tables. For example, the following

statements transfer $100.00 from a checking account to a savings

account.

UPDATE CHECKING_ACCT

SET CK_BALANCE = CK_BALANCE – 100.00

WHERE CK_ACCOUNT_NO = 123;

UPDATE SAVINGS_ACCT

SET SAVE_BALANCE = SAVE_BALANCE + 100.00

WHERE SAVE_ACCOUNT_NO = 456;

To force these two UPDATE statements to operate as a single logical

unit of work, we need some way to bundle both statements within a

transaction. Specifically, there must be some way to designate a

transaction’s starting point and its termination point.

 Start-Transaction

UPDATE CHECKING_ACCT

SET CK_BALANCE = CK_BALANCE – 100.00

WHERE CK_ACCOUNT_NO = 123;

UPDATE SAVINGS_ACCT

SET SAVE_BALANCE = SAVE_BALANCE + 100.00

WHERE SAVE_ACCOUNT_NO = 456;

 Terminate-Transaction

Start-Transaction: Some systems (e.g., SQL Server) support a BEGIN

TRANSACTION statement that explicitly designates the start of a

transaction. The following scenarios do not specify this

statement. Instead, we will assume that an internal Start-

Transaction operation automatically occurs just before the first

SQL statement is executed.

Terminate-Transaction: Execution of a COMMIT or ROLLBACK statement

terminates a transaction. If neither statement is executed, and

the program successfully terminates, the system will generate an

automatic-commit. Alternatively, if the program terminates because

of an error, the system will generate an automatic-rollback.

Free SQL Book, Tim Martyn 807 Copyright Pending 2022

Scenario-1: COMMIT

The following figure illustrates a section of code within a

program/procedure. This code illustrates a transaction that

contains two UPDATE statements. Here we assume an “all-went-well”

scenario where all SQL and non-SQL statements execute without

problems.

Here, a transaction starts when the database system is asked to

execute the first SQL statement. This means that an implicit

“start-transaction” is executed just before the system executes

the first UPDATE statement.

After successful executions of the above Steps 1-4, the COMMIT

statement in Step-5 tells the system to:

• Make all changes permanent, and then

• Terminate the transaction.

The COMMIT statement will also return some system-specific return

code that implies a “successful commit” operation.

If, after executing COMMIT, the program/procedure looped back to

the first UPDATE statement, then, because COMMIT terminated the

transaction, this UPDATE statement designates the beginning of a

new transaction.

Comment: Executing COMMIT causes the system to execute many

internal operations that are not described in this chapter. (Some

of these operations are described in the following Appendix 29B.)

1. UPDATE CHECKING_ACCT

SET BALANCE = BALANCE – 100.00

WHERE CK_ACCOUNT_NO = 123;

2: Other non-SQL processing/logic;

3. UPDATE SAVINGS_ACCT

SET BALANCE = BALANCE + 100.00

WHERE SAVE_ACCOUNT_NO = 456;

4: Other non-SQL processing/logic;

5. COMMIT;

Free SQL Book, Tim Martyn 808 Copyright Pending 2022

Scenario-2: Automatic Rollback

The following example attempts to execute the same code shown in

Scenario-1. However, this example illustrates a “something-went-

wrong” scenario where a program error or some system-level error

(e.g., main memory is lost) causes the program or the entire system

to “crash.”

Assume the system did not take any special action after the program

crashed. Then $100.00 would have been deducted from the checking

account, but $100.00 would not have been added to the savings

account. The database would not be consistent. To avoid this

“database inconsistency” problem, after the crash event, the

system automatically initiates a database recovery process which

includes an automatic-rollback operation.

This auto-rollback operation “undoes” the effect of the first

UPDATE statement. In effect, the first UPDATE statement was never

executed. Also, all users/programs/procedures are prevented from

accessing any corrupted data. Therefore, this rollback operation

supports the desirable property of database consistency. If the

first UPDATE were not rolled back, the database would be in an

inconsistent state.

Also, observe that both Scenario-1 and Scenario-2 demonstrate that

a transaction is atomic. This means that a transaction enforces

the “all-or-nothing” execution of all statements within the scope

of the transaction. All statements were executed in the previous

Scenario-1. No statements were (effectively) executed in the above

Scenario-2.

1. UPDATE CHECKING_ACCT This code is

SET CK_BALANCE = CK_BALANCE – 100.00 successfully

WHERE CK_ACCOUNT_NO = 123; executed

2: Other non-SQL processing/logic; Error (“Crash!”)

3. UPDATE SAVINGS_ACCT This code is

SET SAVE_BALANCE = SAVE_BALANCE + 100.00 not executed

WHERE SAVE_ACCOUNT_NO = 456;

4: Other non-SQL processing/logic;

5. COMMIT

Free SQL Book, Tim Martyn 809 Copyright Pending 2022

Scenario-3: Explicit User-Specified ROLLBACK

The following example illustrates another “something-went-wrong”

scenario that involves the explicit coding of a ROLLBACK statement.

This scenario illustrates an application-level problem that is

detected by the user’s code.

Step-2b specifies code that tests for a detectable application–

level error. For example, this code might ask if the new updated

CK_BALANCE value contains a negative value. If it does, the program

returns some error-message (e.g., “Insufficient Funds”), executes

the ROLLBACK statement that undoes the preceding UPDATE statement,

and terminates the transaction. Note this is not a “crash”

scenario. The insufficient funds scenario is not unusual, and this

program proceeds to a normal termination.

Again, we note that this transaction is atomic. Both of the UPDATE

statements are executed, or neither of them is executed. Either

way, after the transaction terminates, the database is in a

consistent state.

1. UPDATE CHECKING_ACCT This code is

SET CK_BALANCE = CK_BALANCE – 100.00 successfully

WHERE CK_ACCOUNT_NO = 123; executed

2a: Other non-SQL processing/logic;

2b: IF detect-application-level-problem Application Error

 THEN return error-message; is detected

ROLLBACK;

 Exit-Program;

3. UPDATE SAVINGS_ACCT This code is

SET SAVE_BALANCE = SAVE_BALANCE + 100.00 not executed

WHERE SAVE_ACCOUNT_NO = 456;

4a: Other non-SQL processing/logic;

4b: IF detect-application-level-problem

 THEN return error-message;

ROLLBACK;

 Exit-Program;

5. COMMIT;

Free SQL Book, Tim Martyn 810 Copyright Pending 2022

Scenario-4: Interactive COMMIT/ROLLBACK

We have already noted that COMMIT and ROLLBACK statements are

usually embedded within an application program/procedure. However,

you can also execute these statements within an interactive

environment. This capability can be useful when testing INSERT,

UPDATE, or DELETE statements.

By default, most front-end tools automatically commit successful

INSERT, UPDATE, or DELETE statements. However, these tools usually

provide some mechanism that allows you to temporally disable this

auto-commit behavior. This allows you to execute an INSERT, UPDATE,

or DELETE statement, observe the changes made by the statement,

and then ask the system to commit or rollback these changes. In

the following scenario, Step-1 disables the auto-commit operation.

The following steps make changes to the DEMO2 table and then

explicitly rollback these changes.

1. SET AUTOCOMMIT OFF; **** this code varies by system

2. SELECT * FROM DEMO2;

 I1 D1 V1 F1

-10 -8.82 Julie Martyn HELLO

 -5 -5.28 JESSIE MARTYN GOOD

 0 0.00 Janet Martyn BY

 2 6.42 Frank BYE

 9 9.98 Wally HYY

3. DELETE FROM DEMO2 WHERE I1 <> 0;

4. SELECT * FROM DEMO2;

I1 D1 V1 F1

 0 0.00 Janet Martyn BY

5. ROLLBACK;

6. SELECT * FROM DEMO2;

 I1 D1 V1 F1

-10 -8.82 Julie Martyn HELLO

 -5 -5.28 JESSIE MARTYN GOOD

 0 0.00 Janet Martyn BY

 2 6.42 Frank BYE

 9 9.98 Wally HYY

Free SQL Book, Tim Martyn 811 Copyright Pending 2022

Step-1: Each front-end tool has its own specific method for

disabling and enabling an auto-commit operation. (The

illustrated SET AUTOCOMMIT statement works in ORACLE’s

SQL*Plus.)

Step-2: Display the DEMO2 table before changes are made.

Step-3: Delete some rows from DEMO2. (You could also execute

multiple DML statements to make additional changes to

DEMO2.)

Step-4: Display DEMO2 to observe the changes made by the

preceding DELETE statement.

Step-5: ROLLBACK undoes the effect of the preceding DELETE

statement. (If Step-3 had executed multiple DML

statements, ROLLBACK would undo all of these DML

statements.)

Step-6: Display DEMO2 to observe that all changes made during

Step-3 were undone.

Alternatively, at Step-5, if you were pleased with the contents of

DEMO2 as shown in Step-4, you could have executed a COMMIT

statement to commit the changes.

Finally, after executing Step-6, you may wish to re-establish the

auto-commit behavior. Again, each front-end tool has its own

specific method for enabling auto-commit. (For example, SET

AUTOCOMMIT ON would work in ORACLE’s SQL*Plus.)

Summary

Transaction processing is a large and complex topic. The preceding

four scenarios only illustrated some basic concepts along with the

COMMIT and ROLLBACK statements. The following optional appendices

offer a little more insight into this topic. Application developers

are encouraged to read both of these appendices.

Free SQL Book, Tim Martyn 812 Copyright Pending 2022

Appendix 29A: Theory

This appendix assumes that your transactions will execute

concurrently with other transactions, and these other transactions

may attempt to access the same row(s) that your transaction will

access. In this context, we consider the correctness criterion and

four desired properties of concurrent transactions.

Correctness: The execution of multiple concurrent transactions is

considered to be correct if each transaction produces a result that

would be produced under some sequential execution of the

transactions. I.e., The transactions are serializable.

For example, assume three transactions (T1, T2, and T3) are

executing concurrently. The result of executing these transactions

is considered to correct if it corresponds to the result produced

by any of the following six serial execution sequences.

T1-T2-T3, T1-T3-T2, T2-T1-T3, T2-T3-T1, T3-T1-T2, T3-T2-T1

For a more concrete example, consider two concurrent transactions,

TA and TB. These transactions update the same row which has a

column with a value of 100. The first transaction (TA) adds 50 to

this value. The second transaction (TB) doubles this value. The

system will consider both of the following scenarios to be correct.

1. TA-TB: TA executes, commits, and terminates before TB starts.
Then TB executes, commits, and terminates. In this case the

final value is (100+50) * 2 = 300.

2. TB-TA: TB executes, commits, and terminates before TA starts.
Then TA executes, commits, and terminates. In this case the

column value is (100*2) + 50 = 250.

Again, the transaction processing system will consider either 300

or 250 to be a correct result. This implies two different correct

results! However, if you want the result to be 300, then you must

(somehow) explicitly execute TA and have it committed before you

start TB. Alternatively, if you want the result to be 250, then

you must (somehow) explicitly execute TB and have it committed

before you start TA.

Free SQL Book, Tim Martyn 813 Copyright Pending 2022

Transaction Properties: At a conceptual level, the transaction

system should support four desirable properties. These properties

are represented by the “ACID” acronym; a transaction should be

Atomic, Consistent, Isolated, and Durable.

ACID merely designates these properties; it does not describe how

the system should support these properties. Different systems

utilize different techniques to support ACID. The following

discussion describes the ACID properties without presenting

implementation techniques.

1. Atomic

A transaction is an “all-or-nothing” process. Either all of its

SQL statements are successfully executed, or none of its SQL

statements are executed.

2. Consistent

Assume the database is in a consistent state when a transaction

starts. The system guarantees that the database will be in a

consistent state when the transaction terminates. In the previous

Scenario-2, the system would have been in an inconsistent state if

it had not undone the first UPDATE statement. Data inconsistency

was avoided because the system performed an automatic-rollback

after the crash event.

Observe that the system will allow some data values to be

temporarily inconsistent. For example, in the previous “all-went-

well” Scenario-1, there was a temporary data inconsistency during

the short time period after the first UPDATE operation completed

and before the start of the second UPDATE operation. During this

time period, the system automatically prevented any other user,

program, or procedure from accessing the temporarily inconsistent

data.

Free SQL Book, Tim Martyn 814 Copyright Pending 2022

3. Isolated

This property relates to database concurrency where multiple

concurrent transactions want to access the same row in a table.

Isolation implies that each transaction should be able to execute

its SQL statements without considering the presence of any other

concurrent transaction. In principle, your concurrent transaction

is completely isolated from all other concurrent transactions. In

practice, the system prevents potential problems associated with

transaction isolation. These problems will be described in the

following Appendix 29B.

4. Durable

Reconsider the all-went-well Scenario-1 where the program

successfully executed and committed the two UPDATE statements. In

this scenario we assumed that the modified data was physically

written to a durable database storage device (presumably a disk)

before the transaction terminated. This assumption is correct.

However, because data durability should be obvious, why state it?

Answer: When a COMMIT statement is executed, you can logically

conclude that the modified data is physically written to a durable

storage device. But, under-the-hood, for efficiency reasons, the

system may undertake some different actions.

In Scenario-1, the database changes produced by the two UPDATE

statements may be temporally stored in a (non-durable) memory

buffer with the expectation that this buffered data will

subsequently be written within a batch of records to the durable

database. (This is a common internal efficiency technique.) But

what if the system crashes and loses its internal memory before

the buffer’s contents are written to the durable database? In this

circumstance, the database changes would not be durable.

Therefore, the system never lets this happen.

To maintain durability, when a COMMIT statement is executed, the

system writes the database changes to some durable “backup log

file” before the transaction terminates. Then, if no system crash

occurs, the memory buffer is subsequently written to the durable

database. But, if a system crash does occur, a database recovery

operation will copy the changed data from the durable log file to

the durable database.

Free SQL Book, Tim Martyn 815 Copyright Pending 2022

Appendix 29B: Data Isolation & Efficiency

You usually do not have to worry about how your system supports

the ACID properties. However, in some circumstances, you might be

able to reduce your transaction’s response-time. This opportunity

to improve response-time pertains to factors associated with

transaction isolation. This appendix introduces this topic which

is organized into the following sections.

Sec B.1 - Data Isolation Problems

This section describes four data isolation problems that can occur

if the system does not take any special action to prevent them.

Sect B.2 - System Prevents Data Isolation Problems

This section outlines how a system can prevent each of the four

data isolation problems. It describes Locking, a traditional

method used to support data isolation. (An alternative method,

Multi-Versioning, is not described in this book.)

Sec B.3 - Adjusting Isolation Levels to Improve Efficiency

The preceding section describes how the system automatically

prevents data isolation problems. Therefore, you can ignore these

problems. However! In some circumstances, the system may have to

expend considerable effort to prevent a data isolation problem,

and this could have a negative impact on response-time. This

section will describe how an applications developer can, in special

case circumstances, reduce efficiency costs associated with data

isolation.

Section B.4 – More about Locking

This section concludes by describing additional locking

considerations.

Free SQL Book, Tim Martyn 816 Copyright Pending 2022

B.1. Data Isolation Problems

We describe four problems associated with data isolation.

1. Lost-Update Problem

2. Dirty-Read Problem

3. Non-Repeatable-Read Problem

4. Phantom-Row Problem

The first problem, the Lost-Update Problem, can occur when multiple

concurrent transactions want to update the same row.

The other three problems can occur when a transaction wants to

update a row that is currently being read by some other

transaction; or, conversely, a transaction wants to read a row

that is currently being updated by some other transaction.

The following pages present examples of these problems where two

concurrently executing transactions, Tran-A and Tran-B, conflict

with each other. This section merely describes the problems without

describing any method to prevent them. The following Section B.2

will describe how the system can prevent these problems.

Good News - Special “No Problem” Scenario: The above problems

cannot occur within a read-only database environment where all

concurrent transactions only retrieve data from tables. (I.e., All

transactions only execute SELECT statements; no DML statements.)

This is analogous to a classroom where all students simultaneously

read the same white board or a projected image of the instructor’s

computer screen. A read-only database is frequently associated

with data warehouse or data mining applications.

Free SQL Book, Tim Martyn 817 Copyright Pending 2022

B.1.a. Lost-Update Problem

Consider the following scenario where two concurrent transactions

attempt to update the same row.

Problem: After Time4, the final value is 200. Observe that the

change made at by Tran-A at Time3 is lost. The final value (200)

is wrong according the serializable criterion. Consider the

following serial execution sequences of these transactions.

• Assume Tran-A executes, commits, and terminates. Then Tran-B

starts, commits, and terminates. In this case the final value

is (100+50)*2 = 300.

• Alternatively, assume Tran-B executes, commits, and

terminates. Then Tran-A starts, commits, and terminates.

Here, the final value is (100*2)+50 = 250.

Serializable requires that the final value must be 300 or 250 (not

200). If the result should be 300, then you must explicitly

schedule Tran-A such that it executes and commits before Tran-B

starts; alternatively, if the result should be 250, then you must

explicitly schedule Tran-B such that it executes and commits before

Tran-A starts.

Negative Domino Effects: The lost-update problem is a very serious

problem because it writes garbage into the database. This garbage

could be read by subsequent transactions that may write additional

garbage into the database. Section B.2.a will show how this lost-

update problem can be prevented.

Time1 – Tran-A reads a row with a column value of 100.

Time2 – Tran-B reads the same row and finds the same value

(100).

Time3 – Tran-A changes its copy of the value by adding 50;

then it writes the changed value (100+50=150) to the

database, commits, and terminates.

Time4 – Tran-B doubles its copy of the value, writes the

updated value (2*100=200) to the database, commits,

and terminates.

Figure 29A.1: Lost-Update Problem (Assume no isolation protection)

Free SQL Book, Tim Martyn 818 Copyright Pending 2022

B.1.b. Dirty-Read Problem

With the lost-update problem, both Tran-A and Tran-B wanted to

update the same row. With the dirty-read problem (and the following

two problems) only one transaction wants to update a row. In the

following scenario, Tran-A updates the row, and then Tran-B reads

the same row before Tran-A terminates. Then, a dirty-read problem

occurs because Tran-A terminates by executing a ROLLBACK

operation.

Problem: At Time2, Tran-B does a dirty-read by reading a modified

but uncommitted FEE value (9.00). Then, at Time3, Tran-A returns

the FEE value to 0.00. Thereafter, Tran-B continues to use the

incorrect FEE value (9.00) which may produce an in correct result.

Observation: In principle, the dirty-read problem is bad, but not

as bad as the lost-update problem. A lost-update stores “garbage”

in the database which could be read by subsequent transactions.

With the dirty-read, only Tran-B suffers. However, more serious

problems would occur if the program/procedure containing Trans-B

subsequently writes data derived from the bad FEE (9.00) to the

database.

*** Assume Preserve 7 has a FEE value of 0.00

Time1 – Tran-A executes UPDATE (without COMMIT):

 UPDATE PRESERVE

 SET FEE = 9.00

 WHERE PNO = 7;

Time2 – Tran-B executes:

 SELECT PNO, FEE FROM PRESERVE WHERE PNO = 7;

 PNO FEE

 7 9.00

Time3 – Tran-A executes:

 ROLLBACK

Time4 - Tran-B continues to execute under the mistaken

 assumption that FEE is 9.00 (not 0.00).

Figure 29A.2: Dirty-Read Problem (Assume no isolation protection)

Free SQL Book, Tim Martyn 819 Copyright Pending 2022

B.1.c. Non-Repeatable-Read Problem

Sometimes a transaction reads a row and then re-reads the same

row. Assuming no isolation protection, the re-read operation could

return the same row with different value(s). Consider the following

scenario.

Problem: At Time-1, Tran-A reads a row with a FEE value of 0.00.

Then, at Time-3, it re-reads the same row which now has a FEE value

of 5.00. This occurred because, at Time-2, Tran-B (unknown to Tran-

A) modified the FEE value and committed it. This scenario is overly

simplistic because Tran-A executes identical SELECT statements

twice. A more realistic example will be presented later.

[Alternative Scenario: Tran-B executes a DELETE statement at Time-

2, and Tran-A gets a “no hit” at Time-3.]

Observation: The non-repeatable-read problem is bad, but not as

bad as the previous dirty-read problem because, in principle, Tran-

A could detect and resolve this problem. However, writing extra

code to detect and resolve this problem may not be reasonable.

Time1 – Tran-A executes:

 SELECT PNO, FEE FROM PRESERVE WHERE PNO = 7;

 PNO FEE

 7 0.00

Time2 – Tran-B executes:

 UPDATE PRESERVE

 SET FEE = FEE + 5.00

 WHERE PNO = 7;

 COMMIT;

Time3 – Tran-A re-executes the same statement:

 SELECT PNO, FEE FROM PRESERVE WHERE PNO = 7;

 PNO FEE

 7 5.00

Figure 29A.3: Non-Repeatable-Read Problem (Assume no isolation protection)

Free SQL Book, Tim Martyn 820 Copyright Pending 2022

B.1.d. Phantom-Row Problem

A phantom-row problem occurs when a transaction retrieves a result

table and subsequently retrieves the “same” result table which has

a new row. This new row is called a “phantom-row.” Consider the

following scenario.

Problem: At Time-1 and Time-3, Trans-A’s SELECT-statement

specified the same condition (ACRES > 40000), but an additional

“phantom-row” was returned at Time-3. This occurred because, at

Time-2, Tran-B (unknown to Tran-A) inserted and committed a new

row with an ACRES value (50000) which matched the ACRES > 40000

condition. (Again, this scenario is overly simplistic because

Tran-A executes the same SELECT statement twice.)

Observation: As with the non-repeatable-read problem, the phantom-

row problem is not as bad as the dirty-read problem because, in

principle, Tran-A could detect and resolve this problem. However,

as with the non-repeatable-read problem, detecting and resolving

the phantom-row problem may not be reasonable.

Time1 – Tran-A executes:

 SELECT PNO, PNAME, ACRES FROM PRESERVE

 WHERE ACRES > 40000

 PNO PNAME ACRES

 7 MULESHOE RANCH 49120

Time2 – Tran-B executes:

 INSERT INTO PRESERVE VALUES

 (99, 'HAPPY VALLY', 'AZ', 50000, 0.00);

 COMMIT;

Time3 – Tran-A re-executes the same statement:

 SELECT PNO, PNAME, ACRES FROM PRESERVE

 WHERE ACRES > 40000

 PNO PNAME ACRES

 7 MULESHOE RANCH 49120

 99 HAPPY VALLY 50000

Figure 29A.4: Phantom-Row Problem (Assume no isolation protection)

Free SQL Book, Tim Martyn 821 Copyright Pending 2022

B.2. System Prevents Data Isolation Problems

Database systems can utilize Locking to prevent data isolation

problems.

Preliminary Comment: A comprehensive discussion of locking is a

rather complex topic that is beyond the scope of this book.

Another Preliminary Comment: There are other methods that prevent

data isolation problems (e.g., Multi-Versioning) that are beyond

the scope of this book. However, even if you know that your system

is using some other method, many of the concepts presented in the

remainder of this appendix are relevant.

Locking: Whenever your transaction wants to access a “chunk of

data,” the system (using its own internal bookkeeping scheme) will

“lock” this data such that no other transaction can access it until

your transaction terminates. After your transaction terminates,

the system will unlock your transaction’s data such that other

transactions can access it.

Observe that, before the system can award your transaction a lock

on some chunk of data, it must verify that another transaction has

not already locked this data. If another transaction has already

locked this data, your transaction may have to wait until this

other transaction terminates.

Types of Locks: We discuss the two basic types of locks: Exclusive-

Lock (X-Lock) and Share-Lock (S-Lock). As their names imply, if a

transaction is awarded an X-Lock on a chunk of data, then no other

transaction is allowed any kind of access to this data; and, if a

transaction is awarded an S-Lock, then another transaction is

allowed to read, but not modify, this data.

Lock Assignment: “Writer-transactions” are assigned X-Locks, and

“Reader-transactions” are assigned S-Locks. Hence:

• Writers will block readers and other writers

• Readers will block writers

• Readers will not block other readers

The following examples will illustrate this behavior to

demonstrate how locking can prevent data isolation problems.

Free SQL Book, Tim Martyn 822 Copyright Pending 2022

B.2.a. Prevent Lost-Update Problem

Basic Idea: Tran-A is awarded an X-lock which blocks Tran-B from

obtaining an X-lock.

Locking prevented the lost-update problem. At Time-1, the system

assigned an X-lock to the row on behalf of Tran-A. This prevented

this system from giving any kind of lock to Tran-B at Time-2. Hence

Tran-B was forced to wait.

Serializability was enforced. The results were the same as if Tran-

A started and terminated before Tran-B started. (Note: This same

sequence, Tran-A-before-Tran-B, occurs in the following three

examples. Other circumstances, not described in this book, might

produce a Tran-B-before-Tran-A sequence.)

Efficiency Cost: Because Tran-B is forced to wait, it suffers a

longer response-time. This could extend the wait-time of other

transactions that are also waiting for the same row.

Revise Figure 29A.1:

Time1 – Tran-A asks the system to update a row. The system

places an X-lock on the row and delivers it (with

a column value of 100) to Tran-A. Then Tran-A

continues.

Time2 – Tran-B asks the system to update the same row.

(Hence Tran-B needs an X-lock on this row.) The

system detects that the row is already locked with

an X-lock and suspends Tran-B until Tran-A

terminates. Tran-B waits.

Time3 – Tran-A updates the row by changing the column value

from 100 to 150, writing the row to the database,

and committing. This commit operation causes the

system to remove Tran-A’s X-lock.

Time4 – The system restarts Tran-B, places an X-lock on the

row, and delivers it to Tran-B. Tran-B updates the

recently modified column value from 150 to 300,

writes the row to the database, and commits, and

removes Tran-B’s X-lock.

Figure 29A.5: Locking Prevents Lost-Update Problem

Free SQL Book, Tim Martyn 823 Copyright Pending 2022

B.2.b. Prevent Dirty Read Problem

Basic Idea: Tran-A is awarded an X-lock which blocks Tran-B from

obtaining an S-lock.

Locking prevented the dirty-read problem. At Time-1, the system

assigned an X-lock to the row on behalf of Tran-A. This prevented

this system from giving any kind of lock to Tran-B at Time-2. Hence

Tran-B was forced to wait.

Serializability was enforced. The results were the same as if Tran-

A started and terminated before Tran-B started.

Efficiency Cost: Because Tran-B is forced to wait, it suffers a

longer response-time. This could extend the wait-time of other

transactions that are also waiting for the same row.

Figure 29A.7: Locking Prevents Dirty-Read Problem

Revise Figure 29A.2:

Time1 – Tran-A asks the system to update a row. The system

places an X-lock on the row and delivers it to

Tran-A. Tran-A updates the row by changing a column

value of 0.00 to 9.00. Tran-A continues to operate

without committing.

Time2 – Tran-B asks the system to read the same row. (Hence

Tran-B needs an S-lock on this row.) The system

detects that Tran-A has an X-lock and suspends

Tran-B until Tran-A terminates. Tran-B waits.

Time3 - Tran-A does a rollback operation returning its

column value to 0.00. This rollback operation

causes the system to unlock the row.

Time4 - The system restarts Tran-B, places an S-lock on the

row for Tran-B, and delivers it (with the original

column value of 0.00) to Tran-B. Tran-B continues

using this value.

Free SQL Book, Tim Martyn 824 Copyright Pending 2022

B.2.c. Prevent Non-Repeatable-Read Problem

Basic Idea: Tran-A is awarded an S-lock which prevents Tran-B from

obtaining an X-lock.

Locking prevented the non-repeatable-read problem. At Time-1, the

system applied a S-lock on the row on behalf of Tran-A. This

prevented the system from giving a X-lock to Tran-B at Time-2.

Serializability was enforced. The results were the same as if Tran-

A started and terminated before Tran-B started.

Efficiency Cost: Again, because Tran-B is forced to wait, it

suffers a longer response-time. This could extend the wait-time of

other transactions that are also waiting for the same row.

Note that the system assigns an S-Lock at Time-1 which allows other

read-only transactions to read the locked data. This is

“friendlier” than the previous two locking scenarios where the

system assigned an X-Lock at Time-1 which denied access to all

other transactions. (A similar observation will apply to the

following phantom-row scenario.)

Figure 29A.8: Locking Prevents Non-Repeatable-Read Problem

Revise Figure 29A.3:

Time1 – Tran-A asks the system to read a row. The system

places an S-lock the row and delivers it to Tran-

A. Assume some column has a value of 0.00.

Time2 – Tran-B asks the system to update the same row.

(Hence Tran-B needs an X-lock on this row.) The

system detects that Tran-A already has an S-lock

and suspends Tran-B. Tran-B waits.

Time3 – Tran-A re-reads the same row with the (unmodified)

column value of 0.00. Tran-A continues until it

does a commit or rollback operation which will cause

the system to remove its lock.

Time4 - The system restarts Tran-B.

Free SQL Book, Tim Martyn 825 Copyright Pending 2022

B.2.d. Prevent Phantom-Row Problem

Basic Idea: Assign a condition-lock to Tran-A to prevent Tran-B

from inserting rows that match the condition.

At Time-1, the system assigned a condition-lock on behalf of Tran-

A. This lock caused the system to suspend Tran-B because it wants

to insert a row that matches the condition.

Again, serializability was enforced (as if Tran-A started and

terminated before Tran-B started).

Again, because Tran-B is forced to wait, it suffers a longer

response-time, and this may extend the wait-time of other

transactions that are also waiting for the same row.

Figure 29A.9: Locking Prevents Phantom-Row Problem

Revise Figure 29A.4:

Time1 – Tran-A asks the system to retrieve all PRESERVE rows

where ACRES > 40000. The system applies a condition-lock

on all rows that match this condition.

 This kind of condition-lock (also called a “range-lock”)

locked all rows that matched the ACRES > 40000 condition.

A condition-lock is different than a lock which locks

rows that are stored in the database. A condition-lock

locks existing rows and also (somehow) locks any “future

inserted rows” that match the condition.

Time2 – Tran-B asks permission to insert a new row with an

ACRES value of 50000 (which matches the ACRES > 4000

condition). The condition-lock implies this new row could

become a phantom-row. Hence, the system suspends Tran-B

until the Tran-A terminates. Tran-B waits.

Time3 – Tran-A re-reads the PRESERVE table with the same

condition and returns the same rows (without any phantom-

rows). Tran-A subsequently does a commit or rollback

operation, causing the system to remove the condition-

lock.

Time4 - The system restarts Tran-B.

Free SQL Book, Tim Martyn 826 Copyright Pending 2022

B.3. Adjusting Isolation Levels

Although locking prevents transaction isolation errors, it has a

negative impact on response-time by forcing some transactions to

wait for other transactions to terminate. In some circumstances,

you can improve efficiency by adjusting your transaction’s

isolation level. In these circumstances, you effectively tell the

system:

 “I want to reduce the response-time for my transaction. So,

don’t bother protecting my transaction against some isolation

problems. I know what I am doing. I know that a specific

isolation problem cannot occur. Or, if such a problem can

occur, I can resolve it, or I will simply tolerate its

negative consequences.”

Most systems support SQL’s SET TRANSACTION statement which can be

used to adjust a transaction’s “isolation level.” (See the

following Figure 29A.10.) Four isolation levels can be specified:

SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ

UNCOMMITTED. This figure describes the meaning of each isolation

level by designating, for each isolation level, which isolation

problems will be prevented and which problems will be allowed to

occur.

SET TRANSACTION ISOLATION LEVEL [option]

SERIALIZABLE (Most safe + Least efficient)

 No dirty-read problems

 No re-read problems

 No phantom-rows

REPEATABLE READ

 No dirty-read problems

 No re-read problems

 Allow phantom-rows

READ COMMITTED

 No dirty-read problems

 Allow re-read problems

 Allow phantom-rows

READ UNCOMMITTED (Least safe + Most efficient)

 Allow dirty-read problems

 Allow re-read problems

 Allow phantom-rows

Figure 29A.10: Adjusting Isolation Level Protection

Free SQL Book, Tim Martyn 827 Copyright Pending 2022

Your DBA will set a default isolation level that applies to all

transactions. Executing a SET TRANSACTION ISOLATION LEVEL

statement allows you to change the isolation level for your

transaction only.

Also note that the SET TRANSACTION ISOLATION LEVEL does not specify

an option like “Allow Lost-Updates.” The system will always prevent

lost-updates.

Variation among different systems: Different systems support

different variations of the SET TRANSACTION statement, and these

systems offer different options for setting the isolation level.

We briefly comment on four database systems.

MYSQL: MYSQL supports the SET TRANSACTION ISOLATION LEVEL

statement with the four options described in Figure 29A.10.

SQL Server: SQL supports the SET TRANSACTION ISOLATION LEVEL

statement which includes the four options described in Figure

29A.10, plus another option.

ORACLE: ORACLE supports a SET TRANSACTION ISOLATION LEVEL

statement that can specify two of the four options described

in in Figure 29A.10.

DB2 (Windows): DB2 uses the term “unit of work” (UOW) instead of

“transaction.” DB2 does not support the SET TRANSACTION

ISOLATION LEVEL statement. Instead, DB2 supports a similar

SET CURRENT ISOLATION TO statement which assigns a value to

a system register. The options (UR, CS, RS, and RR) are

similar to but not identical to those described in Figure

29A.10.

Given the variation across different systems, you should consider

the following discussion to be a conceptual introduction to setting

isolation levels. You must consult your reference manual to learn

details about setting isolation levels on your system.

Free SQL Book, Tim Martyn 828 Copyright Pending 2022

Efficiency Considerations

Terminology - On-line versus Off-line: - We use the term “on-line”

processing to imply the concurrent execution of SQL transactions

that read and modify a shared collection of tables. The previously

described isolation level problems apply within an on-line

environment.

The term “off-line” processing refers to a processing environment

that executes a “batch” of non-conflicting update programs. These

programs “run a midnight” so they do not compete with on-line

programs that execute during the business day. Isolation level

problems do not occur in an off-line environment.

[Today, sophisticated 24x7 “non-stop” database systems support on-

line transactions that automatically address isolation level

problems. Most applications do not run on such sophisticated

systems.]

Isolation Levels: Below we examine each isolation level by working

backwards, from the weakest level of protection to the strongest.

READ UNCOMMITTED ISOLATION LEVEL

▪ Allow dirty-reads

▪ Allow non-repeatable-reads

▪ Allow phantom-rows

This is the weakest (least safe) isolation level and should only be

specified in special case circumstances. Good news! The following

two special case circumstances are very common.

1. Read-Only Databases – Sometimes, all application tables are

read-only. A common example is a data warehouse application. Also,

the DBA may create a read-only database for testing purposes.

Free SQL Book, Tim Martyn 829 Copyright Pending 2022

2. Read-Only Tables: Your on-line system might execute many

concurrent transactions that modify tables. But it may be your

good fortune that your transaction happens to read a read-only

table. Here you know that no other concurrent transaction can

possibly change this table. Therefore, your transaction cannot

encounter any isolation problems.

Example-1: “Code” Tables – A code table is usually a small table

that is rarely modified. The STATE table in our MTPC database is

a code table where the STCODE column contains the codes. In real-

world applications, STATE would be populated with fifty rows, one

for each state in the USA. Political circumstances imply that it

will be a very long time before any INSERT and DELETE operations

will be applied to this table. Regarding UPDATE operations, it

will be a long time before any state changes its STCODE and STNAME

values. But there will be occasional changes to the POPULATION

column. Therefore, the DBA might prohibit all on-line DML

operations against the STATE table and move infrequent updates of

the POPULATION column off-line.

Example-2: An “Almost-Read-Only” Table - Within our MTPC database,

the REGION table could be setup as read-only within an on-line

environment. Most users would not consider REGION to be a code

table. However, changes to this table would be infrequent, maybe

a few times a year. The DBA could prohibit all on-line DML

operations against the REGION table, and move infrequent DML

operations off-line.

Conclusion: Always ask: “Do my SELECT statements only access read-

only tables?” If yes, consider setting your transaction’s

isolation level to READ UNCOMMITTED.

[Note: Practically all read-only tables are “effectively” read-

only. It is hard to image any table that is absolutely read-only.

Perhaps a chemistry application could include an absolutely read-

only table that represents the unchanging Periodic Table. However,

it is impossible to imagine an absolutely read-only table within

a business application. Therefore, in this book, read-only always

implies effectively read-only where DML operations are pushed off-

line.]

Free SQL Book, Tim Martyn 830 Copyright Pending 2022

READ COMMITTED ISOLATION LEVEL

▪ No dirty-reads

▪ Allow non-repeatable-reads

▪ Allow phantom-rows

The option is the second weakest isolation level. You should consider

specifying READ COMITTED if your transaction never re-reads the same

data. Therefore, your transaction would not need protection from

non-repeatable-reads and phantom-rows.

Example-1: Never Re-Read a Row – A transaction has just one SELECT

statement. Hence, no re-reads. (Because this is a very common

circumstance, the DBA might set READ COMMITTED as the default

isolation level.)

Example-2: STATE Table (As an “Almost-Read-Only” Table)

• On-line INSERTs are prohibited (no new states), and

• On-line DELETEs are prohibited (no leaving USA), and

• On-line UPDATEs are limited to the POPULATION column

Here:

• READ COMMITED isolation prevents dirty-reads.

• Prohibiting on-line INSERTs prevent phantom-rows.

• Prohibiting on-line DELETE prevents non-repeatable-reads

caused by this operation.

• And, if your transaction’s SELECT statement(s) only re-read

non-updateable columns (STCODE and STNAME), you cannot

encounter non-repeatable-reads caused by another transaction’s

UPDATE operation.

Free SQL Book, Tim Martyn 831 Copyright Pending 2022

REPEATABLE READ ISOLATION LEVEL

▪ No dirty-reads

▪ No non-repeatable-reads

▪ Allow phantom-rows

This option is the second strongest isolation level. We describe two

examples where REPEATABLE READ could be helpful.

Example-1: “Rarely-Inserted” Tables – These are tables where:

• On-line INSERTs are prohibited, and

• On-line DELETEs are allowed, and

• On-line UPDATEs are allowed.

Hence:

• REPEATABLE READ isolation prevents dirty-reads.

• REPEATABLE READ isolation prevents non-repeatable-reads

• You only have to worry about phantom-rows. Fortunately, on-line

INSERT operations are executed off-line.

Consider the SUPPLIER table in the following context. Some

organizations impose a rigorous security process on new suppliers.

This reduces the number of new suppliers and limits the number of

INSERT operations into the SUPPLIER table. Because INSERT

operations are rare, they can be executed off-line. DELETE and

UPDATE operations are protected by the REPEATABLE READ isolation

level.

Example-2: “Append-Only” Tables – These are tables where:

• On-line DELETEs are allowed, and

• On-line UPDATEs are allowed.

• On-line INSERTs are restricted to inserts at the “end of the

table.”

Hence:

• REPEATABLE READ isolation prevents dirty-reads.

• REPEATABLE READ isolation prevents non-repeatable-reads

• You avoid phantom-rows by not selecting rows from “the end of

the table.”

An append-only table is logically (and maybe physically) sorted by

some column, usually a date-time column. All on-line INSERT

operations must (somehow) insert rows where the sort-column value

is always greater than the previously inserted row. (The “new row”

is inserted after the “last row.”)

Free SQL Book, Tim Martyn 832 Copyright Pending 2022

This scenario could apply to the PUR_ORDER table. Here, transactions

that insert rows would guarantee that the PODATE value for each

newly inserted row is always greater than or equal to the PODATE

value for the previously inserted row. [Note: Real-world purchase-

order tables would probably store date-time values. The same append-

only concepts apply.]

When coding SELECT statements, you must (1) know about this append-

only behavior, and (2) code WHERE-clauses that reject the “last

row(s)” that could set the stage for phantom-rows. For example,

assume today’s PODATE value is 204. Then your SELECT statements

would contain an WHERE-clause that looks like:

 SELECT * FROM PUR_ORDER

 WHERE PSTATUS = 'P'

AND PODATE < 204

An alternative approach allows the system to automatically prevent

phantom-rows. The DBA could create a view (discussed in Chapter

28) called PUR_ORDERV which specifies a condition like PODATE <

TODAY. (TODAY is a keyword containing today’s date. This keyword

varies across different database systems.)

The CREATE VIEW statement would look like:

CREATE VIEW PUR_ORDERV AS

SELECT * FROM PUR_ORDER

WHERE PODATE < TODAY

Then, your transaction could specify:

SELECT * FROM PUR_ORDERV

 WHERE PSTATUS = 'P'

The system substitutes today’s date (204) for TODAY. Then it

generates and executes the following desired statement.

SELECT * FROM PUR_ORDER

 WHERE PSTATUS = 'P'

 AND PODATE < 204

Free SQL Book, Tim Martyn 833 Copyright Pending 2022

SERIALIZABLE ISOLATION LEVEL

▪ No dirty-reads

▪ No non-repeatable-reads

▪ No phantom-rows

SERIALIZABLE is the safest isolation level because it prohibits all

transaction isolation problems. However, this option could generate

long response-times for some transactions.

In an ideal-world, SERIALIZABLE would be the default isolation

level; and, many DBAs will designate SERIALIZABLE as the default

isolation level. However, if slow response-time becomes a problem,

some DBA’s might choose another isolation level as the default. As

previously mentioned, some DBAs specify READ COMMITTED as the

default isolation level. Therefore, we emphasize that: SERIALIZABLE

might not be your default isolation-level.

Conclusion: A Positive Domino Effect: Earlier we stated that:

 “I want to reduce the response-time for my transaction. So,

don’t bother protecting my transaction against one or more

specific isolation problems.”

We really have a “Win-Win” situation. Notice that, when I reduce

my transaction’s execution time, I “get in and get out.” When I

“get out” earlier, my locks are released earlier, thereby allowing

other transactions quicker access to the data that I had locked.

Hence, by reducing my response-time, I indirectly reduce the

response time of other concurrent transactions.

Free SQL Book, Tim Martyn 834 Copyright Pending 2022

B.4. More About Locking

The plot thickens.

Size of Lock: In previous examples we indicated that the system

locked one row or a “chunk” of data. More accurately, real-world

systems can lock a single row, a physical block (page) consisting

of multiple rows, a partition (a collection of physically

contiguous blocks), a complete table, or a “tablespace” which

consists of multiple blocks containing all rows from one or more

tables. Choosing the optimal lock size is not a simple task.

Various database systems offer different ways to set the size of

a lock. For example, in DB2, the DBA can specify a LOCKSIZE

parameter in the CREATE TABLESPACE and ALTER TABLESPACE statements

that set the default lock size for all tables in a tablespace.

And, in DB2, applications developers (with appropriate privileges)

can execute a LOCK TABLE statement to lock a table (e.g., LOCK

TABLE JUNK IN SHARE MODE, LOCK TABLE JUNK IN EXCLUSIVE MODE).

Efficiency Tradeoffs: A larger lock size implies fewer locks which

imply more efficient internal bookkeeping. Assume your transaction

will retrieve 1000 rows from a JUNK table. A worst-case scenario

with row-level locking could involve 1000 executions of: [ask-for-

lock, wait-to-get-lock, get-and-process-row, release-lock].

Alternatively, with table-level locking, your transaction does a

one-time [ask-for-lock, wait-to-get-lock, get-and-process-1000-

rows, release-lock]. Locking an entire table sounds great because

your transaction “gets in and gets out.”. BUT, before the system

can award you a table-level lock, your [wait-to-get-lock] request

could take a long time because you have to wait for all X-locks on

JUNK to be released. Furthermore, after your transaction gets an

S-Lock on the JUNK table, you force all other transactions that

want an X-lock on any row in this table to wait.

Hints: Some systems allow an application developer to specify hints

that set lock size and influence locking behavior. For example,

SQL Server provides PAGLOCK, TABLOCK, NOLOCK, and other locking

hints.

Free SQL Book, Tim Martyn 835 Copyright Pending 2022

Inconsistent-Analysis Problem: Consider the following scenario.

Assume row-level locking. Your SELECT statement executes SUM(AMT)

over five rows with AMT values of 10, 5, 15, 30, 20. The correct

result should be 80. After the system summarizes the third row, it

has an intermediate running total of 30. Then, before your

transaction can lock the fourth row, another transaction changes

its AMT value from 30 to 60 and commits. Then, your transaction

reads the fourth row AMT (value of 60), and then the fifth row AMT

(value of 20), and produces an incorrect total value of 110. A

table-level lock could have prevented this problem.

Author Comment: Consider the inconsistent-analysis problem in

terms of setting isolation levels. (Note: This problem is not

directly protected by the SET TRANSACTION ISOLATION LEVEL

statement.) Assume you are not allowed to execute a LOCK TABLE

statement. What isolation level do you choose? Candidly, I don’t

know, and the answer could vary across database systems. I have

read that READ COMMITTED, which only protects you from dirty-

reads, will not work. This is reasonable because the inconsistent-

analysis problem is not caused by a dirty-read. And, with row-

level locks, READ COMMITTED only cares about the integrity of the

current row. So, we jump to the next level of protection,

REPEATABLE READ. I have read that this isolation level will prevent

inconsistent-analysis problem. But I am uncertain. What about

phantom-rows? So, to be safe, we jump to SERIALIZABLE. If this is

unacceptable, consult your reference manual and/or ask your DBA.

Good luck.

Types Locks: For tutorial purposes, we have only described the

major lock types, the S-lock and the X-lock. This is good enough

for presenting a conceptual overview. However, commercial systems

are not limited to these two types of locks. For example, DB2

mainframe provides more than 10 different lock types.

Free SQL Book, Tim Martyn 836 Copyright Pending 2022

Releasing Locks: After awarding a lock, the system must decide

when to release the lock. General Objective: Release your locks

early so they can be given to other transactions. But, do not

release locks too early, which may allow isolation problems to

occur. Releasing a lock can be done at different times.

• After a transaction terminates.

[Locks held for the longest time.]

• After a statement terminates. For example, assume a

transaction has two SELECT statements which reference

different tables. In some circumstances, locks assigned for

the first statement can be released after this statement

completes, before the second statement starts.

• After a row has been retrieved.

[Locks held for the shortest time.]

Assume a transaction has a SELECT statement that executes

SUM(AMT) over multiple rows. With row-level locking, the lock

on each row can be released after each row has been accessed

and summarized. Notice that, with the previous inconsistent

analysis problem, the problem occurred because an AMT value

was changed by another transaction before your transaction

accessed it. Here, each row-level lock is released after the

transaction has accessed a row. This is a good idea, unless

your transaction will re-read some of the same rows.

The system usually decides when to release locks. However, some

systems (e.g., SQL Server) provide an UNLOCK TABLE statement.

Appendix Summary

Again, we emphasize that our discussion of locking and isolation

levels was conceptual. We only examined the tip of the iceberg.

Applications developers are strongly encouraged to consult their

reference manuals and the multitude of web sites which present

system specific details.

Free SQL Book, Tim Martyn 837 Copyright Pending 2022

Chapter

 30
Recursive Queries

This (rather long) chapter introduces a special kind of query

called a “recursive query.” This type of query references a

“recursive table” that is related to itself via a “recursive

relationship.” Unlike other relationships previously described in

this book, a recursive relationship relates objects of the same

type. Casually speaking, recursion involves a form of “self-

reference.”

A common example of recursion is a business organization where

every employee (except the “big boss”) directly reports to exactly

one supervisor who is also an employee; and, a supervisor may

directly supervise one or more employees. This example of a one-

to-many recursive relationship is illustrated by the following

data model. -

A many-to-many relationship can also be recursive. For example,

some organizations allow “matrix management” where an employee may

directly supervise multiple employees, and an employee may have

multiple direct supervisors. A recursive many-to-many relationship

is illustrated by the following data model.

Section A presents sample queries against a table called REMPLOYEE

that is related to itself via a recursive one-to-many relationship.

Section B presents sample queries against a table called REMPLOYEE2

that is related to itself via a recursive many-to-many

relationship. Section C concludes with some special case recursive

queries.

Reports-To

REMPLOYEE2

Reports-To

REMPLOYEE

Free SQL Book, Tim Martyn 838 Copyright Pending 2022

A. Recursive One-to-Many Relationships

This section describes a recursive one-to-many relationship where

each employee (except the “big boss”) reports to exactly one

supervisor; and each employee who is a supervisor may supervise

multiple employees. The following Figure 30.1a illustrates a data

model with a recursive relationship (Reports_To). Within the

corresponding CREATE TABLE statement, this relationship is

implemented by a FOREIGN KEY clause designating the SENO column

(the supervisor’s ENO value) as a foreign-key which references

REMPLOYEE, the same table that is being created.

Sample data for the REMPLOYEE table are shown below. The null SENO

value in the first row implies that Employee 1000 is the big boss

who does not have a supervisor.

 ENO ENAME SALARY SENO

 1000 MOE 2000.00 -

 2000 JANET 2000.00 1000

 3000 LARRY 3000.00 1000

 4000 JULIE 500.00 2000

 4500 JOHNNY 2000.00 4000

 4600 ELEANOR 3000.00 4000

 4700 ANDY 2000.00 4600

 4800 MATT 3000.00 4600

 5000 JESSIE 400.00 2000

 5500 HANNAH 4000.00 5000

 6000 FRANK 9000.00 2000

 6500 CURLY 8000.00 3000

 7500 SHEMP 9000.00 6500

 8000 JOE 8000.00 1000

 8500 GEORGE 7000.00 8000

 8600 DICK 6000.00 8500

 8700 HANK 6000.00 8500

 Figure 30.1b:

REMPLOYEE Table

 CREATE TABLE REMPLOYEE

 (ENO CHAR (4) NOT NULL,

 ENAME VARCHAR (25) NOT NULL,

 SALARY DECIMAL (7,2) NOT NULL,

 SENO CHAR (4),

 PRIMARY KEY (ENO),

 FOREIGN KEY (SENO)

 REFERENCES REMPLOYEE);

Figure 30.1a: Recursive One-to-Many Relationship

Reports-To

REMPLOYEE

ENO (PK)

ENAME

SALARY

SENO (FK)

Free SQL Book, Tim Martyn 839 Copyright Pending 2022

Recursive One-to-Many Relationship → Tree Diagram

Rows within the recursive REMPLOYEE table can be represented by

the following tree diagram.

Each REMPLOYEE row is represented by a circular node containing

its primary-key (ENO). For example, Node-2000 represents the row

with the ENO value of 2000. Each row’s SENO value is represented

by an upward line to the node representing the employee’s direct

supervisor. For example, the line above Node-2000 indicates that

Employee 2000 reports to Employee 1000.

Terminology: Conventional genealogical terms (parent, child,

ancestor, and descendant) describe relationships between nodes.

Examples: Node-2000 is the parent of Node-4000, Node-5000, and Node-

6000. Node-5000 is a child of Node-2000. Node-2000 is an ancestor

of all nodes below it; and, Node-4600 is a descendent of Node-4000,

Node-2000, and Node-1000. The root node is the node at the top of

the tree (Node-1000) and is the only node without a parent. The

corresponding row is the only row with a null SENO value. Nodes at

the bottom of the tree (4500, 4700, 4800, 5500, 6000, 7500, 8600,

and 8700) which do not have any children are called leaf nodes.

Finally, observe that there is only one path from the root node to

any other node. (This observation will not apply to Network

Diagrams to be introduced in Section B.)

Figure 30.1c: Tree Diagram Represents REMPLOYEE Table

 1000

3000

6500

7500

8000

8500

8600 8700

2000

5000

5500

4000

4500 4600

4700 4800

6000

Free SQL Book, Tim Martyn 840 Copyright Pending 2022

Recursive Query: Traverse Down a Tree

A recursive query asks the system to traverse up or down a tree.

The following sample query asks the system to traverse down a tree.

Because recursive SQL code is not self-evident, we begin by

introducing a relatively simple example before presenting a

comprehensive explanation of syntax and logic. From a graphical

perspective, the following sample query asks the system to start

at Node-2000 and traverse down the tree.

Sample Query 30.1: Reference the REMPLOYEE table. Display ENO,

ENAME, and SENO values for Employee 2000 and all employees who

directly or indirectly work for this employee. (I.e., Display

data about Employee 2000 and all her descendants.) Also draw a

sub-tree that represents the result table.

 ENO ENAME SENO

 2000 JANET 1000

 4000 JULIE 2000

 5000 JESSIE 2000

 6000 FRANK 2000

 4500 JOHNNY 4000

 4600 ELEANOR 4000

 5500 HANNAH 5000

 4700 ANDY 4600

 4800 MATT 4600

Important Observation: No ORDER BY clause is specified. Hence,

again, you cannot make any assumptions about row sequence in the

result table. However, the above result table is incidentally

displayed in a “hierarchical sequence.” (This may not occur on

your system.) A following section will say more about Hierarchical

Sequences.

WITH DESCENDANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

2000

5000

5500

4000

4500 4600

4700 4800

6000

Free SQL Book, Tim Martyn 841 Copyright Pending 2022

Dissecting a Recursive Query: Syntax

The logic of a recursive query can be a little tricky, especially

for rookie users. However, for the moment, disregard logic and

focus on syntax and related terminology.

SELECT Keyword: Skeleton-code for Sample Query 30.1 shows that the

keyword SELECT is specified three times.

WITH DESCENDANTS (. . .)

AS (SELECT ...

 UNION ALL

 SELECT ...

 ...

 ...

)

 SELECT ...

The first two SELECTs are Sub-SELECTs specified within a WITH-

clause that defines a Common Table Expression (CTE) called

DESCENDANTS. (You might want to review Chapter 27 which introduced

CTEs.) These Sub-SELECTs will select data from the REMPLOYEE table

to populate DESCENDENTS.

1st Sub-SELECT: The Initialization Sub-SELECT.

 SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='2000'

The Initialization Sub-SELECT is usually quite simple. Here, data

from the row describing Employee 2000 is placed into the

DESCENDANTS table.

2nd Sub-SELECT: The Recursive Sub-SELECT.

SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

The Recursive Sub-SELECT is not so simple and will be explained on

the following pages. This explanation will describe the process

whereby data about all descendants of Employee 2000 are placed

into the DESCENDENTS table.

Free SQL Book, Tim Martyn 842 Copyright Pending 2022

3rd SELECT: The Main SELECT.

 SELECT * FROM DESCENDANTS

All rows in the DECSENDANTS table are selected for display.

As this example illustrates, the Initialization Sub-SELECT and the

Main SELECT are usually quite simple. (You can understand this

code after reading Chapter 1.) However, the Recursive Sub-SELECT

is another story. This recursive Sub-SELECT “does all the hard

work” that requires a rather long explanation. We begin with a

critical observation about the definition of DESCENDANTS.

Critical Observation: Notice the “self-reference” within this

WITH-clause. This WITH-clause defines a CTE called DESCENDANTS;

and, most importantly, note that this definition of DESCENDANTS

references DESCENDANTS.

WITH DESCENDANTS (. . .)

AS (SELECT ...

 UNION ALL

 SELECT ...

 FROM DESCENDANTS, ...

 ...

)

 SELECT ...

This self-reference implies that DESCENDANTS is a recursive-CTE,

not a conventional (non-recursive) CTE as described in Chapter 27.

Note: Some systems (e.g., SQL Server) require specifying the

RECURSIVE keyword to code a recursive CTE as illustrated below:

WITH RECURSIVE DESCENDANTS (. . .)

AS (SELECT ...

 UNION ALL

 SELECT ...

 FROM DESCENDANTS, ...

 ...

)

 SELECT ...

Free SQL Book, Tim Martyn 843 Copyright Pending 2022

Dissecting a Recursive Query: Logic

The following pages present a step-by-step tutorial walk-through

of the logic for this sample query.

[Note: This description of recursive logic is a logical

description. The system may utilize internal efficiency techniques

not described here.]

1. Initialization Sub-SELECT.

 SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='2000'

This Sub-SELECT places the following row into DESCENDANTS.

ENO ENAME SENO

2000 JANET 1000

This row corresponds to the first-level node in the sub-tree

diagram that represents the DESCENDANTS table. (Note that this row

corresponds to a second-level node in the tree diagram illustrated

in Figure 30.1c.)

2. Recursive Sub-SELECT.

SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

This Sub-SELECT will be executed multiple times. Each execution

will retrieve the children of parent-rows that were retrieved

during the previous execution. The first execution will place

second-level rows (children of Employee 2000) into DESCENDANTS;

the second execution will place third-level rows (grandchildren of

Employee 2000) into DESCENDANTS. Etc. Execution stops after all

rows corresponding to descendants of Node-2000 have been

retrieved.

The following pages examine this recursive Sub-SELECT in greater

detail.

Free SQL Book, Tim Martyn 844 Copyright Pending 2022

1st Execution: The recursive Sub-SELECT returns the second-level

rows. Because the DESCENDANTS table currently has one row with an

ENO value of 2000, the join-operation matches this row with the

three REMPLOYEE rows with a SENO value of 2000 and returns the

following three rows corresponding to the children of Employee

2000.

4000 JULIE 2000

 5000 JESSIE 2000

 6000 FRANK 2000

These “new rows” (designated by new) are placed into the

DESCENDANTS table which now looks like:

ENO ENAME SENO

2000 JANET 1000

4000 JULIE 2000 new

 5000 JESSIE 2000 new

 6000 FRANK 2000 new

2nd Execution: The recursive Sub-SELECT is executed again to return

the next (third-level) rows.

*Important Observation: Only the new rows in DESCENDANTS are joined

with REMPLOYEE. Hence, the second execution of this Sub-SELECT

returns the following result.

 4500 JOHNNY 4000

 4600 ELEANOR 4000

 5500 HANNAH 5000

These rows are placed into DESCENDANTS, and they become the new

rows. DESCENDANTS now looks like:

ENO ENAME SENO

2000 JANET 1000

4000 JULIE 2000

 5000 JESSIE 2000

 6000 FRANK 2000

4500 JOHNNY 4000 new

 4600 ELEANOR 4000 new

 5500 HANNAH 5000 new

Free SQL Book, Tim Martyn 845 Copyright Pending 2022

3rd Execution: The recursive Sub-SELECT is executed again to return

the next (fourth-level) rows.

4700 ANDY 4600

 4800 MATT 4600

These rows are placed into DESCENDANTS, and they become the new

rows. DESCENDANTS now looks like:

 ENO ENAME SENO

2000 JANET 1000

4000 JULIE 2000

 5000 JESSIE 2000

 6000 FRANK 2000

4500 JOHNNY 4000

 4600 ELEANOR 4000

 5500 HANNAH 5000

4700 ANDY 4600 new

 4800 MATT 4600 new

4th Execution: The recursive Sub-SELECT is executed again. This

time, joining the new rows in DESCENDANTS with REMPLOYEE produces

a “no hit” because none of the new (fouth-level) rows have

children. Graphically speaking, DESCENDANTS already contains all

leaf-nodes under Node-2000. This no-hit event terminates execution

of the recursive Sub-SELECT. DESCENDANTS remains unchanged:

 ENO ENAME SENO

2000 JANET 1000

 4000 JULIE 2000

 5000 JESSIE 2000

 6000 FRANK 2000

 4500 JOHNNY 4000

 4600 ELEANOR 4000

 5500 HANNAH 5000

 4700 ANDY 4600

 4800 MATT 4600

3. Main SELECT. Finally, the Main SELECT is executed:

SELECT * FROM DESCENDANTS

This statement displays the final result which in this case

constitutes all rows in the DESCENDANTS table.

Free SQL Book, Tim Martyn 846 Copyright Pending 2022

Important “Getting Started” Exercises

Although we have only presented one recursive sample query, you

should be able to utilize this example to code solutions for the

following exercises. Do not specify an ORDER BY clause for any of

these exercises. (Optionally, you are invited to detect a special

kind of row sequence in the result tables. This sequence will be

discussed later in this section.)

30A1. Reference the REMPLOYEE table. Display ENO, ENAME, and SENO

values for Employee 8000 and all employees who directly or

indirectly work for this employee. I.e., Display data about

Employee 8000 and all his descendants. The result table should

look like:

ENO ENAME SENO

 8000 JOE 1000

8500 GEORGE 8000

 8600 DICK 8500

 8700 HANK 8500

Hint: This exercise only requires one trivial modification to

the solution for Sample Query 30.1.

30A2. Enhance the previous Exercise 30A1 to also display SALARY

values. The result table should look like:

ENO ENAME SALARY SENO

 8000 JOE 8000.00 1000

8500 GEORGE 7000.00 8000

 8600 DICK 6000.00 8500

 8700 HANK 6000.00 8500

30B1. Reference the REMPLOYEE table. Traverse its tree from top to

bottom. Start with the row for Employee 1000 (root node).

Display all data about this employee and all employees who

directly or indirectly work for this employee. (I.e., Display

the entire tree.)

30B2. The solution for the previous Exercise 30B1 assumes you know

that the root node has an ENO value of 1000. Assume you do

not have this knowledge. Code an alternative solution that

satisfies the same query objective. Start at the root node

(without knowing its ENO value) and display all information

about all its descendants.

Free SQL Book, Tim Martyn 847 Copyright Pending 2022

30C. Consider the recursive RDEMO1 table shown below in Figure

30.2. All columns contain integer values. PKEY is the primary-

key. FKEY is a foreign-key that references PKEY. (The rows

happen to be displayed in PKEY sequence.)

 Draw a tree diagram for the above RDEMO1 table.

Display the PKEY, CODE, and FKEY values for the rows with a

PKEY value of 25 and all its descendant rows. The result

should contain the following rows (without regard to

sequence).

PKEY CODE FKEY

 25 0 20

 15 1000 25

 40 0 25

 30 0 15

 50 0 40

 35 0 30

Hints: Code a CTE called DESCENDANTS.

• The initialization Sub-SELECT should retrieve the row

with a PKEY value of 25.

• The recursive Sub-SELECT should join DESCENDANTS with

RDEMO1 by matching DESCENDANTS’s primary-key with

RDEMO1’s foreign-key.

DESCENDANTS.PKEY = RDEMO1.FKEY

• The Main SELECT should display all information in

DESCENDANTS.

PKEY CODE FKEY

 10 0 -

 15 1000 25

 20 0 10

 25 0 20

 30 0 15

 35 0 30

 40 0 25

 50 0 40

Figure 30.2: RDEMO1 Table

Free SQL Book, Tim Martyn 848 Copyright Pending 2022

General Syntax and Logic

The following Figure 30.3 outlines a code-pattern for a recursive

query that traverses down the REMPLOYEE tree to retrieve descendant

rows.

The WITH-clause defines and populates a CTE called DESCENDANTS.

DESCENDANTS is not a reserved word. However, subsequent sample

queries that traverse down a tree will specify DESCENDANTS as the

name of the recursive CTE. (We will specify ANCESTORS for upward

tree traversals.)

The Initialization Sub-SELECT is a conventional (non-recursive)

Sub-SELECT; the Recursive Sub-SELECT implements the recursive

logic which does “most of the hard work” to place descendant rows

into the DESCENDANTS table; and, the Main-SELECT is a conventional

(non-recursive) SELECT-statement that displays some or all

DESCENDANTS rows.

Figure 30.3: Recursive Query “Down a Tree”

WITH DESCENDANTS (ENO, . . ., SENO)

AS

(

 UNION ALL

)

 SELECT ENO, . . ., SENO

 FROM REMPLOYEE

 [WHERE condition-1]

 SELECT R.ENO, ..., R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

 [AND condition-2]

 SELECT . . .

 FROM DESCENDANTS

 [WHERE condition-3]

 [ORDER BY . . .]

Free SQL Book, Tim Martyn 849 Copyright Pending 2022

Initialization Sub-SELECT

This Sub-SELECT intializes the DESCENDANTS table. It usually

specifies a WHERE-clause that selects one or more rows from the

recursive table (REMPLOYEE). Graphically speaking, this indicates

that you want to start at one or more nodes and traverse the tree

to retieve the descendants (or ancestors) of each node. In Sample

Query 30.1 the initialization Sub-SELECT returned just one row.

Sample Query 30.2a will demostrate an example where this Sub-

SELECT returns multiple rows.

Recursive Sub-SELECT

This Sub-SELECT specifies the recursive logic. Two operations

require your attention.

• Join Operation:

Important: The join-codition dictates the direction of tree

traveral, down the tree from parent to child, or up the tree

from child to parent. The above join-condition (D.ENO =

R.SENO) indicates downward traversal. We will say more about

this issue on the following pages.

• Restriction: (AND condition-2)

You can specify a restriction operation within a recursive

Sub-SELECT. Note that a “no hit” termiates the search for

further descendants/ancestors. Be careful when coding this

condition because a logical error will produce a “too early”

or “too late” termination of the tree traversal. Sample Query

30.2b will offer a detail discussion of this logic.

 SELECT R.ENO, ..., R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

 [AND condition-2]

SELECT ENO, . . ., SENO

FROM REMPLOYEE

[WHERE condition-1]

Free SQL Book, Tim Martyn 850 Copyright Pending 2022

Main-SELECT

This SELECT produces the final result by selecting some or all

rows from DESCENDANTS. Two operations require your attention.

• Restriction (WHERE condition-3)

This is usually a relatively simple WHERE-clause. Sample

Query 30.2c will specify a WHERE-clause that selects a subset

of DESCENDANTS’s rows.

• ORDER BY clause

Consistent with prior recommendations, we usually encourage

you to specify ORDER BY clauses in SELECT-statements.

However, before we present sample queries that specify an

ORDER BY clause in the Main SELECT, we must address the notion

of a “Hierarchical Sequence” on the following page. For the

moment, we simply note (without explanation) that most

systems do not allow you to specify an ORDER BY in the

initialization and recursive Sub-SELECTs. All systems allow

you to specify an ORDER BY in the Main-SELECT. Consult your

SQL Manual to determine your system’s rules.

• Other Operations

The Main-SELECT can specify other SQL operations (e.g., join-

operations, Sub-SELECTs, grouping, etc.), but it cannot

specify another recursive operation.

 SELECT . . .

 FROM DESCENDANTS

 [WHERE condition-3]

 [ORDER BY . . .]

Free SQL Book, Tim Martyn 851 Copyright Pending 2022

Hierarchal Sequences

Sample Query 30.1 did not specify an ORDER BY clause. However, the

result table was incidentally displayed in a hierarchical sequence

called the “Breadth-First” hierarchical sequence. The following

Figure 30.4a illustrates a breadth-first hierarchical sequence by

ENO values.

Casually speaking, the Breadth-First sequence can be described as:

“First left-to-right, then top-to-bottom.”

Another hierarchical sequence, the “Depth-First” Hierarchical

Sequence, is illustrated below in Figure 30.4b. A casual

description of this sequence is: “First top-to-bottom, then left-

to-right.” The following page describes a depth-first traversal

starting at Node-2000.

 ENO ENAME SENO

 2000 JANET 1000

 4000 JULIE 2000

 4500 JOHNNY 4000

 4600 ELEANOR 4000

 4700 ANDY 4600

 4800 MATT 4600

 5000 JESSIE 2000

 5500 HANNAH 5000

 6000 FRANK 2000

Figure 30.4b: Depth-First Hierarchical Sequence

2000

5000

5500

4000

4500 4600

4700 4800

6000

 ENO ENAME SENO

 2000 JANET 1000

 4000 JULIE 2000

 5000 JESSIE 2000

 6000 FRANK 2000

 4500 JOHNNY 4000

 4600 ELEANOR 4000

 5500 HANNAH 5000

 4700 ANDY 4600

 4800 MATT 4600

Figure 30.4a: Breadth-First Hierarchical Sequence

 2000

5000

5500

4000

4500 4600

4700 4800

6000

Free SQL Book, Tim Martyn 852 Copyright Pending 2022

Start at Node-2000. Because this node has multiple children, we

accessed its leftmost child, Node-4000. Because this node has

multiple children, we accessed its leftmost child, Node-4500.

Because this node does not has have any children, we returned to

its parent (Node-4000) and accessed the next (not yet retrieved)

leftmost child, Node-4600. Because this node has multiple

children, we accessed its leftmost child, Node-4700. Because this

node does not has have any children, we returned to its parent

(Node-4600) and accessed the next (not yet retrieved) leftmost

child, Node-4800. Because this node does not have any children, we

returned to its parent (Node-4600) and then its grandparent (Node-

4000). Because all descendants of Node-4000 have been retrieved,

we returned to Node-2000 and retrieved its (not yet retrieved)

leftmost child, Node-5000. Etc.

*** Important: For tutorial reasons, many sample queries in this

chapter will disregard our recommendation to always specify an

ORDER BY clause to return a result in a desired row sequence. (Do

not rely on an incidentally sorted result.) The Summary to this

chapter will address this issue.

*** Also: Many sample queries in this chapter will incidentally

default to a breath-first hierarchical sequence. (Currently this

default sequence applies to DB2 and ORACLE, but this could change.)

A following section will discuss the explicit specification of a

desired hierarchical sequence.

Exercises:

30D1. Reconsider the rows in the RDEMO1 table shown in Figure 30.2.

Using pencil and paper, display all these rows in Breadth-

First Hierarchical Sequence.

30D2. Append ORDER BY ENO to the Main-SELECT in Sample Query 30.1.

Execute the statement. Observe that the rows are no longer

displayed in breadth-first hierarchical sequence.

30D3: Reconsider the RDEMO1 table shown in Figure 30.2. Using

pencil and paper, display its rows in depth-first

hierarchical sequence.

Free SQL Book, Tim Martyn 853 Copyright Pending 2022

Restriction within the Initialization Sub-SELECT

The initialization Sub-SELECT can place multiple rows into

DESCENDANTS, as illustrated below.

Sample Query 30.2a: Reference the REMPLOYEE table. Display ENO,

ENAME, and SENO values about Employees 4000 and 5000 and all

their descendants.

Syntax and Logic: Nothing New. The initialization Sub-SELECT

places the following two rows into DESCENDANTS.

 ENO ENAME SENO

 4000 JULIE 2000

5000 JESSIE 2000

Thereafter, the recursive Sub-SELECT and Main-SELECT operate as

previously described.

Observation: The final result table does not contain any duplicate

rows. This happened because the nodes for the initial two rows

(Node-4000 and Node-5000) are not on the same hierarchical path.

ENO ENAME SENO

4000 JULIE 2000

5000 JESSIE 2000

4500 JOHNNY 4000

4600 ELEANOR 4000

5500 HANNAH 5000

4700 ANDY 4600

4800 MATT 4600

WITH DESCENDANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO IN ('4000', '5000')

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

5000

5500

4000

4500 4600

4700 4800

Free SQL Book, Tim Martyn 854 Copyright Pending 2022

Exercises:

30E1. Consider the RDEMO1 table shown in Figure 30.2. What is the

result of executing the following statement? Execute the

statement to verify your answer.

30E2. Again, consider the RDEMO1 table. What is the result of

executing the following statement? Observe and explain the

presence of duplicate rows in the result. Execute the

statement to verify your answer.

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY IN (15, 40)

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM RDEMO1 R, DESCENDANTS D

 WHERE R.FKEY = D.PKEY

)

 SELECT * FROM DESCENDANTS

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY IN (25, 40)

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM RDEMO1 R, DESCENDANTS D

 WHERE R.FKEY = D.PKEY

)

 SELECT * FROM DESCENDANTS

Duplicate Rows in Final Result: Assume the

initialization Sub-SELECT specified the

following WHERE-clause with two ENO values

(4000 and 4600) that are on the same path.

WHERE ENO IN ('4000', '4600')

This would produce the adjacent result

table that contains duplicate rows. We

could specify DISTINCT in the Main-SELECT

to remove duplicate rows. However, DISTINCT

may have an unwanted side-effect that will

be discussed later.

ENO ENAME SENO

4000 JULIE 2000

4600 ELEANOR 4000

4500 JOHNNY 4000

4600 ELEANOR 4000

4700 ANDY 4600

4800 MATT 4600

4700 ANDY 4600

4800 MATT 4600

Free SQL Book, Tim Martyn 855 Copyright Pending 2022

Restriction within the Recursive Sub-SELECT

The recursive Sub-SELECT in the following sample query specifies

a downward tree traversal with an additional restriction (D.ENO <>

'4000'). This restriction will trim all nodes in all branches in

the sub-tree below Node-4000.

Sample Query 30.2b: Display ENO, ENAME, and SENO values about

Employee 2000 and her descendants. However, exclude any row

describing a descendent of Employee 4000. (The row describing

Employee 4000 should be included in the result.)

Syntax: Nothing New.

Logic: The D.ENO <> '4000' restriction prevents all descendants of

Node-4000 (Node-4500, Node-4600, Node-4700, and Node-4800) from

being placed into DESCENDANTS. Observe that the row for Node-4000

is in the result table. A step-by-step description follows.

ENO ENAME SENO

2000 JANET 1000

4000 JULIE 2000

5000 JESSIE 2000

6000 FRANK 2000

5500 HANNAH 5000

WITH DESCENDANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

 AND D.ENO <> '4000'

)

 SELECT * FROM DESCENDANTS

2000

5000

5500

4000

4500 4600

4700 4800

6000

Free SQL Book, Tim Martyn 856 Copyright Pending 2022

The initialization Sub-SELECT places the following row in

DESCENDANTS.

 ENO ENAME SENO

 2000 JANET 1000

The first execution of the recursive Sub-SELECT retrieves the three

descendants of Employee 2000 and places them into the DESCENDANTS

table. These rows become the new rows. DESCENDANTS now looks like:

ENO ENAME SENO

2000 JANET 1000

4000 JULIE 2000 new

 5000 JESSIE 2000 new

 6000 FRANK 2000 new

Note: Row for Employee 4000 is in this intermediate result.

The second execution of the recursive Sub-SELECT retrieves the

descendants of the new rows, but the D.ENO <> '4000' condition

prevents the four descendants of Employee 4000 from being selected

and placed into DESCENDANTS. DESCENDANTS now looks like:

ENO ENAME SENO

2000 JANET 1000

4000 JULIE 2000

 5000 JESSIE 2000

 6000 FRANK 2000

 5500 HANNAH 5000 new

Note that rows for Employees 4500 and 4600, the children of

Employee 4000, are not in this result. Therefore, during subsequent

executions of the recursive Sub-SELECT, no other descendants of

Employee 4000 (e.g., Employees 4700 and 4800) will be placed into

DESCENDANTS. The D.ENO <> '4000' condition has effectively trimmed

all branches of the tree below node-4000.

The next execution of the recursive Sub-SELECT attempts to retrieve

descendants of Employee 5500 but encounters a “no hit” event which

terminates the recursive execution.

Finally, the Main-SELECT displays all rows in DESCENDANTS.

Free SQL Book, Tim Martyn 857 Copyright Pending 2022

Restriction within the Main-SELECT

After you populate the DESCENDANTS table, you might want to display

just some subset of rows from this table by specifying a WHERE-

clause in the Main-SELECT.

Sample Query 30.2c: This query objective is similar to Sample Query

30.1: Display ENO, ENAME, and SENO values for Employee 2000

and all her descendants with the exception of the row

describing Employee 4000. (We still want to display data about

the descendants of Employee 4000.)

Syntax & Logic: Nothing New. Compared to the previous Sample Query

30.2b, this statement simply moved the ENO <> '4000' condition

from the recursive Sub-SELECT to the Main-SELECT.

Important Observation: The Main-SELECT selects all DESCENDANTS

rows except the row for Employee 4000. Note that rows describing

descendants of Employee 4000 (Employees 4500, 4600, 4700 and 4800)

are displayed.

ENO ENAME SENO

2000 JANET 1000

5000 JESSIE 2000

6000 FRANK 2000

4500 JOHNNY 4000

4600 ELEANOR 4000

5500 HANNAH 5000

4700 ANDY 4600

4800 MATT 4600

WITH DESCENDANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

 WHERE ENO <> '4000'

Free SQL Book, Tim Martyn 858 Copyright Pending 2022

Exercises

30F. This exercise focuses on the significant difference between

specifying a restriction in the recursive Sub-SELECT versus

the Main SELECT. Consider the following statements which

reference the RDEMO1 table shown in Figure 30.2. What is the

result of executing each statement? Execute each statement to

verify your answers.

30G. Modify Exercise 30A which displayed the ENO, ENAME, SALARY,

and SENO values for Employee 8000 and all employees who

directly or indirectly work for this employee. This time only

display information about an employee who directly or

indirectly works for Employee 8000 if the employee’s salary

exceeds $6500.00. The result should look like:

 ENO ENAME SALARY SENO

 8000 JOE 8000.00 1000

 8500 GEORGE 7000.00 8000

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 20

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM RDEMO1 R, DESCENDANTS D

 WHERE R.FKEY = D.PKEY

 AND R.CODE = 0

)

 SELECT * FROM DESCENDANTS

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 20

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM RDEMO1 R, DESCENDANTS D

 WHERE R.FKEY = D.PKEY

)

 SELECT * FROM DESCENDANTS

 WHERE CODE = 0

Free SQL Book, Tim Martyn 859 Copyright Pending 2022

30H. Display the ENO, ENAME, and SENO values for Employee 2000 and

all her descendants. However, exclude the row describing

Employee 4000 and all descendants of this employee. The result

should look like:

ENO ENAME SENO

2000 JANET 1000

5000 JESSIE 2000

6000 FRANK 2000

5500 HANNAH 5000

Code two solutions.

Solution-1 should specify the same restriction in both the

recursive Sub-SELECT and the Main-SELECT. The recursive Sub-

SELECT stores a row for Employee 4000 into DESCENDANTS but

eliminates all its descendants. The Main-SELECT eliminates

the row for Employee 4000.

Solution-2 specifies just one restriction in the recursive

Sub-SELECT which prevents the row for EMPLOYEE 4000 from being

placed into DESCENDANTS. Hence, all of its descendants will

not be placed into DESCENDANTS.

30I. Display the ENO, ENAME, SALARY, and SENO values of Employee

2000. Also display these values for any employee who directly

or indirectly works for this employee with the following

exception. Do not display information about an employee and

his dependents if the employee earns less than $1000.00. The

result should look like:

ENO ENAME SALARY SENO

 2000 JANET 2000.00 1000

 6000 FRANK 9000.00 2000

 Code two solutions similar to the two solutions for the

preceding Exercise 30H.

30J. What is total salary of all employees who report to Employee

8000? The result should look like:

 TOTSAL

19000.00

 Hint: You only need to modify the Main-SELECT in the solution

for Exercise 30A2.

Free SQL Book, Tim Martyn 860 Copyright Pending 2022

The following two exercises do not require you to code recursive

SQL. Careful! Observe the null value in the SENO column.

30K1. Display the ENO, ENAME, SALARY values for all supervisors.

Sort the result by ENO values. The result should look like:

 ENO ENAME SALARY

 1000 MOE 2000.00

 2000 JANET 2000.00

 3000 LARRY 3000.00

 4000 JULIE 500.00

 4600 ELEANOR 3000.00

 5000 JESSIE 400.00

 6500 CURLY 8000.00

 8000 JOE 8000.00

 8500 GEORGE 7000.00

Note: This result is not in hierarchical sequence.

30K2. Display the ENO, ENAME, SALARY values for all non-

supervisors. Sort the result by ENO values. The result should

look like:

 ENO ENAME SALARY

 4500 JOHNNY 2000.00

 4700 ANDY 2000.00

 4800 MATT 3000.00

 5500 HANNAH 4000.00

 6000 FRANK 9000.00

 7500 SHEMP 9000.00

 8600 DICK 6000.00

 8700 HANK 6000.00

Note: This result is not in hierarchical sequence.

Free SQL Book, Tim Martyn 861 Copyright Pending 2022

Summarizing Down Each Path

A calculation can be performed during each iteration of a recursive

Sub-SELECT. In the following sample query, a running total of

SALARY values is calculated along each hierarchical path.

Sample Query 30.3: Display the ENO, ENAME, SALARY, and SENO values

for Employee 2000 and all her descendants. Also, display a

running total (TOTPATH) of each employee’s salary plus the total

salary of her direct and indirect supervisors.

ENO ENAME SALARY TOTPATH SENO

2000 JANET 2000.00 2000.00 1000

4000 JULIE 500.00 2500.00 2000

5000 JESSIE 400.00 2400.00 2000

6000 FRANK 9000.00 11000.00 2000

4500 JOHNNY 2000.00 4500.00 4000

4600 ELEANOR 3000.00 5500.00 4000

5500 HANNAH 4000.00 6400.00 5000

4700 ANDY 2000.00 7500.00 4600

4800 MATT 3000.00 8500.00 4600

WITH DESCENDANTS (ENO, ENAME, SALARY, TOTPATH, SENO)

AS

(SELECT ENO, ENAME, SALARY, SALARY, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME,

R.SALARY, R.SALARY + D.TOTPATH, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

Logic: As data from each new

REMPLOYEE row is placed into

DESCENDANTS, its SALARY value is

added the TOTPATH value of its

parent row. This creates a running

total down each path. For example,

the adjacent diagram illustrates

the running total of SALARY values

on the path from Node-2000 to

Node-4700.

SALARY = 2000.00

TOTPATH = 2000.00 2000

4000

4600

4700

SALARY = 500.00

TOTPATH = 2500.00

SALARY = 3000.00

TOTPATH = 5500.00

SALARY = 2000.00

TOTPATH = 7500.00

Free SQL Book, Tim Martyn 862 Copyright Pending 2022

Concatenation Down Each Path

The following sample query is similar to the previous sample query.

The only difference is that a concatenation operation is performed

instead of an addition operation.

Sample Query 30.4: Display the ENO, ENAME, and SNO values of

Employee 2000 and all her descendants. Also, for each employee,

display a list of names (NAMELIST) containing the employee’s

name and the names of the employee’s direct and indirect

supervisors.

ENO ENAME SENO NAMELIST

 2000 JANET 1000 JANET

 4000 JULIE 2000 JANET-JULIE

 5000 JESSIE 2000 JANET-JESSIE

 6000 FRANK 2000 JANET-FRANK

 4500 JOHNNY 4000 JANET-JULIE-JOHNNY

 4600 ELEANOR 4000 JANET-JULIE-ELEANOR

 5500 HANNAH 5000 JANET-JESSIE-HANNAH

 4700 ANDY 4600 JANET-JULIE-ELEANOR-ANDY

 4800 MATT 4600 JANET-JULIE-ELEANOR-MATT

WITH DESCENDANTS (ENO, ENAME, SENO, NAMELIST)

AS

(SELECT ENO, ENAME, SENO, ENAME

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO, D.NAMELIST ||'-'|| R.ENAME

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

Logic: As data from each new

REMPLOYEE row is placed into

DESCENDANTS, its ENAME value is

concatenated to the NAMELIST

value of its parent row. This

creates a growing list of ENAME

values. For example, the

adjacent diagram illustrates the

concatenation of ENAME values on

the path from Node-2000 to Node-

4700.

JANET 2000

4000

4600

4700

JANET-JULIE

JANET-JULIE-ELEANOR

JANET-JULIE-ELEANOR-ANDY

Free SQL Book, Tim Martyn 863 Copyright Pending 2022

Recursive Query: Traverse Up a Tree

The syntax and logic for traversing up a tree is similar to

traversing down a tree. The only difference pertains to the join-

condition in the recursive Sub-SELECT. Also, although the CTE name

is specified by the user, in this book, when performing an upward

traversal, we will always specify ANCESTORS as the name of the

recursive CTE.

Sample Query 30.5: Start with Employee 4600. Display the ENO,

ENAME, and SENO values for this employee and her direct and

indirect supervisors.

 ENO ENAME SENO

4600 ELEANOR 4000

 4000 JULIE 2000

 2000 JANET 1000

 1000 MOE -

Syntax: Nothing New.

Logic: You want to insert the ancestor rows for Employee 4600 into

ANCESTORS. The following step-by-step walkthrough illustrates how

the A.SENO = R.ENO join-condition realizes this objective.

Observation: It is easier to verify the correctness of this result

because, in an upward traversal of a tree, each node (except the

root node) has exactly one parent.

WITH ANCESTORS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='4600'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM ANCESTORS A, REMPLOYEE R

 WHERE A.SENO = R.ENO

)

 SELECT * FROM ANCESTORS

Free SQL Book, Tim Martyn 864 Copyright Pending 2022

Step-by-Step Walk-Through: The initial Sub-SELECT stores data

about Employee 4600 into the ANCESTORS table.

 ENO ENAME SENO

 4600 ELEANOR 4000

The first execution of the recursive Sub-SELECT will store data

about the supervisor of Employee 4600 into the ANCESTORS table.

The SENO value (4000) identifies this supervisor. Hence, the A.SENO

= R.ENO join-condition reduces to 4000 = R.ENO, and data about

Employee 4000 is stored into the ANCESTORS table. The ANCESTORS

table now looks like:

 ENO ENAME SENO

4600 ELEANOR 4000

 4000 JULIE 2000 new

The second execution of the recursive Sub-SELECT retrieves the

parent of Employee 4000, which is Employee 2000. This new row is

placed into ANCESTORS which now looks like:

 ENO ENAME SENO

4600 ELEANOR 4000

 4000 JULIE 2000

 2000 JANET 1000 new

The third execution of the recursive Sub-SELECT retrieves the

parent of Employee 2000, which is Employee 1000. This new row is

placed into ANCESTORS which now looks like:

 ENO ENAME SENO

4600 ELEANOR 4000

 4000 JULIE 2000

 2000 JANET 1000

 1000 MOE - new

The last execution of the recursive Sub-SELECT attempts to find

the parent of Employee 1000. But the null SENO value produces a

“no hit.” Therefore, no new rows are placed in ANCESTORS, and the

recursive execution terminates.

Finally, the Main-SELECT displays the ANCESTORS table.

Free SQL Book, Tim Martyn 865 Copyright Pending 2022

Recap: Recursive Join-Condition → Direction of Tree Traversal

Downward Traversal: In Sample Query 30.1, after the initialization

Sub-SELECT stored the row for Employee 2000 into DESCENDANTS, the

recursive Sub-SELECT specified a downward traversal by coding

D.ENO = R.SENO as the join-condition.

Here, we want to insert the children of Employee 2000 into

DESCENDANTS. Within REMPLOYEE, these children have SENO values of

2000. In general, downward traveral is realized by building a

DESCENDANTS table where the join-condition is:

 DESCENDANTS.PRIMARYKEY = RECURSIVETABLE.FOREIGNKEY

Upward Traversal: In Sample Query 30.5, after the initialization

Sub-SELECT stored the row for Employee 4600 into ANCESTORS, the

recursive Sub-SELECT specified an upward traversal by coding

A.SENO = R.ENO as the join-condition.

Here, you want to insert the parent of Employee 4600 into

ANCESTORS. Within REMPLOYEE, this parent has an ENO value of 4000.

In general, upward traveral is realized by building a ANCESTORS

table where the join-condition is:

 ANCESTORS.FOREIGNKEY = RECURSIVETABLE.PRIMARYKEY

FROM ANCESTORS A, REMPLOYEE R

 WHERE A.SENO = R.ENO

ANCESTORS REMPLOYEE

ENO ENAME SENO ENO ENAME SALARY SENO

4600 JESSIE 4000 4000 SHEMP 500 4600

FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

DESCENDANTS REMPLOYEE

ENO ENAME SENO ENO ENAME SALARY SENO

2000 LARRY 1000 4000 SHEMP 500.00 2000

 5000 JOE 400.00 2000

 6000 GEORGE 9000.00 2000

Free SQL Book, Tim Martyn 866 Copyright Pending 2022

Duplicate Rows in Result Table

The following sample query is similar to the preceding Sample Query

30.5. The only difference is that the initialization Sub-SELECT

selects two rows. This causes the result table to contain some

duplicate rows.

Sample Query 30.6: Start with Employees 4500 and 4600. Display the

ENO, ENAME, and SENO values of these employees and all their

direct or indirect supervisors.

 ENO ENAME SENO

4500 JOHNNY 4000

4600 ELEANOR 4000

 4000 JULIE 2000

4000 JULIE 2000

 2000 JANET 1000

 2000 JANET 1000

 1000 MOE -

 1000 MOE -

Logic: Because the initialization Sub-SELECT selected two rows,

there are two upward paths from each corresponding node to the

root-node. These are:

 Path-1: Node-4500 → Node-4000 → Node-2000 → Node-1000

 Path-2: Node-4600 → Node-4000 → Node-2000 → Node-1000

Duplicate rows appear in the result table because both of these

paths encounter the same three nodes. If desired, you could specify

DISTINCT in the Main-SELECT to eliminate this duplication.

However, DISTINCT has a potentially unwanted side-effect that will

be discussed later.

WITH ANCESTORS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO IN ('4500','4600')

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM ANCESTORS A, REMPLOYEE R

 WHERE A.SENO = R.ENO

)

 SELECT * FROM ANCESTORS;

Free SQL Book, Tim Martyn 867 Copyright Pending 2022

Exercises

30L. Display the ENO, ENAME, SALARY, and SENO values for Employee

4000 and all her direct and indirect supervisees. Also, for

each employee, display a running total of the employee’s

salary plus the total salary of all her direct and indirect

supervisors. The result should look like:

ENO ENAME SALARY TOTPATH SENO

4000 JULIE 500.00 500.00 2000

 4500 JOHNNY 2000.00 2500.00 4000

 4600 ELEANOR 3000.00 3500.00 4000

 4700 ANDY 2000.00 5500.00 4600

 4800 MATT 3000.00 6500.00 4600

Hint: This exercise is similar to Sample Query 30.3.

30M. Start with Employee 5500. Display all data about this employee

and all data about her direct or indirect supervisors. The

result should look like:

ENO ENAME SALARY SENO

5500 HANNAH 4000.00 5000

5000 JESSIE 400.00 2000

2000 JANET 2000.00 1000

1000 MOE 2000.00 -

Free SQL Book, Tim Martyn 868 Copyright Pending 2022

30N. Reference the RDEMO1 table described in Exercise 30C. Within

the context of upward tree traversal, this exercise focuses

on the specification a restriction in the recursive Sub-

SELECT and Main-SELECT. Consider the following three

statements. What is the result of executing each statement?

Execute each statement to verify your answer.

Statement 30N-2

WITH ANCESTORS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 35

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM ANCESTORS A, RDEMO1 R

 WHERE A.FKEY = R.PKEY

 AND A.CODE = 0

)

 SELECT * FROM ANCESTORS

Statement 30N-1

WITH ANCESTORS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 35

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM ANCESTORS A, RDEMO1 R

 WHERE A.FKEY = R.PKEY

)

 SELECT * FROM ANCESTORS

 WHERE CODE = 0

Statement 30N-3

WITH ANCESTORS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 35

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM ANCESTORS A, RDEMO1 R

 WHERE A.FKEY = R.PKEY

 AND R.CODE = 0

)

 SELECT * FROM ANCESTORS

Free SQL Book, Tim Martyn 869 Copyright Pending 2022

Displaying “Level Numbers” for Downward Tree Traversal

The following sample query, which does a downward tree traversal,

assigns a level number (LVL) to each selected row. Level number 1

is assigned to the row selected by the initialization Sub-SELECT.

Sample Query 30.7a: Enhance Sample Query 30.1 such that it assigns

and displays level numbers to rows in the result table.

 LVL ENO ENAME SENO

 1 2000 JANET 1000

 2 4000 JULIE 2000

 2 5000 JESSIE 2000

 2 6000 FRANK 2000

 3 4500 JOHNNY 4000

 3 4600 ELEANOR 4000

 3 5500 HANNAH 5000

 4 4700 ANDY 4600

 4 4800 MATT 4600

Syntax: LVL is not a reserved word. It is just another user-

specified name. (ORACLE supports the pseudo-column LEVEL. See

ORACLE SQL manual.)

Logic: An LVL value of 1 is assigned to the first selected row.

Thereafter, LVL is incremented at each execution of the recursive

Sub-SELECT. We emphasize that LVL is not an absolute level number

in the tree that represents the entire table (as shown in Figure

30.1c). In this example, the first retrieved row for Employee 2000

is assigned an LVL of 1, but this row corresponds to a second-

level node in tree shown in Figure 30.1c.

WITH DESCENDANTS (LVL, ENO, ENAME, SENO)

AS

(SELECT 1, ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='2000'

 UNION ALL

 SELECT D.LVL+1, R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 870 Copyright Pending 2022

Limiting Levels in Downward Traversal

Sample Query 30.2b limited the downward tree traversal by

specifying a WHERE-clause in the recursive Sub-SELECT. This WHERE-

clause effectively “trimmed some branches” of the tree. Sometimes,

a “tree trimming” objective is simpler. You simply want to limit

the number of levels the system will traverse in its downward

traversal. The following example limits the downward traversal to

three levels.

Sample Query 30.7b: Make a minor enhancement to the previous Sample

Query 30.7a by limiting the downward traversal to three

levels.

.

 LVL ENO ENAME SENO

 1 2000 JANET 1000

 2 4000 JULIE 2000

 2 5000 JESSIE 2000

 2 6000 FRANK 2000

 3 4500 JOHNNY 4000

 3 4600 ELEANOR 4000

 3 5500 HANNAH 5000

Syntax & Logic: Nothing new. Specifying “D.LVL+1 <= 3” in the

recursive Sub-SELECT limits the downward traversal to three

levels.

WITH DESCENDANTS (LVL, ENO, ENAME, SENO)

AS

(SELECT 1, ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='2000'

 UNION ALL

 SELECT D.LVL+1, R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

 AND D.LVL+1 <= 3

)

SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 871 Copyright Pending 2022

Displaying “Level Numbers” for Upward Tree Traversal

The following sample query, which does an upward tree traversal,

assigns level numbers (LVL) to selected rows. Level number 1 is

assigned to the row selected by the initialization Sub-SELECT.

Sample Query 30.8a: Enhance Sample Query 30.5. Start with Employee

4600. Display the ENO, ENAME, and SENO values for this

employee and all her direct and indirect supervisors. Assign

and display level numbers in the result table.

 LVL ENO ENAME SENO

 1 4600 ELEANOR 4000
 2 4000 JULIE 2000

 3 2000 JANET 1000

 4 1000 MOE -

.

Logic: An LVL value of 1 is assigned to the first selected row.

Thereafter, LVL is incremented at each execution of the recursive

Sub-SELECT.

Important Observation: In this example, the first retrieved row

for Employee 4600 is assigned an LVL of 1. Observe that this row

corresponds to a fourth-level node in tree shown in Figure 30.1c.

A user might find this assignment of level numbers to be somewhat

counterintuitive. A following section (Modifying Level Numbers)

will address this issue.

WITH ANCESTORS (LVL, ENO, ENAME, SENO)

AS

(SELECT 1, ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='4600'

 UNION ALL

 SELECT A.LVL+1, R.ENO, R.ENAME, R.SENO

 FROM ANCESTORS A, REMPLOYEE R

 WHERE A.SENO = R.ENO

)

 SELECT * FROM ANCESTORS;

Free SQL Book, Tim Martyn 872 Copyright Pending 2022

Limiting Levels of Upward Traversal

The following sample query limits an upward tree traversal to three

levels.

Sample Query 30.8b: Revise Sample Query 30.5 which displayed data

about Employee 4600 and her supervisors. Display level

numbers followed by the ENO, ENAME, and SENO values of this

employee, her supervisor, and her supervisor’s supervisor

(i.e., limit the upward traversal to three levels).

.

LVL ENO ENAME SENO

 1 4600 ELEANOR 4000

 2 4000 JULIE 2000

 3 2000 JANET 1000

Syntax and Logic: Nothing new.

WITH ANCESTORS (LVL, ENO, ENAME, SENO)

AS

(SELECT 1, ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='4600'

 UNION ALL

 SELECT A.LVL+1, R.ENO, R.ENAME, R.SENO

 FROM ANCESTORS A, REMPLOYEE R

 WHERE A.SENO = R.ENO

 AND A.LVL+1 <= 3

)

 SELECT * FROM ANCESTORS

Free SQL Book, Tim Martyn 873 Copyright Pending 2022

Do-It-Yourself “Poor Man’s” Formatting via Indentation

The following sample query demonstrates a common technique to

illustrate hierarchical relationships among rows within a result

table.

Sample Query 30.9: This query has the same objective as Sample

Query 30.1: Display data about Employee 2000 and all her

descendants. Here, you should display leading spaces in front of

each row to help users visualize the hierarchical structure of

the data.

 ENO ENAME SENO

 2000 JANET 1000

 4000 JULIE 2000

 5000 JESSIE 2000

 6000 FRANK 2000

 4500 JOHNNY 4000

 4600 ELEANOR 4000

 5500 HANNAH 5000

 4700 ANDY 4600

 4800 MATT 4600

Syntax and Logic: Nothing new. (You may want to review the

concatenation operation (||) and SUBSTR function in Chapter 10.)

Recall that different systems support similar but different string

processing functions. For example, A SQL Server user would code

the keyword SUBSTRING (versus SUBSTR) and specify the + symbol

(versus ||) for string concatenation. SQL Server also supports a

SPACE function which could simplify the specification of leading

spaces.

WITH DESCENDANTS (LVL, ENO, ENAME, SENO)

AS

(SELECT 0, ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='2000'

 UNION ALL

 SELECT D.LVL+1, R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

SELECT

(SUBSTR (' ', 1, LVL*2)||ENO) ENO, ENAME, SENO

FROM DESCENDANTS

Free SQL Book, Tim Martyn 874 Copyright Pending 2022

Exercises

30O1. Reference the RDEMO1 table. Display the PKEY, CODE, and FKEY

values for the row with a PKEY value of 25 and all its

descendants. Also display the level number for each row. The

result should look like:

 LVL PKEY CODE FKEY

 1 25 0 20

 2 15 1000 25

 2 40 0 25

 3 30 0 15

 3 50 0 40

 4 35 0 30

30O2. Modify the previous query objective such that downward

traversal is restricted to three levels. The result should

look like:

 LVL PKEY CODE FKEY

 1 25 0 20

 2 15 1000 25

 2 40 0 25

 3 30 0 15

 3 50 0 40

30P1. Reference the RDEMO1 table. Display the PKEY, CODE, and FKEY

values for the row with a PKEY value of 40 and all its

ancestors. Also display the level number for each row. The

result should look like:

 LVL PKEY CODE FKEY

 1 40 0 25

 2 25 0 20

 3 20 0 10

 4 10 0 -

30P2. Modify this query objective such that upward traversal is

restricted to three levels. The result should look like:

 LVL PKEY CODE FKEY

 1 40 0 25

 2 25 0 20

 3 20 0 10

Free SQL Book, Tim Martyn 875 Copyright Pending 2022

Modifying Level Numbers

Consider the following Result-1 produced in Sample Query 30.8a.

Here, an LVL value of 1 was assigned to the fourth-level Node-4600

shown in the adjacent sub-tree. This occurred because, in the

upward traversal, the row for Employee 4600 was the first row

retrieved. You might prefer to display the Result-2, Result-3, or

Result-4 result tables shown below.

Result-2 is easily realized by appending ORDER BY LVL DESC to the

Main-SELECT. However, note that rows are still assigned the same

(perhaps counterintuitive) LVL values. Result-3 modifies the LVL

values shown in Result-1. Producing Result-3 requires some coding

gymnastics which will be shown in the solution to the following

Exercise 30Q. Producing Result-4 simply requires appending ORDER

BY LVL to the statement that produced Result-3.

Exercise:

30Q: Modify the Main-SELECT in Sample Query 30.8a such that the

result looks like Result-3. Then, append an ORDER BY clause

to produce Result-4.

 1000

2000

4000

4600

LVL ENO ENAME SENO

 1 4600 ELEANOR 4000

 2 4000 JULIE 2000

 3 2000 JANET 1000

 4 1000 MOE -

Result-1

ORDER BY LVL DESC

LVL ENO ENAME SENO

 4 1000 MOE -

 3 2000 JANET 1000

 2 4000 JULIE 2000

 1 4600 ELEANOR 4000

Result-2

Modified LVL Values

LVL ENO ENAME SENO

 4 4600 ELEANOR 4000

 3 4000 JULIE 2000

 2 2000 JANET 1000

 1 1000 MOE -

Result-3

Modified LVL Values

ORDER BY LVL

LVL ENO ENAME SENO

 1 1000 MOE -

 2 2000 JANET 1000

 3 4000 JULIE 2000

 4 4600 ELEANOR 4000

Result-4

Free SQL Book, Tim Martyn 876 Copyright Pending 2022

Explicit Specification of Hierarchical Sequence

Previous sample queries defaulted to a breath-first hierarchical

sequence. Here we consider producing a result table with a depth-

first hierarchical sequence. Currently, not all systems directly

support this sequence.

ORACLE is one of the systems that allows you to explicitly

designate a specific hierarchical sequence. ORACLE provides a

SEARCH-clause that is used in conjunction with the ORDER BY clause

to produce either of the two hierarchical sequences. The following

example produces the depth-first sequence shown in Figure 30.4b.

The SEARCH DEPTH FIRST BY ENO clause designates a depth-first

sequence based upon the ENO column. (Each ENO value identifies a

node in the tree.) The SET MYHSORTCOL clause designates a column

(MYHSORTCOL) to represent this depth-first sequence. This column

contains a sequence of integer values starting at 1 and increasing

by 1 (i.e., 1,2,3...). These values correspond to the order in

which the nodes were visited in its depth-first traversal. The

following ORDER BY clause directs the system to use the MYHSORTCOL

values to display the rows according to the depth-first sequence.

If you want to specify a breadth-first sequence, you would

substitute BREADTH FIRST for DEPTH FIRST in the SEARCH clause.

Suggestion: Consult you SQL reference manual to determine if your

system offers some method to generate a depth-first hierarchal

sequence.

WITH DESCENDANTS (ENO, ENAME, SENO) ORACLE

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SEARCH DEPTH FIRST BY ENO SET MYHSORTCOL

 SELECT * FROM DESCENDANTS

 ORDER BY MYHSORTCOL

Free SQL Book, Tim Martyn 877 Copyright Pending 2022

Potential Problem: Losing Default Hierarchical Sequence

Sometimes a SQL keyword or clause can indirectly undo a default

hierarchical sequence in a result table. For example, review the

result for Sample Query 30.6 and note that it contains duplicate

rows. Below, we modify this statement by specifying DISTINCT in

the Main-SELECT and display its final result without duplicate

rows.

Potential Problem: While DISTINCT removes duplicate rows, it may

cause a potentially undesirable side-effect. Note that the above

result table is no longer sorted in a breath-first hierarchical

sequence.

Prior to this chapter, we did not care if some operation like

DISTINCT (or grouping or join) generated rows in some incidental

sort sequence. You could simply specify an ORDER BY clause to

produce the desired sequence. (Appendix 3A explains how DISTINCT

could produce an incidentally sorted result.) Here, in the context

of hierarchical queries, if some operation in the Main-SELECT

disrupts a desired hierarchical sequence, you may be out of luck.

The traditional ORDER BY clause does not allow you to specify a

desired hierarchical sequence. Therefore, hopefully, your system

supports code similar to the SEARCH-ORDER BY clauses described on

the preceding page.

Questionable Alternative Solution? Why not specify DISTINCT in the

recursive Sub-SELECT? Seems like good idea. However, similar to

the ORDER BY clause, some systems prohibit specifying DISTINCT in

the recursive Sub-SELECT.

Sample Query 30.6 with DISTINCT

WITH ANCESTORS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO IN ('4500','4600')

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM ANCESTORS A, REMPLOYEE R

 WHERE A.SENO = R.ENO

)

 SELECT DISTINCT * FROM ANCESTORS

 ENO ENAME SENO

 2000 JANET 1000

 4000 JULIE 2000

 4600 ELEANOR 4000

 4500 JOHNNY 4000

 1000 MOE -

Free SQL Book, Tim Martyn 878 Copyright Pending 2022

Again, Possible Loss of Default Hierarchical Sequence

Assume we want to enhance the result table for Sample Query 30.1

to display the supervisor’s ENAME value along with the supervisor’s

ENO value.

Sample Query 30.10: Start with Employee 2000 and include all

employees who directly or indirectly work for this employee. For

each employee, display the employee’s ENO, and ENAME values,

followed by the ENO and ENAME values of their supervisor.

Syntax and Logic: Nothing new. Note that, after executing the

recursive Sub-SELECT, the DESCENDANTS table does not contain ENAME

values. Therefore, the Main-SELECT joins DESCENDANTS with

REMPLOYEE to include the supervisor’s ENAME values in the final

result.

Important Observation: The above result table happens to be in

hierarchical sequence. However, some future execution of this same

statement could produce a different row sequence. This could happen

because of a change in the internal processing for the join-

operation. (See Appendix 17A.)

 ENO ENAME BOSSENO BOSSENAME

 2000 JANET 1000 MOE

 4000 JULIE 2000 JANET

 5000 JESSIE 2000 JANET

 6000 FRANK 2000 JANET

 4500 JOHNNY 4000 JULIE

 4600 ELEANOR 4000 JULIE

 5500 HANNAH 5000 JESSIE

 4700 ANDY 4600 ELEANOR

 4800 MATT 4600 ELEANOR

WITH DESCENDANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT D.ENO, D.ENAME, R.ENO BOSSENO, R.ENAME BOSSENAME

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.SENO = R.ENO

Free SQL Book, Tim Martyn 879 Copyright Pending 2022

“Parent-Oriented” Design

Given a one-to-many recursive application, a rookie designer might

consider designing a table where each row describes a parent-row

corresponding to the parent-side of a one-to-many (parent-child)

relationship. Given this perspective, the designer might consider

creating the following REMPLOYEE_V2 table. In this table, unlike

the REMPLOYEE table, the SENO column designates an employee’s

supervisee (not supervisor). A null value in the SENO column

implies that the employee is not a supervisor.

REMPLOYEE_V2 is superficially similar to REMPLOYEE. All its

columns have the same names and data-types. But there is an

important semantic difference. In REMPLOYEE, the SENO column

designates an employee’s supervisor. Whereas, in REMPLOYEE_V2, the

SENO column designates an employee’s supervisee. Also, note that

some employees have multiple supervisees.

 REMPLOYEE_V2

 ENO ENAME SALARY SENO

 1000 MOE 2000.00 2000

 1000 MOE 2000.00 3000

 1000 MOE 2000.00 8000

 2000 JANET 2000.00 4000

 2000 JANET 2000.00 5000

 2000 JANET 2000.00 6000

 3000 LARRY 3000.00 6500

 4000 JULIE 500.00 4500

 4000 JULIE 500.00 4600

 4500 JOHNNY 2000.00 -

 4600 ELEANOR 3000.00 4700

 4600 ELEANOR 3000.00 4800

 4700 ANDY 2000.00 -

 4800 MATT 3000.00 -

 5000 JESSIE 400.00 5500

 5500 HANNAH 4000.00 -

 6000 FRANK 9000.00 -

 6500 CURLY 8000.00 7500

 7500 SHEMP 9000.00 -

 8000 JOE 8000.00 8500

 8500 GEORGE 7000.00 8600

 8500 GEORGE 7000.00 8700

 8600 DICK 6000.00 -

 8700 HANK 6000.00 -

Free SQL Book, Tim Martyn 880 Copyright Pending 2022

Avoid “Parent-Oriented” Designs

Within the context of a one-to-many recursive design, there are

many problems with a parent-oriented design. First, observe that

REMPLOYEE_V2 has more rows than REMPLOYEE. This occurs because

rows for those employees who supervise multiple supervisees have

duplicate ENO, ENAME and SALARY values. However, this duplication

is not the major problem. The real problem with REMPLOYEE_V2 is

that it is not possible to designate a valid primary-key for this

table. Notice that:

• The ENO column cannot be the primary-key because it has

duplicate values.

• The SENO column cannot be the primary-key because it has null

values.

• Each of the ENO, ENAME, and SALARY columns contain duplicate

values, and any two-way or three-way combination of these

columns would also contain duplicates.

Therefore, you will probably not encounter a parent-oriented

recursive table within a real-world application.

Having disparaged REMPLOYEE_V2 as a base table, we note that some

users may wish to display REMPLOYEE_V2 as a result table. The

following non-recursive SELECT statement satisfies this query

objective.

[Note: The following Section B will show that a parent-oriented

design may not be problematic within a many-to-many recursive

design.]

37R. Optional Exercise: Assume that many users would like the

REMPLOYEE_V2 table. For this reason, you decide to create a

view called REMPLOYEE_V2 that looks like the REMPLOYEE_V2

table. Create this view, and then execute SELECT * FROM

REMPLOYEE_V2 to display its contents.

SELECT R1.ENO, R1.ENAME, R1.SALARY, R2.ENO

FROM REMPLOYEE R1 LEFT OUTER JOIN REMPLOYEE R2

 ON R1.ENO = R2.SENO

ORDER BY R1.ENO

Free SQL Book, Tim Martyn 881 Copyright Pending 2022

B. Recursive Many-to-Many Relationships

In this section your attention is directed towards coding SELECT

statements against tables that represent a recursive many-to-many

relationship.

Assume a business organization follows a matrix management policy

where an individual employee may directly supervise multiple

employees, and an individual employee may have multiple direct

supervisors. Hence, we have a recursive many-to-many relationship.

The following Figure 30.5a represents this relationship via the

REPORTS-TO relationship in the data model and the corresponding

REPORTS_TO table.

REMPLOYEE2 Table: Like the REMPLOYEE table (Figure 30.1a), the

REMPLOYEE2 table contains a primary-key column (ENO) and

descriptive columns (ENAME, and SALARY). Unlike the REMPLOYEE

table, REMPLOYEE2 does not specify a foreign-key to designate an

employee’s supervisor because an individual employee may have

multiple supervisors.

REPORTS_TO Table: A many-to-many relationship is represented by a

separate table. (Review Chapter 13 and Appendix 13A.) Here, the

REPORTS-TO relationship is represented by the REPORTS_TO table.

Within this table, the ENO column identifies an employee who is

directly supervised by some other employee identified by the SENO

column. Direct supervisee-supervisor relationships are represented

by pairs of (ENO, SENO) values. Recursive logic applied to these

values allows you to deduce all indirect supervisee-supervisor

relationships.

CREATE TABLE REMPLOYEE2

(ENO CHAR (4) NOT NULL PRIMARY KEY,

 ENAME VARCHAR (25) NOT NULL,

 SALARY DECIMAL (7,2) NOT NULL;

 CREATE TABLE REPORTS_TO

(ENO CHAR (4) NOT NULL,

 SENO CHAR (4) NOT NULL,

 PRIMARY KEY (ENO, SENO),

 FOREIGN KEY (ENO) REFERENCES REMPLOYEE2,

 FOREIGN KEY (SENO)REFERENCES REMPLOYEE2);

Figure 30.5a: Recursive Many-to-Many Relationship

REPORTS-TO

REMPLOYEE2

ENO (PK)

ENAME

SALARY

Free SQL Book, Tim Martyn 882 Copyright Pending 2022

REMPLOYEE2

ENO ENAME SALARY

0000 DUMMY 0000.00

1000 MOE 2000.00

2000 JANET 2000.00

3000 LARRY 3000.00

8000 JOE 8000.00

4000 JULIE 500.00

5000 JESSIE 400.00

6000 FRANK 9000.00

6500 CURLY 8000.00

8500 GEORGE 7000.00

4500 JOHNNY 2000.00

4600 ELEANOR 3000.00

5500 HANNAH 4000.00

7500 SHEMP 9000.00

8600 DICK 6000.00

8700 HANK 6000.00

4700 ANDY 2000.00

4800 MATT 3000.00

Figure 30.5b: REMPLOYEE2 and REPORTS_TO Tables

REPORTS_TO

ENO SENO

1000 0000

2000 1000

3000 1000

8000 1000

4000 2000

5000 2000

6000 2000

6500 3000

8500 8000

4500 4000

4600 4000

5500 5000

7500 6500

8600 8500

8700 8500
4700 4600

4800 4600

4600 5000

4800 5500

4800 6000

Sample Data for Recursive Many-to-Many Relationship

The following Figure 30.5b presents sample data that will be

accessed by subsequent sample queries. We make some observations

about this data.

REMPLOYEE2 Table: With one exception, all REMPLOYEE2 rows have the

same ENO, ENAME, and SALARY values found in the REMPLOYEE table.

This exception pertains to the row with an ENO value of 0000 which

describes a fictional “DUMMY” employee. Justification for this row

is presented below.

REPORTS_TO Table: The first row in the REPORTS_TO table shows that

Employee 1000 (the big-boss) reports to Employee 0000, a fictitious

“big-big-boss.” This fiction is necessary because (ENO, SENO) is

a composite primary-key, and each component of this composite

primary-key must contain a non-null value, such as 0000. Now,

because the SENO column is a foreign-key, 0000 must match some

primary-key value in the REMPLYEE2 table. Hence, REMPLOYEE2

contains a DUMMY row with an ENO value of 0000.

Free SQL Book, Tim Martyn 883 Copyright Pending 2022

Recursive Many-to-Many Relationship → Network Diagram

A Network Diagram can be used to represent a many-to-many recursive

relationship. The following Figure 30.5c illustrates a network

diagram where each REMPLOYEE2 row (excluding the DUMMY 0000 row)

is represented by a node; and, each REPORTS_TO row (excluding the

row referencing 0000) is represented by a line between

corresponding supervisee and supervisor nodes.

The above network diagram is similar to the tree diagram

illustrated in Figure 30.1c. It is basically the same diagram plus

three additional lines corresponding to three additional

supervisee-supervisor relationships. These additional lines

connect: Node-4600 to Node-5000, Node-4800 to Node-5500, and Node-

4800 to Node-6000. This diagram is not a tree because some nodes

(Node-4600 and Node-4800) have multiple parents.

Relating this network diagram to the REPORTS_TO table (Figure

30.5b), observe that the ENO column contains some duplicate values

indicating that an employee reports to (is supervised by) multiple

employees. (E.g., Employee 4800 reports to Employees 4600, 5500,

and 6000, and the network diagram shows three lines above Node-

4800.) Also, observe that the SENO column contains some duplicate

values indicating that an employee may supervise multiple

employees. (E.g., Employee 2000 supervises Employees 4000, 5000,

and 6000; hence this network diagram shows three lines below Node-

2000.)

Figure 30.5c: Network Representation of REMPLOYEE2 and REPORTS_TO Tables

 1000

3000

6500

7500

8000

8500

8600 8700

2000

5000

5500

4000

4500 4600

4700 4800

6000

Free SQL Book, Tim Martyn 884 Copyright Pending 2022

Within a tree diagram, there is only one path between a designated

ancestor node and a designated descendant node. However, within a

network diagram, there may be multiple paths between such nodes.

For example, observe that there are two paths between Node-2000

and the intermediate (non-leaf) Node-4600.

 Node-2000 → Node-4000 → Node-4600

 Node-2000 → Node-5000 → Node-4600

Also, observe that there are four paths between Node-2000 and leaf

Node-4800.

Node-2000 → Node-4000 → Node-4600 → Node-4800

Node-2000 → Node-5000 → Node-4600 → Node-4800

Node-2000 → Node-5000 → Node-5500 → Node-4800

 Node-2000 → Node-6000 → Node-4800

Network Represented as a Tree with Duplicate Nodes: Sometimes, it

can be helpful to represent a section of a network diagram as an

equivalent tree diagram. The following tree diagram (Figure 30.5d)

represents the nodes under Node-2000. Notice the (logical)

redundancy in this tree diagram. It shows two copies of Node-

4600, two copies of Node-4700, and four copies of Node-4800.

Figure 30.5d: Tree Representation of Network under Node-2000

2000

6000

4800

4000

4500 4600

4700 4800

4600

4700 4800 4800

5000

5500

Free SQL Book, Tim Martyn 885 Copyright Pending 2022

Traverse Down a Network

Traversing down a network utilizes the same syntax and logic as

traversing down a tree. Three equivalent solutions are presented

for the following sample query.

Sample Query 30.11: Reference the REMPLOYEE2 and REPORTS_TO

tables. Display the ENO, ENAME, SALARY, and SENO values for

Employee 2000 and all employees who directly or indirectly work

for her. The result should look like:

ENO ENAME SALARY SENO

 2000 JANET 2000.00 1000 Level 1

 4000 JULIE 500.00 2000

 5000 JESSIE 400.00 2000 Level 2

 6000 FRANK 9000.00 2000

 4500 JOHNNY 2000.00 4000

 4600 ELEANOR 3000.00 4000

 4600 ELEANOR 3000.00 5000 Level 3

 5500 HANNAH 4000.00 5000

 4800 MATT 3000.00 6000

 4700 ANDY 2000.00 4600

 4800 MATT 3000.00 4600 Level 4

 4700 ANDY 2000.00 4600

 4800 MATT 3000.00 4600

4800 MATT 3000.00 5500

Syntax & Logic: This solution does an “early-join” (another

unofficial term) by specifying REMPLOYEE2 within the CTE Sub-

SELECTs. All desired data are placed into DESCENDANTS. This allows

coding a very simple Main-SELECT.

Solution-1 (Two “Early-Joins” involving REMPLOYEE2)

WITH DESCENDANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND R.ENO = '2000'

 UNION ALL

 SELECT R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM DESCENDANTS D, REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND D.ENO = R.SENO

)

SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 886 Copyright Pending 2022

Duplicate Rows in Result Table: This result table (correctly)

includes some duplicate rows. Duplicate rows will be discussed

later.

Row Sequence: This result is in breath-first hierarchical sequence

because the recursive Sub-SELECT returned the DESCENDANTS rows in

this sequence, and no ORDER BY clause changed this sequence.

Verify Result: Examine the following Figure 30.5e which enhances

the tree diagram shown in Figure 30.5d by designating level numbers

on the left side of the figure. Then, by following a breadth-first

hierarchical sequence, you will obtain the row sequence shown in

the result table.

Exercise:

30S1. Reference the REPORTS_TO and REMPLOYEE2 tables. Apply the

Soultion-1 code-pattern to display the ENO, ENAME, SALARY,

and SENO values for Employee 5000 and all employees who

directly or indirectly work for her. The result should look

like:

ENO ENAME SALARY SENO

5000 JESSIE 400.00 2000

4600 ELEANOR 3000.00 5000

5500 HANNAH 4000.00 5000

4700 ANDY 2000.00 4600

4800 MATT 3000.00 4600

4800 MATT 3000.00 5500

Level

Figure 30.5e: Same as Figure 30.5d plus Level Numbers

2000

6000

4800

4000

4500 4600

4700 4800

4600

4700 4800 4800

5000

5500

1

2

3

4

Free SQL Book, Tim Martyn 887 Copyright Pending 2022

The following Solution-2 creates two CTEs. (You might want to

review Sample Query 27.4 which introduces the specification of two

CTEs within a single WITH-clause.) The first CTE, called FULLTAB,

pre-joins the REMPLOYEE2 and REPORTS_TO tables. The second CTE,

DESCENDANTS, references FULLTAB to implement the recursive logic.

Syntax & Logic: Nothing new. Like the Solution-1, this solution

allows us to code a very simple Main-SELECT to display DESCENDANTS

which contains all the desired data.

Observation: FULLTAB has the same columns as REMPLOYEE. Hence, the

recursive code used to populate the DESCENDANTS table has a similar

code-pattern for traversing a tree. (Review Sample Query 30.1.)

Exercise:

30S2. Apply the Solution-2 code-pattern to code an equivalent

solution for Exercise 30S1.

Solution-2 (One “Early-Join” involving REMPLOYEE2)

WITH

FULLTAB (ENO, ENAME, SALARY, SENO)

 AS

 (SELECT RT.ENO, R2.ENAME, R2.SALARY, RT.SENO

 FROM REPORTS_TO RT, REMPLOYEE2 R2

 WHERE RT.ENO = R2.ENO),

DESCENDANTS (ENO, ENAME, SALARY, SENO)

 AS

 (SELECT ENO, ENAME, SALARY, SENO

 FROM FULLTAB

 WHERE ENO = '2000'

 UNION ALL

 SELECT F.ENO, F.ENAME, F.SALARY, F.SENO

 FROM DESCENDANTS D, FULLTAB F

 WHERE D.ENO = F.SENO

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 888 Copyright Pending 2022

The following Solution-3 delays joining the REMPLOYEE2 table until

the Main-SELECT.

Syntax & Logic: Nothing new. The initialization and recursive Sub-

SELECTs do not need to access REMPLOYEE2 because the ENAME and

SALARY values do not participate in the recursive logic. After

DESCENDANTS is populated with the desired (ENO, SENO) values, the

third Sub-SELECT joins DESCENDANTS with REMPLOYEE2 to access

related ENAME and SALARY values.

Best Solution? Solution-3 appears to be the simplest solution.

However, the join-operation in the Main-SELECT could undo a desired

hierarchical sequence.

You might prefer the code-pattern in Solution-2 if you want your

result to be in hierarchical sequence, and your system does not

support some code like the previously described SEARCH-ORDER BY

clauses. Solution-1, which specifies two early-joins, appears to

be the least desirable code-pattern.

For tutorial purposes, future sample queries will not favor any

particular code-pattern.

Exercise:

30S3. Apply the Solution-3 code-pattern to code another equivalent

solution for Exercise 30S1.

Solution-3 (“Late-Join” involving REMPLOYEE2)

WITH DESCENDANTS (ENO, SENO)

AS

(SELECT ENO, SENO

 FROM REPORTS_TO

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.SENO

 FROM DESCENDANTS D, REPORTS_TO R

 WHERE D.ENO = R.SENO

)

 SELECT D.ENO, E.ENAME, E.SALARY, D.SENO

 FROM DESCENDANTS D, REMPLOYEE2 E

 WHERE D.ENO = E.ENO

Free SQL Book, Tim Martyn 889 Copyright Pending 2022

Duplicate Rows in the Result Table

We present another network design to discuss duplicate rows in a

result table. The following RDEMO2 and RDEMO2MM tables (all integer

columns) and corresponding network and tree diagrams represent a

recursive many-to-many design.

Note that the RDEMO2MM rows are not listed in any specific row

sequence. (Rows were inserted into RDEMO2MM in the above sequence.

However, execution of “SELECT * FROM RDEMO2MM” might display these

rows in a different sequence.) The following statement traverses

down the network starting at Node-40. Important observations are

presented on the following page.

WITH DESCENDANTS (CHILDKEY, AMT, PARENTKEY)

AS

(SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM RDEMO2MM MM, RDEMO2 R2

 WHERE MM.CHILDKEY = R2.RKEY

 AND MM.CHILDKEY = 40

 UNION ALL

 SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM DESCENDANTS D,

 RDEMO2MM MM, RDEMO2 R2

 WHERE D.CHILDKEY = MM.PARENTKEY

 AND MM.CHILDKEY = R2.RKEY

)

SELECT * FROM DESCENDANTS

CHILDKEY AMT PARENTKEY

 40 100 0

 10 200 40

 20 700 40

 30 500 40

 50 200 10

 50 200 20

 50 200 30

 60 500 50

 60 500 50

 60 500 50

 70 600 60

 70 600 60

 70 600 60

Figure 30.6b: Duplicate Rows in Result

 RDEMO2MM RDEMO2

RKEY AMT

 00 0

 10 200

 20 700

 30 500

 40 100

 50 200

 60 500

 70 600

CHILDKEY PARENTKEY

40 00

30 40

10 40

20 40

50 10

50 30

50 20

70 60

60 50

Figure 30.6a: Network Design

70

60

50 50 50

70

60

70

60

40

30 20 10 10 30 20

40

50

70

60

Free SQL Book, Tim Martyn 890 Copyright Pending 2022

Duplicate Rows: The tree diagram in Figure 30.6a illustrates

redundant nodes. Hence, traversing a network, unlike a tree, can

produce duplicate rows in a result table. In Figure 30.6b,

duplicate rows appear for CHILDKEY values of 60 and 70. (Rows with

CHILDKEY of 50 are not duplicates because these rows have different

PARENTKEY values.)

DISTINCT Eliminates Duplicate Rows: We have already noted that

specification of DISTINCT may indirectly cause the loss of

hierarchical sequence. This can happen with network traversal. The

following Figure 30.6c specifies DISTINCT in the Main-SELECT which

removes duplicate rows from a result table. Notice than an

incidental sort was based on the PARENTKEY column. This incidental

sort undid the hierarchical sequence.

Another (Incidental) Side-Effect: As expected, the result table in

Figure 30.6b shows a breadth-first hierarchical sequence. Now,

observe the second-level nodes in the network/tree diagrams. These

nodes show a left-to-right node sequence of 30-10-20 which

corresponds to the row sequence of CHILDKEY values in the RDEMO2MM

table. However, the corresponding rows in this result table appear

in ascending 10-20-30 sequence. (Techie Observation: Blame the

optimizer.)

Figure 30.6c: DISTINCT Removes Duplicate Rows (with Side-Effect)

WITH DESCENDANTS (CHILDKEY, AMT, PARENTKEY)

AS

(SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM RDEMO2MM MM, RDEMO2 R2

 WHERE MM.CHILDKEY = R2.RKEY

 AND MM.CHILDKEY = 40

 UNION ALL

 SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM DESCENDANTS D,

 RDEMO2MM MM, RDEMO2 R2

 WHERE D.CHILDKEY = MM.PARENTKEY

 AND MM.CHILDKEY = R2.RKEY

)

SELECT DISTINCT * FROM DESCENDANTS

CHILDKEY AMT PARENTKEY

 40 100 0

 50 200 10

 50 200 20

 50 200 30

 10 200 40

 30 500 40

 20 700 40

 60 500 50

 70 600 60

Free SQL Book, Tim Martyn 891 Copyright Pending 2022

Grouping and Counting Duplicate Rows

Another way to avoid row duplication is to group and count

duplicate rows as illustrated in the following Figure 30.6d. This

is done by specifying a GROUP BY clause and the COUNT(*) function

in the Main-SELECT.

An internal operation (for grouping) disrupted the hierarchical

sequence. Furthermore, the absence of an ORDER BY clause in the

Main-SELECT means that the final row sequence is unpredictable.

Code Limitations within Recursive Sub-SELECT: Previous examples

have shown that specifying GROUP BY, join-operations, and ORDER BY

(without SEARCH) in the Main-SELECT can undo a hierarchical

sequence. This issue (most likely) is one reason why your SQL

reference manual will describe some limitations on coding

recursive Sub-SELECTs. For example, ORACLE forbids the

specification of DISTINCT, ORDER BY, GROUP BY, and aggregate

functions (e.g., SUM, AVG, MAX, and MIN) within a recursive Sub-

SELECT.

CHILDKEY AMT PARENTKEY CNT

 40 100 0 1

 50 200 10 1

 50 200 20 1

 50 200 30 1

 10 200 40 1

 30 500 40 1

 60 500 50 3

 70 600 60 3

 20 700 40 1

WITH DESCENDANTS (CHILDKEY, AMT, PARENTKEY)

AS

(SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM RDEMO2MM MM, RDEMO2 R2

 WHERE MM.CHILDKEY = R2.RKEY

 AND MM.CHILDKEY = 40

 UNION ALL

 SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM DESCENDANTS D,

 RDEMO2MM MM, RDEMO2 R2

 WHERE D.CHILDKEY = MM.PARENTKEY

 AND MM.CHILDKEY = R2.RKEY

)

SELECT CHILDKEY, AMT, PARENTKEY,

 COUNT(*) CNT

FROM DESCENDANTS

GROUP BY CHILDKEY, AMT, PARENTKEY

Figure 30.6d: GROUP BY Removes Duplicate Rows (with Side-Effect)

Free SQL Book, Tim Martyn 892 Copyright Pending 2022

Exercises

30T. Code three SELECT-statements to satisfy the following query

objective. Each statement should be similar in structure to

those statements presented in Solution-1, Solution-2, and

Solution-3 for Sample Query 30.11.

 Reference the RDEMO2 and RDEMO2MM tables. Display the

CHILDKEY, AMT, and PARENTKEY values for CHILDKEY 10 and all

its descendants. The result should look like:

 CHILDKEY AMT PARENTKEY

 10 200 40

 50 200 10

 60 500 50

 70 600 60

30U. Modify Sample Query 30.11 to remove duplicate rows from the

result by grouping and counting the number of duplicate rows.

Show this count value in the CNT column. The result will

contain the following rows, but these rows might appear in a

different sequence.

ENO ENAME SALARY SENO CNT

 2000 JANET 2000.00 1000 1

 5000 JESSIE 400.00 2000 1

 4000 JULIE 500.00 2000 1

 6000 FRANK 9000.00 2000 1

 4500 JOHNNY 2000.00 4000 1

 4600 ELEANOR 3000.00 4000 1

 4700 ANDY 2000.00 4600 2

 4800 MATT 3000.00 4600 2

 4600 ELEANOR 3000.00 5000 1

 5500 HANNAH 4000.00 5000 1

 4800 MATT 3000.00 5500 1

 4800 MATT 3000.00 6000 1

Free SQL Book, Tim Martyn 893 Copyright Pending 2022

Restriction in Recursive Sub-SELECT

The following sample query requires a restriction in the recursive

Sub-SELECT.

Sample Query 30.12: Display ENO, ENAME, SALARY, and SENO values

for Employee 2000 and all her descendants. However, if an

employee’s salary is less than $500.00, then exclude all

descendants of this employee.

ENO ENAME SALARY SENO

 2000 JANET 2000.00 1000

 4000 JULIE 500.00 2000

 5000 JESSIE 400.00 2000

 6000 FRANK 9000.00 2000

 4500 JOHNNY 2000.00 4000

 4600 ELEANOR 3000.00 4000

 4800 MATT 3000.00 6000

 4700 ANDY 2000.00 4600

4800 MATT 3000.00 4600

Syntax and Logic: This statement requires an “early-join” because

the D.SALARY>=500.00 condition requires access to the SALARY

column which resides in the REMPLOYEE2 table.

Employee 5000 fails the D.SALARY >= 500.00 condition. This

condition is specified in the recursive Sub-SELECT because the

query objective requires “trimming the branches” of the sub-tree

corresponding to the descendants of Employee 5000.

WITH

FULLTAB (ENO, ENAME, SALARY, SENO) AS

 (SELECT RT.ENO, R2.ENAME, R2.SALARY, RT.SENO

 FROM REPORTS_TO RT, REMPLOYEE2 R2

 WHERE RT.ENO = R2.ENO),

DESCENDANTS (ENO, ENAME, SALARY, SENO) AS

 (SELECT ENO, ENAME, SALARY, SENO

 FROM FULLTAB

 WHERE ENO = '2000'

 UNION ALL

 SELECT F.ENO, F.ENAME, F.SALARY, F.SENO

 FROM DESCENDANTS D, FULLTAB F

 WHERE D.ENO = F.SENO

 AND D.SALARY >= 500.00

)

SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 894 Copyright Pending 2022

Network and Tree Diagrams: Assume the recursive Sub-SELECT did not

include the D.SALARY >= 500.00 condition. Then, the following

network diagram would represent the result.

After transforming this network into a tree and eliminating

descendants of Node-5000 (shown in the crossed-out box), the

following tree represents the final result.

Three Observations: (1) Node-4600 appears twice in this tree.

However, only one of these nodes is “crossed out.” Hence, only one

row for Employee 4600 appears in the final result. (2) Node-4700

appears twice in this tree. However, only one of these nodes is

crossed out. Hence, only one row for Employee 4700 appears in the

final result. (3) Node-4800 appears four times in this tree.

However, two of these nodes are crossed out. Hence, only two rows

for Employee 4800 appear in the final result.

2000

6000

4800

4000

4500 4600

4700 4800

4600

4700 4800 4800

5000

5500

 2000

5000

5500

4000

4500 4600

4700 4800

6000

Network Diagram

Tree with Duplicate Nodes

Free SQL Book, Tim Martyn 895 Copyright Pending 2022

Traverse Up a Network

The following sample query traverses up a network. This sample

query is similar to Sample Query 30.5 which traversed up a tree.

Sample Query 30.13: Start with Employee 4600. Display the ENO,

ENAME, and SENO values for this employee and all of her direct

and indirect supervisors (ancestors).

 ENO ENAME SENO

4600 ELEANOR 4000

 4600 ELEANOR 5000

 4000 JULIE 2000

 5000 JESSIE 2000

 2000 JANET 1000

 2000 JANET 1000

 1000 MOE 0000

 1000 MOE 0000

Syntax and Logic: Nothing New. The join-condition in the recursive

Sub-SELECT dictates upward traversal. Recall that a single node

may have multiple parents. Hence, duplicate rows appear in the

result because the same ancestor nodes appear in the two upward

paths from Node-4600 to Node-1000.

 Path-1: Node-4600 → Node-4000 → Node-2000 → Node-1000

 Path-2: Node-4600 → Node-5000 → Node-2000 → Node-1000

Again, you might consider specifying DISTINCT in the Main-SELECT

to remove duplicate rows.

WITH ANCESTORS (ENO, ENAME, SENO)

AS

(SELECT R.ENO, R2.ENAME, R.SENO

 FROM REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND R.ENO ='4600'

 UNION ALL

 SELECT R.ENO, R2.ENAME, R.SENO

 FROM ANCESTORS A, REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND A.SENO = R.ENO

)

 SELECT * FROM ANCESTORS

Free SQL Book, Tim Martyn 896 Copyright Pending 2022

Exercises

30V. Reference RDEMO2 and RDEMO2MM. Display the CHILDKEY, AMT, and

PARENTKEY values for Node-30 and its descendants. However, if

a descendant’s AMT is greater than or equal to 600, then

exclude all descendants of this descendant. The result should

look like:

CHILDKEY AMT PARENTKEY

 30 500 40

 50 200 30

 60 500 50

30W. Reference the RDEMO2 and RDEMO2MM tables. Start with Node-

60. Display the CHILDKEY, AMT, and PARENTKEY values for this

node and all of its direct and indirect ancestors. The result

should look like:

 CHILDKEY AMT PARENTKEY

 60 500 50

 50 200 10

 50 200 20

 50 200 30

 10 200 40

 20 700 40

 30 500 40

 40 100 0

 40 100 0

 40 100 0

30X. Reference the REPORTS_TO and REMPLOYEE2 tables. Display the

ENO, ENAME, and SENO values for Employee 4000 and all his

direct or indirect supervisors. The result should look like:

ENO ENAME SENO

4000 JULIE 2000

2000 JANET 1000

1000 MOE 0000

Free SQL Book, Tim Martyn 897 Copyright Pending 2022

Display Level Numbers: Traverse Down a Network

Sample Query 30.14: Extend Sample Query 30.11. Display the ENO,

ENAME, SALARY, and SENO values for Employee 2000 and all

employees who directly or indirectly work for her. Also

display level numbers.

LVL ENO ENAME SALARY SENO

 1 2000 JANET 2000.00 1000

 2 4000 JULIE 500.00 2000

 2 5000 JESSIE 400.00 2000

 2 6000 FRANK 9000.00 2000

 3 4500 JOHNNY 2000.00 4000

 3 4600 ELEANOR 3000.00 4000

 3 4600 ELEANOR 3000.00 5000

 3 5500 HANNAH 4000.00 5000

 3 4800 MATT 3000.00 6000

 4 4700 ANDY 2000.00 4600

 4 4800 MATT 3000.00 4600

 4 4700 ANDY 2000.00 4600

 4 4800 MATT 3000.00 4600

 4 4800 MATT 3000.00 5500

Syntax & Logic: Nothing New. Observe that data about Employee 4800

appears in three rows with an LVL value of 4 and in one row with

an LVL value of 3. This is illustrated in Figures 30.5c, 30.5d,

and 30.5e.

Exercise:

30Y1. Modify the above Sample Query 30.14 to limit the downward

traversal to three levels. (Hint: Review Sample Query 30.7b.)

WITH DESCENDANTS (LVL, ENO, ENAME, SALARY, SENO)

AS

(SELECT 1, R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND R.ENO = '2000'

 UNION ALL

 SELECT LVL+1, R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM DESCENDANTS D, REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO AND D.ENO = R.SENO

)

SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 898 Copyright Pending 2022

Display Level Numbers: Traverse Up a Network

Sample Query 30.15: Extend Sample Query 30.13. Start with Employee

4600. Display the ENO, ENAME, SALARY, and SENO values for

this employee and all her direct or indirect supervisors.

Also display level numbers.

LVL ENO ENAME SALARY SENO

 1 4600 ELEANOR 3000.00 4000

 1 4600 ELEANOR 3000.00 5000

 2 4000 JULIE 500.00 2000

 2 5000 JESSIE 400.00 2000

 3 2000 JANET 2000.00 1000

 3 2000 JANET 2000.00 1000

 4 1000 MOE 2000.00 0000

 4 1000 MOE 2000.00 0000

Syntax & Logic: Nothing New.

Exercise:

30Y2. Modify the above Sample Query 30.15 to (i) limit the upward

traversal to three levels, (ii) remove duplicate rows from

the result table, and (iii) modify the level numbers such

that the result looks like:

LVL ENO ENAME SALARY SENO

 2 2000 JANET 2000.00 1000

 3 5000 JESSIE 400.00 2000

 3 4000 JULIE 500.00 2000

 4 4600 ELEANOR 3000.00 4000

 4 4600 ELEANOR 3000.00 5000

WITH ANCESTORS (LVL, ENO, ENAME, SENO)

AS

(SELECT 1, R.ENO, R2.ENAME, R.SENO

 FROM REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND R.ENO ='4600'

 UNION ALL

 SELECT LVL+1, R.ENO, R2.ENAME, R.SENO

 FROM ANCESTORS A, REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND A.SENO = R.ENO

)

 SELECT * FROM ANCESTORS

Free SQL Book, Tim Martyn 899 Copyright Pending 2022

REPORTS_TO2

ENO SENO HOURS PAYRATE

1000 0000 0 0

2000 1000 40 80

3000 1000 40 70

8000 1000 40 80

4000 2000 40 60

5000 2000 40 60

6000 2000 40 70

6500 3000 40 60

8500 8000 20 90

4500 4000 40 60

4600 4000 20 50

5500 5000 40 50

7500 6500 30 50

8600 8500 40 40

8700 8500 40 50
4700 4600 20 40

4800 4600 10 50

4600 5000 20 50

4800 5500 20 20

4800 6000 10 60

REMPLOYEE3

ENO ENAME

0000 DUMMY

1000 MOE

2000 JANET

3000 LARRY

8000 JOE

4000 JULIE

5000 JESSIE

6000 FRANK

6500 CURLY

8500 GEORGE

4500 JOHNNY

4600 ELEANOR

5500 HANNAH

7500 SHEMP

8600 DICK

8700 HANK

4700 ANDY

4800 MATT

Figure 30.7:

REMPLOYEE3 and

REPORTS_TO2 Tables

Variations of Many-to-Many Recursive Designs

Within the context of an “employees-report-to-employees”

application, we have utilized the following design to represent a

recursive many-to-many relationship.

REMPLOYEE2 REPORTS_TO

Below we present three similar design scenarios that require

modifications to this design.

Design Scenario-1: Intersection Data within Recursive Table

Assume employees are not paid a fixed salary. Instead, each

employee may work a different number of hours and be paid a

different hourly pay-rate by each supervisor. To represent this

change, the REMPLOYEE3 table is formed by removing SALARY from

REMPLOYEE2; and the REPORTS_TO2 table is formed by extending

REPORTS_TO to include the HOURS and PAYRATE columns (the

intersection data).

REMPLOYEE3 REPORTS_TO2

Sample data for these tables are shown below.

ENO ENAME SALARY ENO SENO

ENO SENO HOURS PAYRATE ENO ENAME

Free SQL Book, Tim Martyn 900 Copyright Pending 2022

This design does not require any significant coding adjustments.

Consider the following query objective that is similar to Sample

Query 30.11. It displays HOURS and PAYRATE values instead of SALARY

values.

Sample Query 30.16: Reference the REMPLOYEE3 and REPORTS_TO2

tables. For Employee 2000 and all her descendants, display

each employee’s ENO and ENAME values plus the supervisor’s

SENO value and corresponding HOURS and PAYRATE values.

ENO ENAME SENO HOURS PAYRATE

 2000 JANET 1000 40 80

 4000 JULIE 2000 40 60

 5000 JESSIE 2000 40 60

 6000 FRANK 2000 40 70

 4500 JOHNNY 4000 40 60

 4600 ELEANOR 4000 20 50

 5500 HANNAH 5000 40 50

 4600 ELEANOR 5000 20 50

 4800 MATT 6000 10 60

 4700 ANDY 4600 20 40

 4800 MATT 4600 10 50

 4800 MATT 5500 20 20

 4700 ANDY 4600 20 40

 4800 MATT 4600 10 50

Syntax and Logic: Nothing new.

Another very simple design scenario: Assume business users only

care about intersection data (HOURS and PAYRATE) and have no

interest in ENAME values. Then, the DBA would not need to create

the REMPLOYEE3 table.

WITH DESCENDANTS (ENO, ENAME, SENO, HOURS, PAYRATE)

AS

(SELECT REMP3.ENO, REMP3.ENAME,

 RT2.SENO, RT2.HOURS, RT2.PAYRATE

 FROM REPORTS_TO2 RT2, REMPLOYEE3 REMP3

 WHERE REMP3.ENO = RT2.ENO AND REMP3.ENO = '2000'

 UNION ALL

 SELECT REMP3.ENO, REMP3.ENAME,

 RT2.SENO, RT2.HOURS, RT2.PAYRATE

 FROM DESCENDANTS D, REPORTS_TO2 RT2, REMPLOYEE3 REMP3

 WHERE REMP3.ENO = RT2.ENO AND D.ENO = RT2.SENO

)

SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 901 Copyright Pending 2022

Design Scenario-2: A “Good” Parent-Oriented Design

In Section-A, we discouraged creating a parent-oriented recursive

table for a recursive one-to-many relationship. However, the

following Figure 30.8 illustrates that a parent-oriented design

can be reasonable for a many-to-many recursive relationship.

Reconsider the REPORTS_TO table. In principle, this table is

neither child-oriented nor parent-oriented. However, we adopted a

child-oriented perspective of REPORTS_TO by reading its column

names from left-to-right: “ENO (child) REPORTS_TO SENO (parent).”

This table could be replaced by the following SUPERVISES table

which can be seen as parent-oriented by reading its column names

from left-to-right: “SENO (parent) supervises ENO (child).”

 REPORTS_TO SUPERVISES

The REPORTS_TO and SUPERVISES tables are logically equivalent

tables. They represent the same semantic concepts. (The SUPERVISES

table merely swaps the left-to-right column sequence in

REPORT_TO.) A database designer could create either table

depending upon her mindset.

Figure 30.8: Logically Equivalent Tables

ENO SENO

1000 0000

2000 1000

3000 1000

8000 1000

4000 2000

5000 2000

6000 2000

6500 3000

8500 8000

4500 4000

4600 4000

5500 5000

7500 6500

8600 8500

8700 8500
4700 4600

4800 4600

4600 5000

4800 5500

4800 6000

SENO ENO

0000 1000

1000 2000

1000 2000

1000 8000

2000 4000

2000 5000

2000 6000

3000 6500

8000 8500

4000 4500

4000 4600

5000 5500

6500 7500

8500 8600

8500 8700
4600 4700

4600 4800

5000 4600

5500 4800

6000 4800

Free SQL Book, Tim Martyn 902 Copyright Pending 2022

Assume a designer created SUPERVISES instead of REPORTS_TO. This

design change would not have any significant impact on coding

recursive queries. Consider the following sample query.

Sample Query 30.17: Same as Sample Query 30.11. Reference the

SUPERVISES and REMPLOYEE2 tables. Display the ENO, ENAME,

SALARY, and SENO values for Employee 2000 and all employees

who directly or indirectly work for her.

ENO ENAME SALARY SENO

 2000 JANET 2000.00 1000

 4000 JULIE 500.00 2000

 5000 JESSIE 400.00 2000

 6000 FRANK 9000.00 2000

 4500 JOHNNY 2000.00 4000

 4600 ELEANOR 3000.00 4000

 4600 ELEANOR 3000.00 5000

 5500 HANNAH 4000.00 5000

 4800 MATT 3000.00 6000

 4700 ANDY 2000.00 4600

 4800 MATT 3000.00 4600

 4700 ANDY 2000.00 4600

 4800 MATT 3000.00 4600

4800 MATT 3000.00 5500

Syntax and Logic: Nothing new. This statement merely substitutes

“SUPERVISES” for “REPORTS_TO” in Solution-3 for Sample Query

30.11.

WITH DESCENDANTS (ENO, SENO)

AS

(SELECT ENO, SENO

 FROM SUPERVISES

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.SENO

 FROM DESCENDANTS D, SUPERVISES R

 WHERE D.ENO = R.SENO

)

 SELECT D.ENO, E.ENAME, E.SALARY, D.SENO

 FROM DESCENDANTS D, REMPLOYEE2 E

 WHERE D.ENO = E.ENO

Free SQL Book, Tim Martyn 903 Copyright Pending 2022

Design Scenario-3: Cyclic Network

The previous two scenarios did not make recursive queries any more

complex. However, this third scenario is another story. Reconsider

our original many-to-many recursive design.

REMPLOYEE2 REPORTS_TO

This third scenario does not make any structural changes to the

above design (same tables with same columns.) However, it removes

the following important design constraint that we have implicitly

assumed throughout this chapter.

Previous Design Constraint - Acyclic Network: The database

designer specifies an integrity constraint for a recursive table

(e.g., REPORTS_TO) such that this table represents an acyclic

network. This means that you can never start at some node, follow

some path, and return to the same starting node. All previously

described network diagrams have been acyclic.

Eliminate Design Constraint - Cyclic Network: Within a cyclic

network, it is possible to start at some node, follow some path,

and return to the same starting node. We present two examples of

a cyclic network.

Unrealistic Example of a Cyclic Network: If the system did not

enforce the acyclic constraint on the REPORTS_TO table, then the

following row could be inserted into this table.

 ENO SENO

 2000 4500

Inserting this row makes it possible to traverse the following

path.

 Node-4500 → Node-4000 → Node-2000 →

This path forms a cycle (also called a “loop”). This cycle implies

that Employees 4500, 4000, and 2000 indirectly report to

themselves, which is why we say this is an unrealistic example.

ENO ENAME SALARY ENO SENO

Free SQL Book, Tim Martyn 904 Copyright Pending 2022

Realistic Example of Cyclic Network: Assume the designer created

a table called FLIGHTS (shown in following Figure 30.9a) where

each row describes an airline flight from an origin city

(STARTCITY) to a destination city (STOPCITY). This table stores

the PRICE of each flight and its travel time in HOURS. In this

application, it is reasonable to have a fight from City-1 to City-

2 and another flight from City-2 to City-1. Or, there could be

intermediate flights that allow a passenger to indirectly travel

from a given city and return to the same city. Consider the sample

data in the following FLIGHTS table.

Inspection of the FLIGHTS table shows two cycles.

 WASHINGTON DC → SYDNEY

 MEXICO CITY → PARIS → TOKYO

The presence of any cycle means that the network is cyclic. The

network diagram in the following Figure 30.9b makes it easier to

detect the cycles.

FLIGHTS

STARTCITY STOPCITY PRICE HOURS

WASHINGTON DC SYDNEY 2500.00 16.00

WASHINGTON DC MEXICO CITY 1000.00 6.50

LONDON PARIS 500.00 1.25

PARIS TOKYO 1200.00 9.25

LONDON TOKYO 2000.00 10.50

MEXICO CITY PARIS 1500.00 9.00

TOKYO MEXICO CITY 2000.00 17.00

SYDNEY WASHINGTON DC 2600.00 18.00

Figure 30.9a: Cyclic Table

Free SQL Book, Tim Martyn 905 Copyright Pending 2022

“No Top – No Bottom”

Previous tree and network diagrams without cycles presumed a top-

to-bottom orientation. In those diagrams, we illustrated

supervisor-nodes “above” supervisee-nodes. This top-to-bottom

orientation does not apply within a cyclic network. Consider the

following network diagram for the FLIGHTS table.

Examination of the above network diagram shows that there are no

absolute top (root) nodes or bottom (leaf) nodes. For example,

another valid illustration of this network could show the SYDNEY

Node below the WASH DC Node.

Bad News – Possible “Infinite” Traversal: Recursive queries

against a cyclic table become more complex because your code must

detect and prohibit the “infinite” traversal of a cycle. Some

systems do not offer a direct method to satisfy this objective.

(One exception is ORACLE which supports a CYCLE-SET clause. Again,

consult your SQL reference manual for help on this matter.) We do

not present an example of this cyclic-detection-prevention code

because it is usually specified by procedural logic within a stored

procedure or application program.

WASH

DC

MEXICO

CITY

SYDNEY

PARIS LONDON

TOKYO

Figure 30.9b: Cyclic Network

Free SQL Book, Tim Martyn 906 Copyright Pending 2022

C. Recursive Queries without Recursive CTEs

The following Figures 30.10a and 30.10b show result tables that

are produced by queries against the REMPLOYEE table. Both result

tables display data about a supervisor (Employee 2000) and her

immediate supervisees. The “horizontal” format of Figure 30.10b

differs from Figure 30.10a and previous result tables shown in

this chapter. Here the PENO and PENAME columns contain a parent’s

number and name, and the CENO and CENAME columns contain the

numbers and names of children. Because the corresponding parents

and children appear in the same row, there is no need to display

SENO values.

The following Figures 30.11a and 30.11b extend the above result

tables by displaying data from a three-level traversal of the

REMPLOYEE table. The objective is to display data about a

supervisor (Employee 2000), her direct supervisees (children), and

their direct supervisees (grandchildren). In Figure 30.11b, the

GCENO and GCENAME columns contain the numbers and names of the

grandchildren.

Some users will prefer result tables with a horizontal format that

look like Figures 30.10b and 30.11b. The following sample queries

produce similar result tables by coding SELECT statements that do

not require specifying recursive CTEs.

Figure 30.10b: Two-level Horizontal

PNO PENAME CENO CENAME

2000 JANET 4000 JULIE

2000 JANET 5000 JESSIE

2000 JANET 6000 FRANK

Figure 30.10a: Two-level Vertical

Network

ENO ENAME SENO

2000 JANET 1000

4000 JULIE 2000

5000 JESSIE 2000

6000 FRANK 2000

ENO ENAME SENO

2000 JANET 1000

4000 JULIE 2000

5000 JESSIE 2000

6000 FRANK 2000

4500 JOHNNY 4000

4600 ELEANOR 4000

5500 HANNAH 5000

Figure 30.11a: Three-level Vertical

Network

PENO PENAME CENO CENAME GCENO GCENAME

2000 JANET 4000 JULIE 4500 JOHNNY

2000 JANET 4000 JULIE 4600 ELEANOR

2000 JANET 5000 JESSIE 5500 HANNAH

2000 JANET 6000 FRANK - -

Figure 30.11b: Three-level Horizontal

Free SQL Book, Tim Martyn 907 Copyright Pending 2022

The following pages present sample queries against the REMPLOYEE

table where each SELECT statement will join the REMPLOYEE table

with itself. (Review Sample Queries 17.10.1 – 17.10.3 which

introduced joining a table with itself.) Each sample query

illustrates a query-pattern that can be described according to

three categories. Each category has two options, producing a total

of eight (2x2x2) query-patterns. The three categories are

described below.

1. Number of Levels

• Two-Level tree traversal

• Three-Level tree traversal

2. Column Orientation of Result Table

• Parent-Oriented (Parent-data in leftmost cols)

PNO PENAME CENO CENAME

2000 JANET 4000 JULIE

• Child-Oriented (Child-data in leftmost cols)

CENO CENAME PENO PENAME

4000 JULIE 2000 JANET

3. Matching Objective

• Non-Matching: The result table includes data from all

selected parent-rows, including parents without children. For

example, the row for Employee 8700, an employee without

children, is included in the following result.

PNO PENAME CENO CENAME

2000 JANET 4000 JULIE

 8700 HANK - -

• Matching: The result table excludes rows for parents without

children. For example, the following result does not include

a row for Employee 8700.

PNO PENAME CENO CENAME

2000 JANET 4000 JULIE

Free SQL Book, Tim Martyn 908 Copyright Pending 2022

In preparation of the next eight sample queries, we review Figure

30.1c which illustrates the tree diagram for the REMPLOYEE table.

This figure highlights (in bold font) four nodes (1000, 4700, 3000,

and 8500). We make pertinent observations about these nodes below.

Observations:

• Employee 1000: Root Node

No parent node, hence no grandparent node

• Employee 4700: Leaf Node

No child node, hence no grandchild nodes

• Employee 3000: Intermediate Node

Parent node, but no grandparent node

• Employee 8500: Intermediate Node

Child nodes, but no grandchild nodes

Sample Queries 30.18.1 – 30.18.4 will traverse two levels in this

tree.

Sample Queries 30.19.1 – 30.19.4 will traverse three levels in

this tree.

Figure 30.1c: Tree Diagram Represents REMPLOYEE Table

 1000

3000

6500

7500

8000

8500

8600 8700

2000

5000

5500

4000

4500 4600

4700 4800

6000

Free SQL Book, Tim Martyn 909 Copyright Pending 2022

Query-Pattern-1: Two-Level, Parent-Oriented, Matching

The next four sample queries display data about parents and

children in the tree representing the REMPLOYEE table. These

queries reference three employees: Employee 1000, the only node

without a parent; Employee 4700, a leaf node without any children;

and Employee 8500, a node with children.

The following sample query accesses two levels, is parent-oriented

(i.e., data from the parent-table appears in the leftmost columns

in the result table), and only displays matching rows for parents

who have at least one child.

Sample Query 30.18.1: Consider Employees 1000, 8500, and 4700. If

any of these employees is a supervisor, display his employee

number, name, and salary followed by the number, name, and

salary of each immediate supervisee. Sort the result by the

supervisee’s ENO value within the supervisor’s ENO value.

BOSSENO BOSSENAME BOSSSALARY ENO ENAME SALARY

 1000 MOE 2000.00 2000 JANET 2000.00

 1000 MOE 2000.00 3000 LARRY 3000.00

 1000 MOE 2000.00 8000 JOE 8000.00

 8500 GEORGE 7000.00 8600 DICK 6000.00

 8500 GEORGE 7000.00 8700 HANK 6000.00

Syntax & Logic: Nothing new. This result table shows three rows

for Employee 1000 because he supervises three employees; and two

rows for Employee 8500 because he supervises two employees.

Employee 4700 does not appear in the result because he is not a

supervisor. (His row corresponds to a leaf node.)

SELECT PARENT.ENO BOSSENO,

 PARENT.ENAME BOSSENAME,

 PARENT.SALARY BOSSSALARY,

 CHILD.ENO,

 CHILD.ENAME,

 CHILD.SALARY

FROM REMPLOYEE PARENT INNER JOIN REMPLOYEE CHILD

 ON PARENT.ENO = CHILD.SENO

AND PARENT.ENO IN ('1000', '8500', '4700')

ORDER BY PARENT.ENO, CHILD.ENO

Free SQL Book, Tim Martyn 910 Copyright Pending 2022

Query-Pattern-2: Two-Level, Parent-Oriented, Non-Matching

The following sample query is similar to the preceding sample

query. It accesses two levels and is parent-oriented. Unlike the

preceding sample query, this sample query displays both matching

and non-matching rows.

Sample Query 30.18.2: Consider Employees 1000, 8500, and 4700.

Display the employee number, name, and salary of these

employees. Also, if any of these employees is a supervisor,

display the number, name, and salary of each immediate

supervisee. Sort the result by the supervisee’s ENO value

within the supervisor’s ENO value.

BOSSENO BOSSENAME BOSSSALARY ENO ENAME SALARY

 1000 MOE 2000.00 2000 JANET 2000.00

 1000 MOE 2000.00 3000 LARRY 3000.00

 1000 MOE 2000.00 8000 JOE 8000.00

 4700 ANDY 2000.00 - - -

8500 GEORGE 7000.00 8600 DICK 6000.00

 8500 GEORGE 7000.00 8700 HANK 6000.00

Syntax & Logic: Nothing new. Unlike the previous sample query that

coded an INNER JOIN operation, this statement coded a LEFT OUTER

JOIN with the parent-table as the left-table. This result is the

same as the previous result table plus one more row for Employee

4700, an employee who is not a supervisor (corresponding to a leaf

node).

SELECT PARENT.ENO BOSSENO,

 PARENT.ENAME BOSSENAME,

 PARENT.SALARY BOSSSALARY,

 CHILD.ENO,

 CHILD.ENAME,

 CHILD.SALARY

FROM REMPLOYEE PARENT LEFT OUTER JOIN REMPLOYEE CHILD

 ON PARENT.ENO = CHILD.SENO

WHERE PARENT.ENO IN ('1000', '8500', '4700')

ORDER BY PARENT.ENO, CHILD.ENO

Free SQL Book, Tim Martyn 911 Copyright Pending 2022

Query-Pattern-3: Two-Level, Child-Oriented, Matching

The following sample query accesses two levels, is child-oriented

(i.e., data from the child-table appears in the leftmost columns

in the result table), and displays matching rows corresponding to

children with parents (which is every row except Employee 1000,

the big-boss.

Sample Query 30.18.3: Consider Employees 1000, 8500, and 4700. For

each employee who has a supervisor, display the employee’s

number, name, and salary followed by the number, name and

salary of their immediate supervisor. Sort the result by the

supervisee’s ENO value.

 ENO ENAME SALARY BOSSENO BOSSENAME BOSSSALARY

 4700 ANDY 2000.00 4600 ELEANOR 3000.00

 8500 GEORGE 7000.00 8000 JOE 8000.00

Syntax & Logic: Nothing new. Observe that the row for Employee

1000 does not appear in the result because this employee is the

big-boss who does not have a supervisor. (His row corresponds to

the root node.)

Observation: Examination of this result table shows that a “child-

oriented” result is analogous to an upward tree traversal.

SELECT CHILD.ENO,

 CHILD.ENAME,

 CHILD.SALARY,

 PARENT.ENO BOSSENO,

 PARENT.ENAME BOSSENAME,

 PARENT.SALARY BOSSSALARY

FROM REMPLOYEE CHILD INNER JOIN REMPLOYEE PARENT

 ON CHILD.SENO = PARENT.ENO

AND CHILD.ENO IN ('1000', '8500', '4700')

ORDER BY CHILD.ENO

Free SQL Book, Tim Martyn 912 Copyright Pending 2022

Query-Pattern-4: Two-Level, Child-Oriented, Non-Matching

The following sample query is similar to the preceding sample

query. It accesses two levels and is child-oriented. Unlike the

preceding sample query, this sample query displays both matching

and non-matching rows.

Sample Query 30.18.4: Consider Employees 1000, 8500, and 4700.

Display each employee’s number, name, and salary. Also, if

the employee has a supervisor, display the number, name, and

salary of the employee’s immediate supervisor. Sort the

result by the supervisee’s ENO value.

ENO ENAME SALARY BOSSENO BOSSENAME BOSSSALARY

1000 MOE 2000.00 - - -

 4700 ANDY 2000.00 4600 ELEANOR 3000.00

8500 GEORGE 7000.00 8000 JOE 8000.00

Syntax & Logic: Nothing new. This statement specified a LEFT OUTER

JOIN with the child-table as the left-table. This result is the

same as the previous result table plus one more row for Employee

1000 (the big-boss) who does not have a supervisor.

SELECT CHILD.ENO,

 CHILD.ENAME,

 CHILD.SALARY,

 PARENT.ENO BOSSENO,

 PARENT.ENAME BOSSENAME,

 PARENT.SALARY BOSSSALARY

FROM REMPLOYEE CHILD LEFT OUTER JOIN REMPLOYEE PARENT

 ON CHILD.SENO = PARENT.ENO

WHERE CHILD.ENO IN ('1000', '8500', '4700')

ORDER BY CHILD.ENO

Free SQL Book, Tim Martyn 913 Copyright Pending 2022

Query-Pattern-5: Three-Level, Parent-Oriented, Matching

The next four sample queries describe parents, children, and

grandchildren in a tree. The following sample query traverses three

levels, is parent-oriented, and only displays matching rows. This

matching applies to parents who have at least one child where each

child also has at least one child.

Sample Query 30.19.1: Consider Employees 1000, 3000, 8500, and

4700. If any of these employees is a supervisor who supervises

an employee who is also a supervisor, display the numbers and

names of these employees. (I.e., Describe data for parents,

children, and grandchildren.) Sort the result by

GRANDCHILD.ENO within CHILD.ENO within PARENT.ENO

Syntax & Logic: Observe that: Employee 1000 appears in five rows

because he has five grandchildren; Employee 3000 appears in one

row because he has one grandchild. Employee 4700 does not appear

in the result table because he has no children (and hence on

grandchildren); and Employee 8500 does not appear in the result

table because he has no grandchildren, even though he does have

two children.

SELECT PARENT.ENO PARENTENO,

 PARENT.ENAME PARENTNAME,

 CHILD.ENO CHILDENO,

 CHILD.ENAME CHILDNAME,

 GRANDCHILD.ENO GRANDCHILDENO,

 GRANDCHILD.ENAME GRANDCHILDNAME

FROM REMPLOYEE PARENT

 INNER JOIN REMPLOYEE CHILD

ON PARENT.ENO = CHILD.SENO

 INNER JOIN REMPLOYEE GRANDCHILD

ON CHILD.ENO = GRANDCHILD.SENO

AND PARENT.ENO IN ('1000', '3000', '8500', '4700')

ORDER BY PARENT.ENO, CHILD.ENO, GRANDCHILD.ENO

 PARENTENO PARENTNAME CHILDENO CHILDNAME GRANDCHILDENO GRANDCHILDNAME

 1000 MOE 2000 JANET 4000 JULIE

 1000 MOE 2000 JANET 5000 JESSIE

 1000 MOE 2000 JANET 6000 FRANK

 1000 MOE 3000 LARRY 6500 CURLY

 1000 MOE 8000 JOE 8500 GEORGE

 3000 LARRY 6500 CURLY 7500 SHEMP

Free SQL Book, Tim Martyn 914 Copyright Pending 2022

Query-Pattern-6:Three-Level, Parent-Oriented, Non-Matching

The following sample query is similar to the preceding sample

query. It accesses three levels and is parent-oriented. Unlike the

preceding sample query, this sample query displays both matching

and non-matching rows.

Sample Query 30.19.2: Display the numbers and names of Employees

1000, 3000, 8500, and 4700. If any of these employees is a

supervisor, display each of their supervisee’s number and

name; and, if any of these supervisees is also a supervisor,

display each of these supervisee’s number and name. Sort the

result by GRANDCHILD.ENO within CHILD.ENO within PARENT.ENO

Syntax & Logic: The two LEFT OUTER JOIN operations preserve non-

matching rows. Employee 4700 appears in the result table even

though he has no children (and hence no grandchildren). Employee

8500 appears in the result even though he does not have any

grandchildren.

SELECT PARENT.ENO PARENTENO,

 PARENT.ENAME PARENTNAME,

 CHILD.ENO CHILDENO,

 CHILD.ENAME CHILDNAME,

 GRANDCHILD.ENO GRANDCHILDENO,

 GRANDCHILD.ENAME GRANDCHILDNAME

FROM REMPLOYEE PARENT

LEFT OUTER JOIN REMPLOYEE CHILD

 ON PARENT.ENO = CHILD.SENO

 LEFT OUTER JOIN REMPLOYEE GRANDCHILD

 ON CHILD.ENO = GRANDCHILD.SENO

WHERE PARENT.ENO IN ('1000', '3000', '8500', '4700')

ORDER BY PARENT.ENO, CHILD.ENO, GRANDCHILD.ENO

 PARENTENO PARENTNAME CHILDENO CHILDNAME GRANDCHILDENO GRANDCHILDNAME

 1000 MOE 2000 JANET 4000 JULIE

 1000 MOE 2000 JANET 5000 JESSIE

 1000 MOE 2000 JANET 6000 FRANK

 1000 MOE 3000 LARRY 6500 CURLY

 1000 MOE 8000 JOE 8500 GEORGE

 3000 LARRY 6500 CURLY 7500 SHEMP

 4700 ANDY - - - -

 8500 GEORGE 8700 HANK - -

 8500 GEORGE 8600 DICK - -

Free SQL Book, Tim Martyn 915 Copyright Pending 2022

Query-Pattern-7: Three-Level, Child-Oriented, Matching

The following sample query traverses three levels, is child-

oriented (really grandchild-oriented), and only displays data from

matching rows.

Sample Query 30.19.3: Consider Employees 1000, 3000, 8500, and

4700. If any of these employees is supervised by a supervisor

who is also supervised by a supervisor, then display the

number and name of these employees. (I.e., Display

grandchild, child, and parent data.) Sort the result by

GRANDCHILD.ENO.

Syntax & Logic: The objective is to display data for each employee

who is a grandchild. Data about Employee 1000 does not appear in

the result table because he is the big-boss (not a child; hence

not a grandchild). Data about Employee 3000 does not appear in

this result because, although he is child, he is not a grandchild.

Restate Previous Observation: Examination of this result table

shows that a “child-oriented” result is analogous to an upward

tree traversal.

SELECT GRANDCHILD.ENO GRANDCHILDENO,

 GRANDCHILD.ENAME GRANDCHILDNAME,

 CHILD.ENO CHILDENO,

 CHILD.ENAME CHILDNAME,

 PARENT.ENO PARENTENO,

 PARENT.ENAME PARENTENAME

FROM REMPLOYEE PARENT

 INNER JOIN REMPLOYEE CHILD

ON PARENT.ENO = CHILD.SENO

 INNER JOIN REMPLOYEE GRANDCHILD

ON CHILD.ENO = GRANDCHILD.SENO

AND GRANDCHILD.ENO IN ('1000', '3000', '8500', '4700')

ORDER BY GRANDCHILD.ENO

 GRANDCHILDENO GRANDCHILDNAME CHILDENO CHILDNAME PARENTENO PARENTNAME

 4700 ANDY 4600 ELEANOR 4000 JULIE

 8500 GEORGE 8000 JOE 1000 MOE

Free SQL Book, Tim Martyn 916 Copyright Pending 2022

Query-Pattern-8: Three-Level, Child-Oriented, Non-Matching

The following sample query is similar to the preceding sample

query. It traverses three levels and is child (really grandchild)

oriented. Unlike the preceding sample query, it displays both

matching and non-matching rows.

Sample Query 30.19.4: Display the numbers and names of Employees

1000, 3000, 8500, and 4700. For each of these employees who

has a supervisor, display this supervisor’s number and name;

and, if one of these supervisors is also a supervisor, display

this supervisor’s number and name. Sort the result by

GRANDCHILD.ENO.

Syntax & Logic: This result is the same as the previous result

table plus two additional non-matching rows. Data about Employee

1000 appears in the result table even though he is the big-boss

without a supervisor. Data about Employee 3000 appears in the

result table even though his supervisor (the big-boss) does not

have a supervisor.

SELECT GRANDCHILD.ENO GRANDCHILDENO,

GRANDCHILD.ENAME GRANDCHILDNAME,

CHILD.ENO CHILDENO,

CHILD.ENAME CHILDNAME,

PARENT.ENO PARENTENO,

PARENT.ENAME PARENTENAME

FROM REMPLOYEE GRANDCHILD

LEFT OUTER JOIN REMPLOYEE CHILD

 ON GRANDCHILD.SENO = CHILD.ENO

LEFT OUTER JOIN REMPLOYEE PARENT

ON CHILD.SENO = PARENT.ENO

WHERE GRANDCHILD.ENO IN ('1000', '3000', '8500', '4700')

ORDER BY GRANDCHILD.ENO

 GRANDCHILDENO GRANDCHILDNAME CHILDENO CHILDNAME PARENTENO PARENTNAME

 1000 MOE - - - -

 3000 LARRY 1000 MOE - -

 4700 ANDY 4600 ELEANOR 4000 JULIE

 8500 GEORGE 8000 JOE 1000 MOE

Free SQL Book, Tim Martyn 917 Copyright Pending 2022

Exercises

30Z1. Consider Employees 3000 and 8600. Display the number, name,

and salary for these employees. Also, if either of these

employees is a supervisor, display the number, name, and

salary of each immediate supervisee. The result should look

like:

 BOSSENO BOSSENAME BOSSSALARY ENO ENAME SALARY

 3000 LARRY 3000.00 6500 CURLY 8000.00

 8600 DICK 6000.00 - - -

30Z2. Consider Employees 3000 and 8600. Display each employee’s

number, name, and salary followed by the number, name and

salary of the employee’s immediate supervisor. The result

should look like:

ENO ENAME SALARY BOSSENO BOSSENAME BOSSSALARY

3000 LARRY 3000.00 1000 MOE 2000.00

 8600 DICK 6000.00 8500 GEORGE 7000.00

30Z3. Display the numbers and names of Employees 3000, 5000, and

8000. If any of these employees is a supervisor, display each

supervisee’s number and name; and, if any of these supervisees

is also a supervisor, display each of these supervisee’s

number and name. Sort the result by the supervisor’s (the

parent’s) ENO value. The result should look like:

30Z4. Consider Employees 3000, 6000, and 8500. If any of these

employees is supervised by a supervisor who is also supervised

by a supervisor, then display the number and name of all such

employees. The result should look like:

 PARENTENO PARENTNAME CHILDENO CHILDNAME GRANDCHILDENO GRANDCHILDNAME

 3000 LARRY 6500 CURLY 7500 SHEMP

 5000 JESSIE 5500 HANNAH - -

 8000 JOE 8500 GEORGE 8600 DICK

 8000 JOE 8500 GEORGE 8700 HANK

 GRANDCHILDENO GRANDCHILDNAME CHILDENO CHILDNAME PARENTENO PARENTNAME

 6000 FRANK 2000 JANET 1000 MOE

 8500 GEORGE 8000 JOE 1000 MOE

Free SQL Book, Tim Martyn 918 Copyright Pending 2022

Many-to Many Relationship

The preceding query-patterns can be applied to the REMPLOYEE2 and

REPORTS_TO tables that represent a recursive many-to-many

relationship. In preparation of the next two sample queries, we

review Figure 30.1c which illustrates the network diagram for the

REPORTS_TO table. This figure highlights (in bold font) five nodes

(1000, 2000, 3000, 4700, and 8500) which will be referenced in the

next two sample queries.

The following Sample Queries 30.20.1 and 30.20.2 specify a non-

recursive CTE called REMPLOYEEX which is derived by joining the

REMPLOYEE2 and REPORTS_TO tables.

WITH REMPLOYEEX (ENO, ENAME, SALARY, SENO)

AS

(SELECT RT.ENO, R2.ENAME, R2.SALARY, RT.SENO

 FROM REPORTS_TO RT, REMPLOYEE2 R2

 WHERE RT.ENO = R2.ENO)

Sample Query 30.20.1 will code a three-level network traversal

starting at nodes for Employees 1000, 3000, 8500, and 4700. In

this example, only one path leads from a parent-node to a

grandchild-node.

Sample Query 30.20.2 is similar to Sample Query 30.20.1. It will

code a three-level network traversal starting at the node for

Employee-2000. This example shows two paths leading from a parent-

node to a grandchild-node.

Figure 30.5c: Network Representation of REMPLOYEE2 and REPORTS_TO Tables

 1000

3000

6500

7500

8000

8500

8600 8700

2000

5000

5500

4000

4500 4600

4700 4800

6000

Free SQL Book, Tim Martyn 919 Copyright Pending 2022

Sample Query 30.20.1: Same as Sample Query 30.19.1 (Query- Pattern-

5). Consider Employees 1000, 3000, 8500, and 4700. If any of

these employees is a supervisor who supervises an employee

who is also a supervisor, display the numbers and names of

these employees. (I.e., Describe data for parents, children,

and grandchildren.) Sort the result by GRANDCHILD.ENO within

CHILD.ENO within PARENT.ENO

Syntax & Logic: Nothing new. Examination of the network diagram

(Figure 30.5C) shows that the above five rows correspond to the

five paths from Node-1000 to its five grandchild-nodes. Note: that

the five GRANDCHILD.ENO values are distinct. Hence, there is only

one path to each grandchild. This does not occur in following the

sample query.

Also, observe that rows for Node-8500 and Node-4700 do not appear

in the result table because they do not have any grandchildren.

WITH REMPLOYEEX (ENO, ENAME, SALARY, SENO)

AS

(SELECT RT.ENO, R2.ENAME, R2.SALARY, RT.SENO

 FROM REPORTS_TO RT, REMPLOYEE2 R2

 WHERE RT.ENO = R2.ENO)

SELECT PARENT.ENO PARENTENO,

 PARENT.ENAME PARENTNAME,

 CHILD.ENO CHILDENO,

 CHILD.ENAME CHILDNAME,

 GRANDCHILD.ENO GRANDCHILDENO,

 GRANDCHILD.ENAME GRANDCHILDNAME

FROM REMPLOYEEX PARENT

 INNER JOIN REMPLOYEEX CHILD

ON PARENT.ENO = CHILD.SENO

 INNER JOIN REMPLOYEEX GRANDCHILD

ON CHILD.ENO = GRANDCHILD.SENO

AND PARENT.ENO IN ('1000', '3000', '8500', '4700')

ORDER BY PARENT.ENO, CHILD.ENO, GRANDCHILD.ENO

Query

Pattern-5

 PARENTENO PARENTNAME CHILDENO CHILDNAME GRANDCHILDENO GRANDCHILDNAME

 1000 MOE 2000 JANET 4000 JULIE

 1000 MOE 2000 JANET 5000 JESSIE

 1000 MOE 2000 JANET 6000 FRANK

 1000 MOE 3000 LARRY 6500 CURLY

 1000 MOE 8000 JOE 8500 GEORGE

 3000 LARRY 6500 CURLY 7500 SHEMP

Free SQL Book, Tim Martyn 920 Copyright Pending 2022

The following sample query illustrates that, within a network,

there may be multiple paths from a starting node to a descendant

node.

Sample Query 30.20.2: Same logic as preceding Sample Query 30.20.1.

The only difference is that we want to display data about the

children and grandchildren of just one employee, Employee

2000.

Syntax & Logic: Examination of the network diagram (Figure 30.5C)

shows that the above five rows correspond to the five paths from

Node-2000 to its four grandchild nodes. It is important to note

that there are two paths from Node-2000 to Node-4600.

 PARENTENO PARENTNAME CHILDENO CHILDNAME GRANDCHILDENO GRANDCHILDNAME

 2000 JANET 4000 JULIE 4500 JOHNNY

 2000 JANET 4000 JULIE 4600 ELEANOR

 2000 JANET 5000 JESSIE 4600 ELEANOR

 2000 JANET 5000 JESSIE 5500 HANNAH

 2000 JANET 6000 FRANK 4800 MATT

WITH REMPLOYEEX (ENO, ENAME, SALARY, SENO)

AS

(SELECT RT.ENO, R2.ENAME, R2.SALARY, RT.SENO

 FROM REPORTS_TO RT, REMPLOYEE2 R2

 WHERE RT.ENO = R2.ENO)

SELECT PARENT.ENO PARENTENO,

 PARENT.ENAME PARENTNAME,

 CHILD.ENO CHILDENO,

 CHILD.ENAME CHILDNAME,

 GRANDCHILD.ENO GRANDCHILDENO,

 GRANDCHILD.ENAME GRANDCHILDNAME

FROM REMPLOYEEX PARENT

 INNER JOIN REMPLOYEEX CHILD

ON PARENT.ENO = CHILD.SENO

 INNER JOIN REMPLOYEEX GRANDCHILD

ON CHILD.ENO = GRANDCHILD.SENO

AND PARENT.ENO = '2000'

ORDER BY PARENT.ENO, CHILD.ENO, GRANDCHILD.ENO

Query

Pattern-5

Free SQL Book, Tim Martyn 921 Copyright Pending 2022

Exercise

30Z5. Reference the RERORTS_TO and the REMPLOYEE2 tables

(representing a recursive many-to-many relationship). Display

the numbers and names of Employees 3000, 5000, and 8500. If

any of these employees is a supervisor, display each

supervisee’s number and name; and, if any of these supervisees

is also a supervisor, display each of these supervisee’s

number and name. Sort the result by the supervisor’s (the

parent’s) ENO value. The result should look like:

 PARENTENO PARENTNAME CHILDENO CHILDNAME GRANDCHILDENO GRANDCHILDNAME

 3000 LARRY 6500 CURLY 7500 SHEMP

 5000 JESSIE 4600 ELEANOR 4700 ANDY

 5000 JESSIE 4600 ELEANOR 4800 MATT

 5000 JESSIE 5500 HANNAH 4800 MATT

 8500 GEORGE 8700 HANK - -

 8500 GEORGE 8600 DICK - -

Free SQL Book, Tim Martyn 922 Copyright Pending 2022

Self-Joins versus Recursive CTE

Self-Join Disadvantages: Self-joins have two obvious limitations

when compared to recursive CTEs. First, the self-join method does

not return rows in some hierarchical sequence. Second, with the

self-join method, you are limited to some fixed number of levels.

This section’s self-join examples could be extended to a fourth-

level, fifth-level, etc. In practice, there is some reasonable

(unspecified) limit to this kind of extension.

Self-Join Advantages: Some users may feel that coding a self-join

is simpler than coding a recursive CTE; and, horizontally-oriented

result table are easier to understand.

This focus on friendlier SELECT statements and friendlier result-

tables may appear to conflict with our previous recommendation

that you should focus on coding correct SELECT statements and use

front-end tools for report-formatting. Again, the gospel is: Code

correct statements. If a query objective can be satisfied by using

either method, friendliness is your choice. However, recall that,

at some time in the future, your code may have to be modified by

some other user.

Free SQL Book, Tim Martyn 923 Copyright Pending 2022

Summary

ORDER BY Clauses: Many sample queries in this chapter disregarded

our strong recommendation to: “Do not rely on an incidentally

sorted result. Always code an ORDER BY clause to return your result

in the desired row sequence.” We address this issue by considering

two possible circumstances.

1. Your database system supports an ORDER BY clause that allows
you to specify a hierarchical sequence, such as the SEARCH-

ORDER BY clauses described after Sample Query 30.9. In this

circumstance, the above recommendation applies.

2. Your database system does not (yet) support an ORDER BY clause
that allows you to specify a hierarchical sequence. In this

circumstance, within the context of recursive queries, the

above recommendation becomes problematic. In this chapter,

some sample queries did not code an ORDER BY clause and

relied on the default breath-first hierarchical sequence.

This could be considered an incidental sort. Also, other

sample queries included operations (e.g., DISTINCT, GROUP BY)

in the Main-SELECT that disrupted a default hierarchical

sequence. Some users will have to deal with these issues until

a new version of their database provides code that allows the

ORDER BY clause to specify a desired hierarchical sequence.

Free SQL Book, Tim Martyn 924 Copyright Pending 2022

Appendix 30A: Theory

Recursion is a very interesting topic that appears in many

disciplines, including mathematics, software engineering, and

philosophy. Our description of these topics is very brief.

Fortunately, a web search for each topic will return many hits.

A. Mathematics

Most textbooks on discrete mathematics discuss recursive

functions. A recursive function is defined in terms of itself.

Below we present recursive definitions for (i) Factorial Numbers

and (ii) Fibonacci Numbers.

Two methods will be used to calculate each function. The first

method is an iterative method which most users prefer as the “easy

way” to calculate the function. The second method is a recursive

method that conforms to the recursive definition.

Factorial (!) Function

Iterative (Easy Way) Method

n! = n * (n-1) * (n-2) * (n-3) * . . . * 1

Examples: 5! = 5*4*3*2*1 = 120

 7! = 7*6*5*4*3*2*1 = 5,040

Recursive Method

n! = n * (n-1)!, where 0! = 1

Example: 5! = 5 *(4!)

 = 5 * 4 *(3!)

 = 5 * 4 * 3 *(2!)

 = 5 * 4 * 3 * 2 *(1!)

 = 5 * 4 * 3 * 2 * 1 * (0!)

 = 5 * 4 * 3 * 2 * 1 * 1

 = 5 * 4 * 3 * 2 * 1

 = 5 * 4 * 3 * 2

 = 5 * 4 * 6

 = 5 * 24

 = 120

Free SQL Book, Tim Martyn 925 Copyright Pending 2022

Fibonacci Numbers

Iterative (“Easy Way”) Method

Fibonacci numbers are produced by generating a sequence of values:

 F0, F1, F2, F3, F4, F5, F6, F7, F8 . . .

Start with F0 = 0 and F1 = 1.

Calculate the next number by adding the previous two numbers.

Example: Find the value of F6

 Calculate F2: Add the first two numbers, producing 1

 F0, F1, F2

 0, 1, 1

 Calculate F3: Add two previous numbers, producing 2

 F0, F1, F2, F3,

 0, 1, 1, 2

 Calculate F4: Add two previous numbers, producing 3

 F0, F1, F2, F3, F4

 0, 1, 1, 2, 3

 Calculate F5: Add two previous numbers, producing 5

 F0, F1, F2, F3, F4, F5

 0, 1, 1, 2, 3, 5

 Calculate F6: Add two previous numbers, producing 8

 F0, F1, F2, F3, F4, F5, F6

 0, 1, 1, 2, 3, 5, 8

 Stop. F6 = 8

Free SQL Book, Tim Martyn 926 Copyright Pending 2022

Fibonacci - Recursive Definition

Fn = F(n-1) + F(n-2) where F0 = 0 and F1 = 1

The following figure illustrates some (not all) of the recursive

executions of the Fn function. You are invited to add more details

to complete this figure.

 F6 = F5 + F4

F5 = F4 + F3 F4 = F3 + F2

F4 = F3 + F2 F3 = F2 + F1 etc.

 1

F3 = F2 + F1 F2 = F1 + F0

 = 1 + 0 = 1

F2 = F1 + F0

 = 1 + 0 = 1 1

Free SQL Book, Tim Martyn 927 Copyright Pending 2022

B. Software Engineering

A recursive program will call itself. Some, but not all,

programming languages (e.g., C++, Java, Python) support

recursion.

Imagine that you were asked to write programs to generate Factorial

numbers and Fibonacci numbers. Most users would be inclined to

code “easy way” iterative solutions. But, for academic reasons,

you are asked to write a recursive program for each programming

task.

The following Java skeleton-code illustrates recursive code for

the Factorial function.

Fact (int n)

{

 if (n >= 1) return n * Fact (n-1);

 else return 1;

}

The following Java skeleton-code illustrates recursive code for

Fibonacci numbers.

Fib (int n)

{

 if (n == 0) {return 0;}

 if (n == 1) || (n == 2) {return 1;}

return Fib (n-2) + Fib (n-1);

}

A web search will turn up many complete programs in Java and other

languages for the above functions.

These programming exercises may be academic. However, in some

circumstances (unlike the Factorial and Fibonacci examples), a

recursive program can be much smaller and much simpler than an

iterative program that satisfies the same objective. The following

pages identifies three examples (The first two examples assume

that you understand arrays. The third example assumes you

understand using pointers to build a tree structure.) Complete

solutions for these examples can be found on the web.

Free SQL Book, Tim Martyn 928 Copyright Pending 2022

Knight’s Tour: Assume you understand how a knight moves on a

chessboard. Represent the chessboard as a two-dimensional array.

Then, write a recursive program to display a Knight’s Tour. Begin

by placing a knight on any square on the chessboard. Then code a

program to discover and display how the knight can make 63

consecutive moves to visit all of the other 63 squares exactly

once.

Eight Queens Problem: Assume you understand how a queen moves on

a chessboard. Represent the chessboard as a two-dimensional array.

Write a recursive program to solve the Eight Queens Problem. This

program should discover and display how eight queens can be placed

on the chessboard such that no two queens can threaten each other.

Search Binary Tree: Assume you have a collection of records

organized as a binary tree. Write a recursive program to traverse

all nodes in the tree to display a specified field in each record.

Free SQL Book, Tim Martyn 929 Copyright Pending 2022

C. Philosophy: Logic

There are many logical paradoxes associated with self-reference.

We present two classical examples and one modern variation.

Liar's Paradox

Consider the following statement.

 "This statement is False."

Is this statement True or False?

If this statement true, then it’s false, and

If this statement false, then it’s true.

Hence, we have a contradiction.

Epimenides Paradox

Epimenides lived in Crete.

He said: "All Cretans are liars."

Did he speak the truth?

Dilbert

A new study says that “all studies are misleading.”

Free SQL Book, Tim Martyn 930 Copyright Pending 2022

D. Philosophy: Mathematics – Russell’s Paradox

In the early 1900’s, Bertrand Russell presented his famous paradox

that had a profound impact on the philosophy of mathematics. This

paradox is outlined below.

Sets of Sets

Sometimes a set has elements that are also sets.

Example-1: Consider some sets involving athletic teams in a large

university.

 WBBALL = set of players on women’s basketball team

 MBBALL = set of players on men’s basketball team

 WTENNIS = set of players on women’s tennis team

 MTENNIS = set of players on men’s tennis team

WGOLF = set of players on women’s golf team

 MGOLF = set of players on men’s golf team

 Etc.

The following two sets, WTEAMS and MTEAMS, are sets of sets.

WTEAMS = {WBBALL, WTENNIS, WGOLF, . . .}

MTEAMS = {MBBALL, MTENNIS, MGOLF, . . .}

Example-2: A relational database is a set of relations (tables)

where each relation is a set of n-tuples (rows).

Free SQL Book, Tim Martyn 931 Copyright Pending 2022

Normal versus Abnormal Sets

All sets are either (1) normal or (2) abnormal where:

A set is normal if it is not an element of itself.

A set is abnormal if it is an element of itself.

Normal Sets: Most sets are normal. Consider sets:

 S1 = positive even integers: {2, 4, 6, 8, ...}

 S2 = the seven days in a week: {Monday, Tuesday, ...}

 S3 = 64 cells on a chessboard

 S4 = 52 cards in a conventional deck of cards

Demonstrate that S1 is normal.

 Assume S1 is abnormal.

 Then S1 would equal {S1, 2, 4, 6, 8, ...}.

 This is a contradiction because S1 only contains even

integers, and S1 is not an integer.

 Hence, S1 is normal.

Demonstrate that S2 is normal.

 Assume S2 is abnormal.

 Then S2 equals {S2, Monday, Tuesday, Wednesday,

 Thursday, Friday, Saturday, Sunday}

 This is a contradiction because S2 is not a day of the week.

Hence, S2 is normal.

Similar logic applies to sets S3, S4, and probably most other sets

that you can imagine.

Abnormal Sets

Consider the following B3PLUS set.

 B3PLUS = Set of all sets that have more than 3 elements.

The above sets S1, S2, S3, and S4 have more than 3 elements.

So, these sets are elements of B3PLUS.

 B3PLUS = {S1, S2, S3, S4, ...}

And, because B3PLUS has more than three elements, B3PLUS is an

element of B3PLUS.

 B3PLUS = {B3PLUS, S1, S2, S3, S4, ...}

Hence, B3PLUS is abnormal because it is an element of itself.

Free SQL Book, Tim Martyn 932 Copyright Pending 2022

Russell’s Paradox

Russell considered the set R where:

 R = set of all normal sets

 (R contains all sets that not elements of themselves.)

Russell asked: Is R a normal set?

Answering this question leads to a paradox.

Russell assumed that:

(1) R was normal, and then deduced that R was abnormal.

Then he assumed that:

 (2) R was abnormal, and then deduced that R was normal.

Contradiction!

Details:

• Assume R is normal.

Hence, R is not an element of itself.

 Now, because R contains all sets that not elements of

themselves, R must contain R.

 Hence, R is abnormal.

• Assume R is abnormal.

Hence R is an element of itself.

 Now, because R only contains sets that not elements of

themselves, R is not an element of R.

 Hence, R is normal.

Final Thought: The philosophy of mathematics may be more

interesting than SQL. 😊

Free SQL Book, Tim Martyn 933 Copyright Pending, 2022

Book Appendices

The first two appendices are intended to be read sometime after

you have read Chapters 0 and 1 in The Free SQL Book. The other

three appendices are intended to be read after you have read most

of this book.

I. Create Sample Tables for The Free SQL Book

This appendix assumes that you have already obtained access

to some relational database system. (Read the following Book-

Appendix-II if this does not apply.) Creating the sample

tables for the FREESQL database is straightforward. You

execute a script found at www.freesqlbook.com website. This

appendix also presents a tutorial introduction to SQL Scripts

for rookie users.

II. Obtain Access to a Relational Database System

 Gaining access to some relational database system (e.g., DB2,

SQL Server, ORACLE, MYSQL) may be easy, or it may require some

effort. This appendix will outline multiple ways to satisfy

this objective.

III. Summary of Chapter Appendices

Many chapter appendices present by-the-way commentary on

topics pertaining to the SQL statements introduced in the

corresponding chapter. This appendix organizes and summarizes

these topics.

IV. Post-Relational Database Systems & NoSQL

Codd proposed his Relational Database Model over 50 years

ago! Thereafter, database researchers proposed many other

post-relational database models. This appendix comments on

some of these post-relational models.

V. Abbreviated Bibliography

A few of this author’s favorite books.

http://www.freesqlbook.com/

Free SQL Book, Tim Martyn 934 Copyright Pending, 2022

This page is intentionally blank.

Free SQL Book, Tim Martyn 935 Copyright Pending, 2022

Book-Appendix-I

Create Sample Tables for The Free SQL Book

Prerequisite Knowledge

Rookies: Before reading this appendix, you should have read Chapter

0 in The Free SQL Book. Specifically, review the narrative about

Figure 0.2 which introduces the CREATE TABLE statement for the

PRESERVE table.

Appendix Objectives

This appendix is organized into three sections.

A. Tutorial on SQL Scripts: Rookie users should read this

tutorial. Experienced users who already have a basic

understanding of SQL scripts can jump to Section B.

B. CHPT-1-5 Script: This section describes the CHPT-1-5 script
(found at the www.freesqlbook.com website). This script

creates and populates the only two tables referenced in the

first five chapters of The Free SQL Book. Executing this

(optional) script will allow rookie users to learn their

front-end tool and its script processing facilities as they

work your way through the first five chapters.

C. Create All Sample Tables: All users eventually execute a

script (found at the www.freesqlbook.com website) to create

and populate all sample tables referenced in The Free SQL

Book. Users of DB2, ORACLE, and SQL Server users will execute

one of the following scripts.

 CREATE-ALL-TABLES-DB2

CREATE-ALL-TABLES-ORACLE

CREATE-ALL-TABLES-SQLServ

If you are using some other database system (e.g. MYSQL), you

should be able to use the DB2 script with very few changes. (There

is a good chance that you will have to edit your script to account

for DATE data in the DEMO3 table.)

http://www.freesqlbook.com/

Free SQL Book, Tim Martyn 936 Copyright Pending, 2022

A. Tutorial on SQL Scripts

A SQL script is a collection of SQL statements where each statement

is terminated by a semicolon. (Most sample queries in this book

only specify a single SELECT statement. Hence there is no need to

terminate the statement with a semicolon.)

The following Figure I.1 illustrates a script called BIRD-Script.

This script includes three SQL statements (DROP TABLE, INSERT, and

COMMIT) that were not introduced in Chapter 0. These statements

will be described below. Notice that a semicolon terminates each

statement.

DROP TABLE BIRD;

This statement removes the BIRD table from the database. Because

the BIRD table has not yet been created, this DROP TABLE statement

will return some kind of “No-BIRD-table-found” error-message. The

absence of a BIRD table means that the following CREATE TABLE

statement will execute without any kind of “Table-already-exists”

error message.

[Occasionally you want to drop a table just before you (re-)create

and (re-)populate the same table. For example, after creating and

populating the BIRD table, for tutorial reasons, you might make

changes to this table. If you do this, you can easily return the

BIRD table to its original state by (re-)executing the BIRD-Script.]

DROP TABLE BIRD;

CREATE TABLE BIRD

(SPECIES CHAR(10) NOT NULL UNIQUE,

 BLENGTH INTEGER NOT NULL);

INSERT INTO BIRD VALUES ('ROBIN', 11);

INSERT INTO BIRD VALUES ('SPARROW', 6);

INSERT INTO BIRD VALUES ('BLUEBIRD',7);

COMMIT;

Figure I.1: BIRD-Script

Free SQL Book, Tim Martyn 937 Copyright Pending, 2022

CREATE TABLE BIRD . . .;

This statement creates an empty table called BIRD which has two

columns. The SPECIES column identifies a bird’s species. SPECIES

is a fixed-length 10-character column that is declared to be

UNIQUE. The BLENGTH column describes the average length of the

bird measured in inches. BLENGTH is an integer column. Both columns

are specified as NOT NULL.

INSERT INTO BIRD . . .;

Each of the three INSERT statements inserts a row into the previously

created BIRD table. You can ignore syntactical details for these

INSERT statements. These details are described in Chapter 15.

COMMIT;

COMMIT is optional within the context of this script. Without

explanation, COMMIT asks the system to make the preceding INSERT

operations “permanent.” Chapter 29 will discuss the COMMIT

statement. (Note: SQL Server users should remove this COMMIT

statement from the BIRD-Script.)

Creating a Script File: You can use a conventional text editor to

create and save a script file. Some observations follow.

• Usually, no special file type is required. However, many users

specify “sql” as the file type for a file that contains SQL

statements (e.g., BIRD-Script.sql).

• To get started, you can save your script in any personal

folder/directory. Then copy-and-paste the script into a SQL

Panel when you want to execute it. (Your front-end tool should

also provide alternative methods for creating, saving, and

executing scripts.)

• If you examine a script written by your DBA or another user,

you may observe comments (to be described in the following

Section B). You may also observe other non-SQL “commands”

that are understood by your database system or front-end tool.

Such commands are not included in this book’s scripts

Free SQL Book, Tim Martyn 938 Copyright Pending, 2022

Optional Exercise-1: Execute Individual Statements in the BIRD-Script

For tutorial reasons, before executing the BIRD-Script, this

exercise invites you to execute each statement as an individual

statement.

1. Copy-and-paste just the DROP TABLE BIRD statement into an empty

SQL Panel in your front-end tool. Then execute this statement.

The system will return some kind of “No-BIRD-table-found”

error-message in (or near) the Result Panel.

2. Copy-and-paste just the CREATE TABLE BIRD statement into an

empty SQL Panel. Then execute this statement. The system should

return some kind of success-message in (or near) the Result

Panel.

3. Copy-and-paste the first INSERT statement into an empty SQL

Panel. Then execute this statement. The system should return

some kind of success-message in (or near) the Result Panel.

4. Execute: SELECT * FROM BIRD

Observe a one-row result table in the Result Panel.

5. Copy-and-paste the second INSERT statement into an empty SQL

Panel. Then execute this statement. The system should return

some kind of success-message in (or near) the Result Panel.

6. Execute: SELECT * FROM BIRD

Observe a two-row result table in the Result Panel.

7. Copy-and-paste the third INSERT statement into an empty SQL

Panel. Then execute this statement. The system should return

some kind of success-message in (or near) the Result Panel.

8. Execute: SELECT * FROM BIRD

Observe a three-row result table in the Result Panel.

9. Finally, execute: DROP TABLE BIRD

The system will return some kind of success-message in (or

near) the Result Panel.

Free SQL Book, Tim Martyn 939 Copyright Pending, 2022

Optional Exercise-2: Execute (all statements in) the BIRD-Script

Create and execute an SQL script.

1. Save the BIRD-Script into some file (e.g., BIRD-Script.sql).

2. Copy-and-paste all statements from the BIRD-Script file into

an empty SQL Panel. [SQL Server users should remove the COMMIT

statement.]

3. Execute the BIRD-Script. Because the SQL Panel contains

multiple statements terminated by semicolons, the system will

execute each statement from top to bottom.

4. Examine Results: The system will return success-messages and/or

error-messages. Specific messages will vary among different

systems.

What happens if one of the statements causes an error? Most systems

will ignore the erroneous statement and try to execute the following

statements.

After you execute the BIRD-Script, you should see:

• A “No-BIRD-table-found” error-message for the DROP TABLE

BIRD statement because the BIRD table does not exist. (It

was dropped in Step-9 in the preceding Exercise-1.)

• One success-message for the CREATE TABLE statement, and one

success-message for each of the three INSERT statements.

• DB2 and ORACLE users will see a success-message for the

COMMIT statement.

Alternatively, your front-end tool might respond with just one “all-

went-well” success-message, or one “something went-wrong” error-

message.

Finally, verify all-went-well by executing: SELECT * FROM BIRD

Free SQL Book, Tim Martyn 940 Copyright Pending, 2022

B. CHPT-1-5-Script

When starting this book, you may prefer to execute a small script

that creates the only two tables that are referenced in the first

five chapters. This will allow you time to learn your front-end

tool and its script processing facilities as you work your way

through the first five chapters.

Figure I.2 (on the following page) displays the CHPT-1-5-Script.

This script creates and populates the PRESERVE table (described in

Chapter 0) and the EMPLOYEE table (described in the Summary

Exercises for Chapter 1). These are the only two tables that are

referenced in Chapters 1-5. Copy-and-paste this script into the

SQL Panel and execute it. Verify success by executing the SELECT

statement for any sample query in Chapters 1-5.

Comments in Scripts: For documentation purposes, you can include

comments in a script. A double-dash (--) is used to indicate a

comment which is ignored by the system. For example, the first few

lines in the CHPT-1-5-Script specify comments.

-- This script creates two tables, the PRESERVE and EMPLOYEE tables.

-- These are the only tables that will be referenced in

-- Chapters 1-5 in The FREE SQL Book.

-- SQL Server users should remove the two COMMIT statements from this script.

Here, because a double-dash appears at the beginning of a line,

the entire line is a comment. You can also append a comment at the

end of a SQL statement as illustrated below.

COMMIT; -- SQL Server users should remove this statement

Executing a Script: It is easy to copy-and-paste all SQL statements

from the small CHPT-1-5-Script into the SQL Panel. You can also

copy-and-paste a larger CREATE-ALL-TABLES script into the SQL

Panel. Also, most front-end tools provide other methods to create,

save, and execute scripts. Assuming the user has already coded and

saved a script within a text file, this method usually involves:

 (1) The user clicks on some kind of “Execute-Script” button.

 (2) The tool asks the user to identify a file containing a script.

 (3) The tool responds by placing the script into the SQL Panel.

 (4) The user executes the script.

Free SQL Book, Tim Martyn 941 Copyright Pending, 2022

-- This script is found at www.freesqlbook.com

-- This script creates two tables, the PRESERVE and EMPLOYEE tables.

-- These are the only tables that will be referenced in Chapters 1-5.

-- SQL Server users should remove the two COMMIT statements from this script.

DROP TABLE PRESERVE;

DROP TABLE EMPLOYEE;

CREATE TABLE PRESERVE

(PNO INTEGER NOT NULL UNIQUE,

 PNAME VARCHAR (25) NOT NULL,

 STATE CHAR (2) NOT NULL,

 ACRES INTEGER NOT NULL,

 FEE DECIMAL (5,2) NOT NULL);

INSERT INTO PRESERVE VALUES (5, 'HASSAYAMPA RIVER', 'AZ', 660, 3.00);

INSERT INTO PRESERVE VALUES (3, 'DANCING PRAIRIE', 'MT', 680, 0.00);

INSERT INTO PRESERVE VALUES (7, 'MULESHOE RANCH', 'AZ', 49120, 0.00);

INSERT INTO PRESERVE VALUES (40, 'SOUTH FORK MADISON', 'MT', 121, 0.00);

INSERT INTO PRESERVE VALUES (14, 'MCELWAIN-OLSEN', 'MA', 66, 0.00);

INSERT INTO PRESERVE VALUES (13, 'TATKON', 'MA', 40, 0.00);

INSERT INTO PRESERVE VALUES (9, 'DAVID H. SMITH', 'MA', 830, 0.00);

INSERT INTO PRESERVE VALUES (11, 'MIACOMET MOORS', 'MA', 4, 0.00);

INSERT INTO PRESERVE VALUES (12, 'MOUNT PLANTAIN', 'MA', 730, 0.00);

INSERT INTO PRESERVE VALUES (1, 'COMERTOWN PRAIRIE', 'MT', 1130, 0.00);

INSERT INTO PRESERVE VALUES (2, 'PINE BUTTE SWAMP', 'MT', 15000, 0.00);

INSERT INTO PRESERVE VALUES (80, 'RAMSEY CANYON', 'AZ', 380, 3.00);

INSERT INTO PRESERVE VALUES (10, 'HOFT FARM', 'MA', 90, 0.00);

INSERT INTO PRESERVE VALUES (6, 'PAPAGONIA-SONOITA CREEK', 'AZ', 1200, 3.00);

COMMIT; -- SQL Server users should remove this statement

CREATE TABLE EMPLOYEE

(ENO CHAR (4) NOT NULL UNIQUE,

 ENAME VARCHAR(25) NOT NULL,

 SALARY DECIMAL(7,2) NOT NULL,

 DNO INTEGER NOT NULL);

INSERT INTO EMPLOYEE VALUES ('1000', 'MOE', 2000.00, 20);

INSERT INTO EMPLOYEE VALUES ('2000', 'LARRY', 2000.00, 10);

INSERT INTO EMPLOYEE VALUES ('3000', 'CURLY', 3000.00, 20);

INSERT INTO EMPLOYEE VALUES ('4000', 'SHEMP', 500.00, 40);

INSERT INTO EMPLOYEE VALUES ('5000', 'JOE', 400.00, 10);

INSERT INTO EMPLOYEE VALUES ('6000', 'GEORGE', 9000.00, 20);

COMMIT; -- SQL Server users should remove this statement

Figure I.2: CHPT-1-5-Script

Free SQL Book, Tim Martyn 942 Copyright Pending, 2022

C. Create All Sample Tables

Users of DB2, ORACLE, and SQL Server will execute one of the

following scripts (found at the www.freesqlbook.com website) to

create and populate all sample database tables referenced in The

FREESQL Book. If you have executed the CHPT-1-5-Script, the

following scripts will drop and re-create the PRESERVE and EMPLOYEE

tables.

 CREATE-ALL-TABLES-DB2

CREATE-ALL-TABLES-ORACLE

CREATE-ALL-TABLES-SQLServer

Each script creates the same 40 tables. (These tables are very

small. The largest table has 62 rows.) There are only a few

differences among these three scripts.

1. The CREATE TABLE and INSERT statements that create and

populate the DEMO3 table will differ. These statements differ

because they reference a column (BDDATE) with a DATE data-

type, and date-time processing differs across DB2, ORACLE,

and SQL Server.

2. The COMMIT statement is included in the DB2 and ORACLE

scripts, but it is not included in the SQL Server script.

Other Database Systems? If you are using some other database

system, you might be able to use the DB2 script. However, there is

a good chance that you will have to edit your script to account

for DATE data in the DEMO3 table.

http://www.freesqlbook.com/

Free SQL Book, Tim Martyn 943 Copyright Pending, 2022

Book Appendix-II

Access a Relational Database System

Prerequisite Knowledge: Before reading this appendix, you should

have read Chapter 0 and Chapter 1 in The Free SQL Book.

Specifically, review the narrative about Figure 0.2 which

introduces the CREATE TABLE statement for the PRESERVE table. Also

review the discussions of system architecture in Chapter 0 and

metadata in Chapter 1.

Objective: Help SQL users gain access to: (1) a relational database

management system using (2) some front-end tool.

1. Relational Database Management System (RDBMS): This RDBMS could

be DB2, SQL Server, ORACLE, MYSQL, SQLite, etc.

 Most users do not have to learn much about their RDBMS per se.

Instead, these users must learn SQL to ask the RDBMS to take

some action on their behalf. They will use a front-end tool to

submit SQL statements to the RDBMS and display results.

2. Front-End Tool: A front-end tool is a graphical interface that

allows a user to execute SQL statements and observe the

results. Also, this tool usually allows a user to display

metadata about the data stored in the database. The following

Figure 1.1 (from Chapter 1) outlines the SQL-Page displayed by

a typical front-end tool.

 The SQL-Page in most front-end tools will be more complex

because such tools usually support other activities (e.g.,

application programing with embedded SQL) that are beyond the

scope of this book. Hence, new users must take some time to

learn the basic organization of their front-end tool.

 The following section on System Architecture describes how a

front-end tool can interact with an RDBMS.

(1) SQL Panel

(2) Result Panel

(3)

Meta

Data

Figure 1.1: SQL-Page

Free SQL Book, Tim Martyn 944 Copyright Pending, 2022

System Architecture

The RDBMS and front-end tool (FE-Tool) are usually installed within

one of the following three system architectures.

1. Client-Server System

Here, the front-end-tool and RDBMS reside on different computers.

The front-end-tool executes on a “client computer,” and the RDBMS

executes on a different computer called a “database server.” The

client and server are connected via a communications network which

may be the Internet.

Client-server systems are common within business organizations where

many employees have a client computer sitting on their own desk.

Client-server systems are also common within schools where students

share client machines located in a computer-lab. (Sometimes, an

employee/student will also install a front-end tool on their own

personal computer at home.)

Advantages: The RDBMS which has already been installed and is

managed by a (presumably friendly) DBA; and, most likely, some other

system techie has already installed a front-end tool on the client

computers.

Disadvantage: Users have limited privileges on the RDBMS.

2. Stand-Alone Systems

Here, the front-end tool and the RDBMS reside on the same computer.

We will assume this is the user’s personal computer.

Advantage: Users have all privileges on the RDBMS.

Disadvantage: The user must download and install both the RDBMS and

the front-end tool.

FE-Tool RDBMS
DB

 FE-Tool RDBMS DB

Free SQL Book, Tim Martyn 945 Copyright Pending, 2022

3. Cloud-Based Systems

Some companies (e.g., Amazon, ORACLE) sell access to cloud-based

computing resources, including database systems. Here, the cloud

provides a web-based front-end tool and RDBMS. Your personal

computer can access the cloud’s front-end tool via the Internet.

(Alternatively, if you have installed a front-end tool on your

personal computer, you may be able use it to directly connect to

the RDBMS.)

Advantage: Users do not have to install anything.

Disadvantages: Users must to pay a modest fee to access the cloud-

based system, and they have limited privileges on the RDBMS.

Databases

We present a more precise description of a “database.”

Chapter 0 indicated that a database is the collection of all tables

stored within a relational database system. To be more precise, we

note that the typical database system usually contains multiple

databases. For example, a small college might have three

applications-level databases: the ACADEMIC database, the ATHLETIC

database, and the ALUMNI database. These databases could contain

the following tables.

- ACADEMIC Database: STUDENT, COURSE, and FACULTY tables

- ATHLETIC Database: TEAM, ATHLETE, and EVENT tables

- ALUMNI Database: GRADUATE and JOB tables

In this book, we assume that the DBA has created a database called

FREESQLDB that will contain the PRESERVE table and all other tables

referenced in The Free SQL Book. After you connect your front-end

tool to your RDBMS, you will connect to the FREESQLDB Database.

 RDBMS
DB

FE-Tool Personal

Computer

Free SQL Book, Tim Martyn 946 Copyright Pending, 2022

Installation Scenarios

The following pages describe five scenarios. Each scenario offers a

conceptual overview that should help you achieve your particular

objective. (These scenarios do not present details about the

installation of any specific RDBMS or front-end tool.) All users

should read Scenario-1A and Scenario-1B.

 Scenario-1A: Client-Server (No Installs Required)

 The user does not have to install an RDBMS or front-end tool.

But the user must learn the basic features of the front-end

tool. In this scenario, the user is granted powerful DBA-

privileges on the FREESQLDB database.

 Scenario-1B: Client-Server (No Installs Required)

 Similar to the previous scenario, the user does not have to

install an RDBMS/front-end tool and must learn the basic

features of the front-end tool. Here the user is only granted

SELECT privileges on sample tables in the FREESQLDB database.

 Scenario-2: Client-Server (Install Front-End Tool)

 The user is granted access to a pre-installed RDBMS on a

database server. Here, the user wants to access this RDBMS by

installing a front-end tool on her own personal computer.

 Scenario-3: Install RDBMS on a Personal Computer

 This is the most complex scenario because the user wants to

install an RDBMS (and perhaps also install a front-end tool)

on her own personal computer.

 Scenario-4: Access RDBMS in the Cloud (No Installs Required)

 Consider this scenario if none of the above scenarios apply to

your personal situation.

Free SQL Book, Tim Martyn 947 Copyright Pending, 2022

Scenario-1A: Client-Server (No Installs Required)

Author Comment: The following scenario frequently applied when I

presented a live SQL course at a customer’s location.

The customer used a client-server system where an RDBMS was

installed on a database server, and a front-end tool was installed

on client computers in a classroom.

1. I contacted the customer’s DBA and asked her to:

- Assign me an id/password so that I could access the RDBMS.

- Create a database named FREESQLDB.

- Grant me DBA-privileges on the new FREESQLDB database. These

privileges will allow me to: (i) create the FREESQL sample

tables in this database, (ii) grant students access to these

tables, and (iii) create other types of database objects (e.

g., views and indexes).

2. I contacted the educational coordinator to obtain the id/password

for the instructor’s client computer in the classroom.

3. Sometimes I had to learn how to find and navigate the SQL-Page

for the customer’s front-end tool. In this circumstance, I asked

the educational coordinator to provide a knowledgeable SQL user

to give me a 10-minute tutorial sometime before the class started.

I watched this person:

• Start-up the front-end tool, usually by clicking on some icon.

• Use the front-end tool to connect to the RDBMS.

• Navigate to the SQL-Page.

• Use the MetaData Panel to connect to my FREESQLDB database.

 Then I asked the tutor to “let me drive” so that I could create

the FREESQL sample tables in the FREESQLDB (as described in Book

Appendix-I).

 [Also, if I had no prior experience with a customer’s front-end

tool, I usually undertook two other preliminary learning

experiences. (1) I watched a web-based video that demonstrated

the customer’s front-end tool, and (2) I downloaded and installed

the front-end tool to my personal computer. (See Scenario-2.)]

Free SQL Book, Tim Martyn 948 Copyright Pending, 2022

Scenario-1B: Client-Server (No Installs Required)

This scenario is similar to the previous Scenario-1A. Assume you

are a student at a school, or you are employed by an organization,

where the school/organization allows you to use their client-server

system to learn SQL. Again, both the RDBMS and front-end tool have

already been installed.

Like the previous scenario, the DBA creates the FREESQLDB database.

Then she gives you an user id/password to access the RDBMS and

grants you some privileges on the FREESQL database.

Unlike the previous scenario, you send a copy of your CREATE-ALL-

TABLES script to the DBA and ask her to create the FREESQL sample

tables in FREESQLDB database. Here, the DBA does not grant you

powerful DBA-privileges that, in the previous scenario, were given

to the SQL instructor. You are only given SELECT privileges on the

sample tables. Also, you may or may not be given CREATE TABLE and

CREATE INDEX privileges so that you try the optional exercises in

this book’s Part III on Data Definition and Data Manipulation.

If necessary, obtain an id/password for a client computer. Again,

you must learn to use your front-end tool. If possible, find a

friendly student/co-worker who will give you a short tutorial

similar to that described in the previous scenario. Otherwise, you

can watch web-based videos about your front-end tool. Assuming ABC

is the name of your front-end tool, do a web-search that looks

like: Video on getting started with ABC.

This video should provide information about connecting to an RDBMS.

However, in this scenario, connecting to your RDBMS should not be a

problem because you are presumably using your employer/school’s

front-end tool where a connection has already been created. (The

following Scenario-2 will comment on connecting to an RDBMS using a

front-end tool that you have installed on your personal computer.)

[Potential Problems with Web-Based Videos: Sometimes, finding an

informative web-based video can be a challenge. A video may describe

an older/newer version of a software product that differs from the

version that you will use. (Your web-search should reference the

specific version that you want to use.) Also, many videos for front-

end tools provide too much information by describing features that

transcend the basic execution of SQL statements.]

Free SQL Book, Tim Martyn 949 Copyright Pending, 2022

Scenario-2: Client-Server (Install Front-End Tool)

Downloading and installing a front-end tool should be relatively

straightforward. However, a rookie user who has never downloaded

and installed any software product on her personal computer should

seek help from a more experienced friend.

Again, we assume you are a student at a school, or you are employed

by an organization, that allows you to access an RDBMS on a database

server. Here, for the sake of convenience, you want to install a

front-end tool on your personal computer.

As in the previous scenarios, assume the DBA has:

• Given you an id/password to access the RDBMS.

• Created the FREESQLDB Database. (Alternatively, the DBA may

want to store your FREESQL sample tables in some other

database.)

• Given you the CREATE TABLE privilege on the FREESQLDB database.

Then you will execute the appropriate CREATE-ALL-TABLES script

to create the sample tables in the database. (Alternatively,

the DBA may create the sample tables for you. Then the DBA will

give you SELECT privileges on these sample tables.)

Choosing a Front-End Tool

First, if your school/organization uses the ABC front-end tool, then

consider installing the same ABC front-end-tool on your computer.

Alternatively, consider another approach for choosing a front-end

tool. All database vendors provide a “default” (unofficial term)

front-end tool for their RDBMS. For example:

• IBM provides Data Studio Client for DB2

• ORACLE provide SQL Developer for ORACLE

• Microsoft provides Management Studio for SQL Server

If you know that you will be using the XYZ database system, consider

installing the default front-end tool for this XYZ system.

Again, before you install the ABC front-end tool, you are encouraged

to search the web for videos about downloading and installing the

front-end tool.” For example, search on: Tutorial for downloading

and installing ABC.

Free SQL Book, Tim Martyn 950 Copyright Pending, 2022

Download & Install a Front-End Tool

Preliminary Comment: If you intend to install both an RDBMS and a

front-end tool, you may want to initially install the RDBMS because,

as described in the following Scenario-3, the RDBMS install process

may include the option to also install a front-end tool. This

combined install of the RDBMS and front-end tool may be simpler than

the separate install of each software product.

Find a download web site: Usually there are multiple web sites that

allow you to download a given front-end tool. Do a web search for:

“Download ABC” where ABC identifies your desired front-end tool.

Which download site? In general, if ABC is the default front-end

tool for the XYZ database system, you should consider downloading

this front-end tool from an XYZ web site. For example, if you want

to download IBM’s Data Studio Client, consider downloading this

software from an IBM DB2 web site.

The download and install processes may be bundled together. The

download process returns a compressed zip-file which you will unzip,

usually by just clicking on it. This process will save one or more

files on your computer. You may be asked if you want to start the

install process, and you should (most likely) say yes. This should

start the install process. Alternatively, one of the download files

is a “setup” or “install” file. Clicking on this setup/install file

will start the install process. Then you should proceed as with any

install process.

Next

• Start up your front-end tool.

• Use your database id/password to connect the RDBMS.

• Navigate to the SQL-Page.

Next, there are some preliminary “first-time, one-time” actions you

must take before you can execute SQL statements.

Free SQL Book, Tim Martyn 951 Copyright Pending, 2022

First-Time - One-Time Actions

Create connection to the desired database: The process of creating

a new connection involves clicking on a “new connection” button

usually found in the MetaData Panel. This causes the front-end tool

to display a panel inviting you to enter information describing the

new connection. Using this panel, you will assign a name to the new

connection (e.g., FREESQLCONN), identify your database (e.g.,

FREESQLDB), and enter the address of this database. You must obtain

this database address from your DBA (or some other user may be able

to provide this information).

Details for creating a connection vary among different front-end

tools and database systems. Again, you are encouraged to do a web

search like: Use the ABC front-end tool to connect to the XYZ

database.

After creating a connection to the FREESQLDB, you will see the

connection’s name on the list of connections. Clicking on this

connection-name will connect your front-end tool to the FREESQLDB

database.

Verify the new connection: You should verify that your new database

connection is working. Click on the connection-name for this

database.

After connecting to the database, if the DBA should have created

the FREESQL sample tables, execute: SELECT * FROM PRESERVE. If this

statement fails, contact your DBA.

Otherwise, if the DBA should have given you the CREATE TABLE

privilege on the database, verify this privilege by: (i) creating a

STUFF table with just one row with one column, (ii) insert a row

into this table, (iii) display this table, and then (iv) drop it,

as shown below.

 CREATE TABLE STUFF (COLXXX INTEGER);

 INSERT INTO STUFF VALUES (999);

 SELECT * FROM STUFF;

 DROP TABLE STUFF;

Contact your DBA if the above CREATE TABLE statement fails with some

kind of “insufficient privileges” message.

Free SQL Book, Tim Martyn 952 Copyright Pending, 2022

Scenario-3: Install RDBMS on a Personal Computer

This scenario offers a conceptual overview of installing an RDBMS

on a personal computer. In this scenario, we assume a stand-alone

environment where you want to install an RDBMS (and maybe a front-

end tool) on your personal computer. Installing an RDBMS may require

some effort, and unlike the previous scenarios, you may not have a

friendly co-worker/student to help you with any problems.

Most application developers and super-users have the background to

“muddle through” the RDBMS installation. Also, rookie users may

attempt to install an RDBMS and be successful. However, sometimes

the install process can become confusing. Therefore, rookies should

be prepared to utilize a cloud-based RDBMS as described in the

following Scenario-4.

System Administrator

We introduce a job title, the system administrator, which we have

not used before. As already indicated, a database administrator is

a person who has full control over one or more databases such as

the FREESQLDB Database. The more powerful system administrator has

complete control over all RDBMS components, including all databases.

The system administrator can create databases, create users, assign

ids/passwords to users, and grant/revoke database privileges. In

particular, the system administrator can designate a user to be the

database administrator for a specific database. (Sometimes, on a

small system, the same person serves as the system administrator

and database administrator for all databases.)

We comment on the system administrator role because, if you install

an RDBMS on your personal computer, you become the system

administrator. You have all database privileges.

Free SQL Book, Tim Martyn 953 Copyright Pending, 2022

Which RDBMS?

 This book presents SQL statements that are generally compatible with

DB2, ORACLE, and SQL Server. These database systems are the most

popular systems used in major business organizations. The good news

is that IBM, ORACLE, and Microsoft offer free versions of their

database systems. These versions have “Express” in their title.

 If your work at an organization or attend a school where ORACLE is

used, then you probably want to install ORACLE on your personal

computer. Assume your computer is running Windows 10. To get

started, you should do a web search that looks like: Tutorial

overview for installing ORACLE Express on Windows 10.

Alternatively, you may want to consider installing an open-source

RDBMS such as MYSQL or SQLite.

Download the RDBMS

You must find a download site to download an RDBMS before you can

install it. Do a web search like: Download XYZ for ZZZ where XYZ

identifies the RDBMS, and ZZZ identifies operating system (e.g.,

Windows 10).

This search will produce multiple hits. Which download site should

you choose? In general, if you want to download DB2, you should

probably download DB2 from an IBM web site. Likewise, for the other

database systems. After selecting and visiting a download web site,

click on its Download-Button. This usually returns a compressed zip-

file.

Unzip the zip-file. (Usually just click on file.) The unzip process

will store multiple files in some folder/directory on your computer.

Look for an executable file with a name similar to “setup” or

“install”.

Free SQL Book, Tim Martyn 954 Copyright Pending, 2022

Install the RDBMS

Start (click on) the setup/install file. This action might not

directly start the install process. Instead, it may start an

installer-program which does a few things before the installation

process begins. This installer-program may ask you to:

• Give up your email address.

• Accept a license agreement.

• Optionally join some vendor organization.

• Designate a folder/directory for the RDBMS files.

After the installation process starts, you may have to wait some

time for it to finish. During this process, you will be asked some

questions and be presented with some important information that you

should remember. These questions and returned information may

include the following.

Id/Password: The installation process will ask you to designate an

id/password. With this id/password you become the systems

administrator. Do NOT lose this id/password. A lost id/password will

require a re-install.

Connection Information: The installation process will provide the

information used by a front-end tool to connect the RDBMS. Again,

do not lose this information.

Optionally, Install the RDBMS Vendor’s Front-End Tool: In addition

to installing the RDBMS, the installation process may ask if you

want to want to install the database vendor’s front-end tool. For

example, when installing DB2, you may be asked if you want to install

Data Studio. The front-end tool could be large because its

functionality transcends the basic execution of SQL statements.

Therefore, you might want to respond “no” and install some other

front-end tool. However, one reason to install the vendor’s front-

end tool during the RDBMS installation is that the connection is

automatically setup. Also, you may want to explore the front-end

tool’s advanced features.

Free SQL Book, Tim Martyn 955 Copyright Pending, 2022

Automatic Start of RDBMS: The installation process may ask if you

want to immediately start the RDBMS so that you can get right to

work. (Most likely answer “yes.”) Also, the installation process

may ask if you want to keep the RDBMS running as a background process

after you exit from your front-end tool. (Most likely respond “yes,”

unless you know your utilization of the RDBMS will be infrequent.)

Vendor’s Sample Database & Tables: The RDBMS installation process

may ask if you want to create the vendor’s sample database including

its sample tables. You could respond “no” because you intend to

create the FREESQLDB database and store the FREESQL sample tables

in this database. Nevertheless, you might also want to create the

vendor’s sample tables because these tables are referenced in the

vendor’s SQL reference manuals.

Careful! Some of the FREESQL sample tables have very common table-

names (e.g., EMPLOYEE, DEPARTMENT, PROJECT); and the vendor’s sample

database may have one or more tables with the same table-names.

Therefore, to avoid problems, we recommend storing the vendor’s

sample tables and the FREESQL sample tables in different databases.

This is not difficult. After an installation that creates the

vendor’s sample database, you can create the FREESQLDB database,

connect to this database, and create the FREESQL tables in this

database.

After Installing the RDBMS

Start your front-end tool and connect to the RDBMS using the system

administrator’s id/password that was specified during the

installation process.

Next, you will want to create the FREESQL sample tables as described

in Book-Appendix-I. Before doing this, you can (optionally) create

the FREESQLDB database to hold these sample tables, and then connect

to this database. Otherwise, if you do not explicitly create these

tables in the FREESQLDB database, the system will create them in

some other “default” or “system” database. This may not be a problem

unless another table with the same name has already been created in

same default/system database. For this reason, we recommend storing

all the FREESQL sample tables in its own database.

Free SQL Book, Tim Martyn 956 Copyright Pending, 2022

Scenario-4: Access RDBMS in the Cloud

Assume you do not have access to any RDBMS on your employer/school’s

computer, and assume you do not (yet) have the technical ability to

install an RDBMS on your personal computer. Then, your next option

is to utilize an RDBMS in the cloud.

Some major cloud web-sites (e.g., IBM, ORACLE, AWS) provide free

access (for a trial-period) to open source and commercial RDBMS

systems. Although accessing one of these databases still requires

some getting-started effort, you can obtain help from the site’s

chat room if necessary. Below, we describe some of the typical

getting-started steps to access a cloud-based RDBMS.

1. Find a cloud-site: If you want access to the XYZ database
system in the cloud, do a web-search like:

 Free or trial access to XYZ in the cloud

2. After you find and access the desired web-site, look for a link
that takes you to a list of free offerings. This list will

include multiple computing resources, including the desired

RDBMS. Clicking on a “free/trial-access” link should initiate

the following step.

3. You will be asked to become a recognized user of the cloud-
site by entering your name, email address, etc. Also, you might

be asked for credit card information in case you exceed the

trial period’s time limit, or you store too much data in the

database. (This will not a problem when storing the very small

FREESQL sample tables). Then you will be asked to specify an

id/password that you will use to access the cloud-site.

4. A menu of computing resources will be displayed. You should
select the RDBMS that you want to use.

5. Information about the RDBMS will be displayed. This RDBMS is
usually a virtual RDBMS that has most of the features found in

a real RDBMS. You will be asked to specify another id/password

to be used to access this RDBMS. This second id/password will

give you powerful privileges over the virtual RDBMS. You should

be able to execute all SQL statements found in The Free SQL

Book.

Free SQL Book, Tim Martyn 957 Copyright Pending, 2022

6. Use your database id/password to access your RDBMS. The system
will respond by displaying multiple options that include

database administration actions, application programming

actions, and executing SQL statements.

7. Select the option that allows you to execute SQL statements.
This should initiate a front-end tool. Navigate to the SQL-

Page that should display a SQL Panel, Result Panel, and maybe

a Metadata Panel.

Note: Your web browser becomes your front-end tool that is

controlled by the cloud web-site. However, you may be able to

use another front-end tool that has been installed on your

personal computer to connect to a cloud-based RDBMS.

8. Optionally, verify that you have successfully accessed the
RDBMS by creating a STUFF table with one column, inserting one

row, displaying, and then dropping this table, as illustrated

below.

 CREATE TABLE STUFF (COLXXX INTEGER);

 INSERT INTO STUFF VALUES (999);

 SELECT * FROM STUFF;

 DROP TABLE STUFF;

9. Assuming the above statements do not fail, you can create the
FREESQL sample tables as described in Book-Appendix-I.

Finally: Note that, although using a cloud database requires some

getting-started effort, you do not have to install a front-end tool

and RDBMS. Hence you can quickly jump into learning SQL. However,

because the cloud-site’s trial period may not be very long, you may

eventually want to gain access to some other RDBMS using one of the

previously described methods.

Free SQL Book, Tim Martyn 958 Copyright Pending, 2022

Book-Appendix-III

Summary of Chapter Appendices

This book’s chapter appendices, found at the end of some chapters,

introduced topics that are optional within the context of a

tutorial introduction to SQL. Each chapter appendix presented by-

the-way commentary on topics pertaining to the SQL statements

presented in the corresponding chapter.

This Book-Appendix-III organizes and summarizes these optional

topics. It will also present some additional material not found in

the chapter appendices. Before proceeding, we should revisit the

difference between the terms “database model” and “data model” as

used in this book.

Database Model: In this book we referred to Codd’s Relational Model

as a “database” model, not a “data” model. IBM, ORACLE, Microsoft,

and other database vendors based their database systems (e.g.,

DB2, SQL Server) on Codd’s Relational (Database) Model.

Data Model: Database analysts/designers formulate conceptual and

logical data models to describe specific applications. For

example, Figure 13.9 illustrated a DEPARTMENT-EMPLOYEE-PROJECT

conceptual data model, and Figure 13.10 illustrated the

corresponding logical data model.

Post-Relational Database Models: Codd proposed his database model

over 50 years ago! Thereafter, database researchers have proposed

many other database models, which we collectively refer to as Post-

Relational Database Models. (The following Book-Appendix-IV will

identify some of these post-relational database models.)

Free SQL Book, Tim Martyn 959 Copyright Pending, 2022

History: Codd’s Relational Database Model

Appendix 1B presented a very incomplete description of Codd’s

Relational Database Model. Below we review and add a little more

substance to this description.

Codd’s Relational Database Model specified three major components:

(1) Data Structure, (2) Language, and (3) Integrity.

1. Data Structure: Appendix 1B noted that Codd defined a relational

database as a set of sets where each set is a relation (table).

The elements in each relation are n-tuples (rows) consisting of

attributes (column values).

Appendix 1B did not mention that an attribute is defined in terms

of another set called a “domain.” For example, consider the CHECK-

clause for the JCODE column shown in the CREATE TABLE statement

for the TESTEMP table (Figure 13.2).

JCODE INTEGER NOT NULL CHECK (JCODE IN (1,3,7,11))

Within the Codd’s Model, a domain is a set of values that is

assigned a name (e.g., VALID_JCODE) as shown below.

DOMAIN VALID_JCODE = {1,3,7,11}

After defining the VALID_JCODE domain, the JCODE attribute could

be specified as:

JCODE VALID_JCODE

Specifying this domain is useful if other attributes also contain

VALID_JCODE values (even if these attributes are not named JCODE).

2. Language: Appendix 1B noted that Codd proposed two languages,

the relational calculus and the relational algebra. This book

illustrated that SQL inherited some features from both languages.

3. Integrity: Appendix 1B was silent about database integrity.

However, Codd’s Relational Model did include primary-key, foreign-

key, and NOT NULL integrity constraints. Codd’s model also included

“DOMAIN integrity constraints”. For example, assume some user

attempted to insert a row into the TESTEMP table with a JCODE value

of 5. The system would detect that JCODE is defined on the

VALID_JCODE domain, and this domain does not include 5. Hence, the

system would reject this insert operation.

Free SQL Book, Tim Martyn 960 Copyright Pending, 2022

History: Codd’s Normalization Theory

In addition to defining his Relational Model, Codd also proposed

formal criteria for the specification of a “good” table design.

These criteria were defined in his Normalization Theory. This

appendix, including the chapter appendices, is silent about this

theory. However, without describing normalization theory per se,

Appendix 16A made some informal observations about tabular design

that were derived from this theory.

[Codd’s normalization theory defined multiple levels of “normal

forms.” These were 1st Normal Form, 2nd Normal Form, 3rd Normal Form,

and Boyce-Codd Normal Form. Other researchers added 4th Normal Form

and 5th Normal Form. Book-Appendix-V identifies two textbooks that

present normalization theory.]

In Appendix 16A, we noted that all descriptive (non-key) columns

within a normalized (good) table describe just one type of

object/entity. Notice that all descriptive DEPARTMENT columns

(DNAME and BUDGET) only describe departments; and, all descriptive

EMPLOYEE columns (ENAME and SALARY) only describe employees.

Therefore, we noted that both the DEPARTMENT and EMPLOYEE tables

are normalized.

Then we noted that the DNEMPLOYEE table was de-normalized (not so

good) because its descriptive columns describe different

object/entity types. Within the DNEMPLOYEE table, some columns

(DNAME and BUDGET) columns describe departments whereas other

columns (ENAME and SALARY) describe employees. Appendix 16A showed

that this “mixing of apples and oranges” can lead to problems.

Hence, in most (but not all) circumstances, database designers do

not create de-normalized tables.

Appendix 19C reconsidered de-normalized tables in the context of

a LEFT OUTER JOIN operation.

The following commentary on Logical Database Design will associate

normalized tables with the database design methodology described

in Appendix 13B.

Free SQL Book, Tim Martyn 961 Copyright Pending, 2022

Database Analysis, Design, and Implementation

Database Design is a large topic that cannot be covered in a few

small appendices. Appendix 13B only introduced core concepts and

presented a graphical overview (Figure 13.9) of a typical

methodology for Database Analysis-Design-Implementation.

Working backwards, Implementation involves the coding of CREATE

TABLE statements. Implementation is not difficult because it is

derived (in a cookbook manner) from the Logical Data Model produced

by the preceding Design process. This Logical Data Model was, in

turn, derived (in a cookbook manner) from a Conceptual Data Model

produced by the preceding Analysis process. (Formulating a

Conceptual Data Model is another important and very challenging

process that is beyond the scope of this book.)

Below we review three observations about Logical Data Models.

1. A detailed logical data model (e.g., Figure 18.4) contains

practically all information needed to code CREATE TABLE

statements. This allows design tools to automatically generate

CREATE TABLE statements. For prototyping and testing purposes,

these CREATE TABLE statements can be executed “as is,” and sample

data can be inserted into these tables. However, within a

production environment, the DBA may include other efficiency

related clauses in the CREATE TABLE statements before executing

them. These clauses were not presented in this book.

2. All tables in our MTPCH database are normalized. In general,

any collection of tables derived from a well-designed logical data

model will produce normalized tables. We note that learning Codd’s

Normalization Theory can help analysts/designers evaluate the

“goodness” of each table’s design.

3. Finally, from a know-your-data perspective, the most important

observation is that a logical data model can help users formulate

correct SELECT statements, especially when a SELECT statement

references multiple tables. This explains why the logical data

model for the MTPCH Database (Figure 18.4) was frequently

referenced in our discussion of sample queries throughout Chapters

18-28.

Free SQL Book, Tim Martyn 962 Copyright Pending, 2022

Efficiency: Database Indexes

Database indexes were the only physical (under-the-hood) database

structures described in this book.

Appendix 1A introduced the system’s utilization of a database index

to directly access rows identified by a WHERE-clause. An analogy

was drawn between a database index and an index of topics located

at the end of a history book.

Appendix 2A described how the system could use an index to satisfy

an ORDER BY clause. This appendix also introduced overall cost-

benefit tradeoffs associated with database indexes.

Appendix 3A described how the system could use an index to satisfy

the DISTINCT keyword.

Appendix 4A introduced query optimization. Examples illustrated

how the optimizer would consider selectivity to decide to use or

not use an index to satisfy a WHERE-clause.

Appendix 8A described how an index-only search could satisfy some

query objectives.

Chapter 14 introduced the CREATE INDEX statement. Appendix 14A

presented some general guidelines for index design, including the

design of composite indexes.

Appendix 17A observed that an index can improve the efficiency of

a Nested-Loop join-operation.

Free SQL Book, Tim Martyn 963 Copyright Pending, 2022

Efficiency: Query Optimization

Appendix 4A introduced query optimization by drawing an analogy

with self-driving cars. This appendix introduced a high-level

overview of the optimizer’s “thought process” within the context

of a SELECT statement that accessed a single table.

Appendices 4B and 4C introduced optimizer query rewrite within the

context of WHERE-clauses that specified compound-conditions with

Boolean Connectors (AND, OR, NOT).

Appendix 6A described a historical scenario where, unfortunately,

the user was required to code a do-it-yourself query rewrite.

Appendix 18A said more about optimization within the context of

inner-join operations. It described two join-methods (Match-Merge

and Nested-Loop); and it described the importance of join-sequence

in the context of joining three or more tables.

Appendices 23A and 25A described optimizer query rewrite within

the context of join-operations, regular Sub-SELECTs, and

correlated Sub-SELECTs.

Appendix 24B described three scenarios where the optimizer

referenced dictionary statistics that were: (i) inaccurate, (ii)

approximately accurate, or (iii) 100% accurate.

Appendix 28C described how a user can ask the system to generate

the explanation of an application plan.

Appendix 28D described how a user can code a “hint.” A hint asks

the optimizer to take some action that presumably helps it generate

a more efficient application plan.

After reading these appendices, you should appreciate that:

• SQL is a declarative language. Your SQL code describes “what”

you want to do; the optimizer decides “how to” do it.

• The optimizer utilizes the relational algebra and Boolean

Logic to construct an application plan.

Free SQL Book, Tim Martyn 964 Copyright Pending, 2022

Efficiency: Tuning a SELECT Statement

Appendix 28E presented a general method for tuning such a SELECT

statement. If you have to tune a SELECT statement, one of two

things went wrong.

1. Your optimizer generated a sub-optimal application plan.

2. There was a problem with the physical database design as it
relates to your SELECT statement.

Appendix 28E addressed both circumstances.

Free SQL Book, Tim Martyn 965 Copyright Pending, 2022

Book-Appendix-IV

Post-Relational Database Systems & NoSQL

At the end of Appendix 28 (Tunning SELECT Statements), we stated

that: (1) good physical database design, plus (2) very smart

optimizers, plus (3) blazingly fast data storage technology imply

that future application developers should not encounter many SQL

tunning problems. We also noted that this statement applied to

traditional business information systems (e.g., the MTPCH

database) which have the following characteristics.

• The data is structured, and it fits nicely into “flat” tables.

• The data is not extremely large. Row length is short because

most column data-types contain short values (numbers, dates,

and fixed-length character-strings) plus a few longer

variable-length character-strings. Some tables have millions

of rows, a few tables have billions of rows, but only a very

few tables exceed a trillion rows.

These observations may not apply when we step away from traditional

database applications to consider applications where data is not

structured, is extremely large, and resides on some unknown

computer located anywhere in the world (e.g., the Web).

Consider unstructured data that do not conveniently fit into

traditional relational database tables. This data includes

photographs, maps, videos, engineering drawings, documents,

textbooks, web pages, email messages, text messages, tweets, etc.

Some of this data is partially structured (e.g., document) and is

called “semi-structured.” Post-Relational database systems have

been designed to store and query this unstructured and semi-

structured data.

Free SQL Book, Tim Martyn 966 Copyright Pending, 2022

Abbreviated History of Post-Relational Database Systems

Object-Oriented Database Systems (OODBMS): In the 1970’s, the

maturity of object-oriented programming languages (e.g., C++)

encouraged IT professionals to design object-models with object

types/classes. In the 1980’s, database researchers proposed

object-oriented database management systems that offered many of

the goodies associated with object-oriented programming languages.

One goal was to use object types/classes to store unstructured and

semi-structured data. An object-oriented database system could

directly store and query a large complex object. Compared to a

relational database, this was more convenient than decomposing a

large object into smaller components to facilitate storage within

multiple database tables, and subsequently coding a multi-table

join-operation to reconstruct the large object.

Object-Relational Databases: As object-orientation gained traction

in the database world, relational database vendors (IBM, ORACLE,

Microsoft) began to include OO features in their database products.

This OO functionality can be implemented by storing unstructured

or semi-structured objects in a column specified as a BLOB (Binary

Large Object) data-type or a CLOB (Character Large Object) data-

type.

These object-relational systems also provided a CREATE TYPE

statement to create user-defined abstract data-types. (Appendix

10.5A noted that SQL’s DATE data-type is an example of a built-in

abstract data-type.) Today, all major relational database systems

are really hybrid systems that include relational and object-

oriented functionality.

AI and Deductive Databases: In the late 1970’s database researchers

began to apply deductive logic to database data. They developed

Datalog to query a deductive database. Datalog was derived from

PROLOG (PROgramming in LOGic), a logic-based declarative language

that was developed in the early days of research into artificial

intelligence.

Today, relational database systems utilize artificial intelligence

to improve query optimization. These systems also offer built-in

data mining functions.

Free SQL Book, Tim Martyn 967 Copyright Pending, 2022

Temporal Databases: Relational and non-relational data models have

been proposed to address the inherent complexity of date-time

processing. Within the relational world, one temporal-relational

model created three-dimensional tables where the third dimension

captured historical data.

On one prototype system, the SELECT statement was enhanced to

include a WHEN-clause to specify a time-travel query that retrieved

historical data. For example, the following statement displayed

the number and name of all employees who worked in Department 30

anytime between 2000 and 2005.

SELECT ENO, ENAME

FROM EMPLOYEE

WHERE DNO = 30

WHEN BETWEEN 01-01-2000 AND 12-31-2005

If a WHEN-clause was not specified, the system would only display

data about current employees.

Today, all major relational database systems support some form of

temporal database functionality.

[Chapter Appendix 10.5A says more about Temporal Databases.]

And then came the Web

XML Databases: Some application developers want to store XML

documents in a database and query these documents. These developers

have two basic options:

(1) Store the XML documents in a “native” XML database (e.g.,

BaseX, Berkley DB), and use the XQUERY language to query these

documents.

(2) Within a relational database, store the XML documents in

a column defined as an XML data-type. Then use XQUERY-like

built-in functions to query the XML documents.

Free SQL Book, Tim Martyn 968 Copyright Pending, 2022

NoSQL Databases

Beyond storing unstructured and semi-structured data, some major

web-based organizations (e.g., Google, Amazon) wanted to store and

query data that is: (1) outrageously large (Big Data) and (2)

distributed across the world. Also, some scientific applications

must store and query very large amounts of data that are generated

by sensor devices. These requirements led to the development of

NoSQL databases. NoSQL originally meant “No SQL.” Today, most NoSQL

databases fit the “Not Only SQL” interpretation of NoSQL, meaning

that SQL is used along with a non-relational language.

To satisfy extreme data requirements, some web-based organizations

started from scratch and built their own “home grown” NoSQL

database systems. These systems were based upon non-relational

data models that could be considered to be special-purpose data

models. The NoSQL literature describes four such models: wide-

column, key-value pairs, document, and graph.

Today, NoSQL has become common within the database world.

Independent software vendors, along with the major commercial

relational database vendors (e.g., IBM, ORACLE, Microsoft), sell

NoSQL products. Most of these products provide some method to

interact with a relational database.

Currently, all NoSQL systems have limitations when compared to

conventional relational database systems. For example, most NoSQL

languages are not declarative, and most NoSQL databases do not

support ACID level transactions (as described in Appendices 29A

and 29B).

Concluding “Philosophical” Questions

Theory Question: Is there a single database model that can

effectively represent and process all kinds of data? If yes, what

is it? This is the holy grail of database theory.

Practical Question: Are there a small number of database models

that can collectively support all kinds of database applications?

If yes, what are these models, and how can these models be

integrated?

[A comprehensive overview of topics mentioned in this appendix can

be found in the C. J. Date textbook and the Elmasri & Navathe

textbook referenced in the following Book-Appendix-V.]

Free SQL Book, Tim Martyn 969 Copyright Pending, 2022

Book-Appendix-V

Abbreviated Bibliography

Preliminary Comment: Unlike all other database textbooks, this

book does not contain many references. The primary reason is that

most significant references can be found in two books by (i) C. J.

Date and (ii) Elmasri & Navathe. Both books are described below.

Database Concepts and Facilities

The following excellent textbooks cover many database topics

beyond SQL. These topics include the Relational Model, logical and

physical database design, normalization theory, query

optimization, distributed databases, concurrency and recovery, and

post-relational database systems (e.g., Object-Oriented, Temporal,

and XML databases).

1. C. J. Date, An Introduction to Database System (8th), Addison-

Wesley, Reading, MA (2004).

 Date has written many other database books. A comprehensive

list can be found on the web. Do a web search for: Books by

C. J. Date at www.goodreads.com

2. Ramez Elmasri & Shamkant Navathe, Fundamentals of Database

Systems (7th), Pearson (2017).

This more recent textbook also covers NoSQL databases.

SQL References

You should not need to purchase any other SQL book that covers the

same SQL topics presented in this book. This does not imply the

absence of many high-quality SQL books to be found in the

marketplace. Instead, we mean that, after getting started with

this Free SQL Book, you should be able to understand your SQL

reference manuals that describe all SQL statements supported by

your RDBMS. Also, many authors have published a wide variety of

excellent SQL articles on the web.

Free SQL Book, Tim Martyn 970 Copyright Pending, 2022

Theory

The following book contains all important concepts and references

(as of 2009) about SQL and relational database theory.

 C. J. Date, SQL and Relational Theory: How to Write Accurate SQL

Code, O’Reilly Media, Boston, MA (2009).

Buy this book! As its subtitle (“How to Write Accurate SQL Code”)

indicates, the primary objective of this book, like all other SQL

books, is to write correct SQL. However, unlike all other SQL

books, this book presents relational theory as the foundational

cornerstone for coding correct SQL. (Whereas this Free SQL Book

merely presents snippets of theory within a few optional

appendices.)

In his book, Date describes Codd’s original Relational Model. Then

he presents revisions and extensions to this model, followed by a

summary of the current version of this model. Throughout his book,

Date presents many SQL examples to demonstrate that “theory is

practical.”

Date also makes negative comments about SQL’s failure to be

completely faithful the Relational Model. Consider the attention-

grabbing second sentence in his Preface where he states that:

 “SQL is hard to use: It’s complicated, confusing, and error

prone – much more so, I venture to suggest than its apologists

would have you believe.”

Martyn Comment: I confess to being one of those SQL apologists. In

Chapter 0, with the intention of motivating the reader, I may have

told a little white lie when I stated that “SQL is easy.”

In his Appendix A, Date concludes by saying:

 “SQL is incapable of providing the kind of firm foundation

for future growth and development.”

Date’s rationale is thought-provoking. By reading his book the

reader gains a deeper understanding of SQL.

Free SQL Book, Tim Martyn 971 Copyright Pending, 2022

Two Other Free SQL Textbooks

1. Developing Time-Oriented Database Applications in SQL by

Richard Snodgrass, Morgan Kaufmann (1999).

 This book offers the reader a solid foundation for using SQL

to work with temporal data. You can obtain a free PDF version

of this book by visiting Richard Snodgrass’s web site at the

University of Arizona (or you can purchase this book from

Amazon and other on-line book sellers).

 -- Thanks, and regards to Richard!

2. DB2 SQL Cookbook. This was the first free on-line

comprehensive textbook about SQL (DB2 version). It was

written by Graeme Birchall who has apparently disappeared

from the world of the Web. Currently, Rodney Crick is

maintaining this book. Krick writes:

The last version of the book I am aware of was published in

16 August 2011, based on version 9.7 of Db2 LUW. In the past

years I’ve googled sometimes to check if there was a new

version of the book and if someone decided to maintain it. I

didn’t find any new version and, as far as I know, Graeme

Birchall deleted everything he had (his homepage, where the

book was published and every link that he maintained)...

Because I’ve learned a lot and I found the book very good to

help people that are starting with SQL, I decided to take the

contents of the book as they were in the last published version

and use it to initiate a new version of the book.

 An HTML version of this book can be found at db2-sql-

cookbook.org. This web site will direct you to a PDF version

of the book.

 Martyn Comments: (1) This book is especially useful for DB2

users because it covers DB2 specific functions, DB2 temporary

tables, and many other DB2 SQL features not addressed in this

Free SQL Book. (2) I did a web search on “where is Graeme

Birchall?” and got some interesting hits on a person involved

with astronomy and urban kayaking. I think this person could

be the same “missing” Graeme Birchall. Anyways,

 -- Thanks, and regards to Graeme (wherever you are)!

	Title-Page
	Table of Contents
	Part I: SELECT Statement
	Chapter 0: Read this Chapter!
	Chapter 1: Getting Started with SELECT
	Chapter 2: ORDER BY
	Chapter 3: DISTINCT
	Chapter 4: AND - OR - NOT
	Chapter 5: IN - BETWEEN
	Chapter 6: LIKE
	Chapter 7: Arithmetic Expressions

	Part II: Built-in Functions & NULL Values
	Chapter 8: Aggregate Functions
	Chapter 9: GROUP BY Single Column
	Chapter 9.5: GROUP BY Multiple Columns
	Chapter 10: Individual Functions
	Chapter 10,5: DATE Values
	Chapter 11: NULL Values

	Part III: Data Definition & Data Manipulation
	Chapter 12: Preview Sample Sessions
	Chapter 13: CREATE TABLE
	Chapter 14: CREATE INDEX
	Chapter 15: INSERT - UPDATE - DELETE

	Part IV: Join-Operations
	Chapter 16: Inner-Join
	Chapter 17: More about Inner-Join
	Chapter 18: Multi-Table Inner-Joins
	Chapter 19: Outer-Join
	Chapter 20: Multi-Table Left Outer-Joins
	Chapter 20.5: Mixing Inner-Joins & Outer-Joins

	Part V: Set Operations & CASE
	Chapter 21: UNION - INTERSECT - CASE
	Chapter 22: CASE

	Part VI: Sub-SELECTs
	Chapter 23: "Regular" Sub-SELECT
	Chapter 24: Sub-SELECT in DML
	Chapter 25: Correlated Sub-SELECTs
	Chapter 26: Inline Views
	Chapter 27: WITH (Common Table Expressions)
	Chapter 28: CREATE VIEW

	Part VII: Special Topics
	Chapter 29: Transaction Processing
	Chapter 30: Recursive Queries

	Book Appendices

