
Free SQL Book, Tim Martyn 1 Copyright Pending 2020

Exercise Answers

For

The Free SQL Book
(Edition 0.0)

This document should ONLY be downloaded from: www.freesqlbook.com

http://www.freesqlbook.com/

Free SQL Book, Tim Martyn 2 Copyright Pending 2020

PART I

The SELECT Statement

Free SQL Book, Tim Martyn 3 Copyright Pending 2020

Chapter-1 - Getting Started: The SELECT Statement

The following three exercises (1A, 1B, and 1C) reference the PRESERVE table.

1A. Display the row with a preserve number (PNO) of 5.

 SELECT *

 FROM PRESERVE

 WHERE PNO = 5

 The result should look like:

 PNO PNAME STATE ACRES FEE
 5 HASSAYAMPA RIVER AZ 660 3.00

1B. Display all information about any nature preserve that does not charge an admission

fee (i.e., the admission fee is zero).

 SELECT *

 FROM PRESERVE

 WHERE FEE = 0.00

 The result should contain the following rows.

PNO PNAME STATE ACRES FEE
 3 DANCING PRAIRIE MT 680 0.00
 7 MULESHOE RANCH AZ 49120 0.00
 40 SOUTH FORK MADISON MT 121 0.00
 14 MCELWAIN-OLSEN MA 66 0.00
 13 TATKON MA 40 0.00
 9 DAVID H. SMITH MA 830 0.00
 11 MIACOMET MOORS MA 4 0.00

 12 MOUNT PLANTAIN MA 730 0.00
 1 COMERTOWN PRAIRIE MT 1130 0.00
 2 PINE BUTTE SWAMP MT 15000 0.00
 10 HOFT FARM MA 90 0.00

Free SQL Book, Tim Martyn 4 Copyright Pending 2020

1C. Display all information about any nature preserve that is larger than 1,000 acres.

 SELECT *

 FROM PRESERVE

 WHERE ACRES > 1000

 The result should contain the following rows.

 PNO PNAME STATE ACRES FEE

 7 MULESHOE RANCH AZ 49120 0.00

 1 COMERTOWN PRAIRIE MT 1130 0.00

 2 PINE BUTTE SWAMP MT 15000 0.00

 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

The following Exercise 1D references another table.

1D. The sample database contains a table called EMPLOYEE. Assume you know nothing

about this table except that it is very small. Display all data in this table.

 SELECT *

 FROM EMPLOYEE

 The result should contain the following rows.

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 2000 LARRY 2000.00 10

 3000 CURLY 3000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

 6000 GEORGE 9000.00 20

Free SQL Book, Tim Martyn 5 Copyright Pending 2020

1E. Display all information about any nature preserve located in Montana.

 SELECT *

 FROM PRESERVE

 WHERE STATE = 'MT'

 The result should contain the following rows.

 PNO PNAME STATE ACRES FEE
 3 DANCING PRAIRIE MT 680 0.00
 40 SOUTH FORK MADISON MT 121 0.00

 1 COMERTOWN PRAIRIE MT 1130 0.00

 2 PINE BUTTE SWAMP MT 15000 0.00

1F. Display all information about the Pine Butte Swamp preserve.

 SELECT *

 FROM PRESERVE

 WHERE PNAME = 'PINE BUTTE SWAMP'

 The result should look like:

 PNO PNAME STATE ACRES FEE

 2 PINE BUTTE SWAMP MT 15000 0.00

Free SQL Book, Tim Martyn 6 Copyright Pending 2020

1G. Display the preserve number and name, in that left-to-right order, of all nature

preserves.

 SELECT PNO, PNAME

 FROM PRESERVE

 The result should contain the following rows.:

 PNO PNAME
 5 HASSAYAMPA RIVER

 3 DANCING PRAIRIE

 7 MULESHOE RANCH

 40 SOUTH FORK MADISON

 14 MCELWAIN-OLSEN

 13 TATKON

 9 DAVID H. SMITH

 11 MIACOMET MOORS

 12 MOUNT PLANTAIN

 1 COMERTOWN PRAIRIE

 2 PINE BUTTE SWAMP

 80 RAMSEY CANYON

 10 HOFT FARM

 6 PAPAGONIA-SONOITA CREEK

Free SQL Book, Tim Martyn 7 Copyright Pending 2020

1H. Display the state code and preserve name, in that left-to-right order, of all nature

preserves.

 SELECT STATE, PNAME

 FROM PRESERVE

 The result should contain the following rows.

 STATE PNAME

 AZ HASSAYAMPA RIVER

 MT DANCING PRAIRIE

 AZ MULESHOE RANCH

 MT SOUTH FORK MADISON

 MA MCELWAIN-OLSEN

 MA TATKON

 MA DAVID H. SMITH

 MA MIACOMET MOORS

 MA MOUNT PLANTAIN

 MT COMERTOWN PRAIRIE

 MT PINE BUTTE SWAMP

 AZ RAMSEY CANYON

 MA HOFT FARM

 AZ PAPAGONIA-SONOITA CREEK

1I. Display the preserve number and name for all nature preserves where the number

of acres exceeds 2,000.

 SELECT PNO, PNAME

 FROM PRESERVE

 WHERE ACRES > 2000

 The result should contain the following rows.:

 PNO PNAME

 7 MULESHOE RANCH

 2 PINE BUTTE SWAMP

Free SQL Book, Tim Martyn 8 Copyright Pending 2020

1J. Display the preserve name of all nature preserves located in Massachusetts.

 SELECT PNAME

 FROM PRESERVE

 WHERE STATE = 'MA'

 The result should contain the following rows.

 PNAME

MCELWAIN-OLSEN

 TATKON

 DAVID H. SMITH

 MIACOMET MOORS

 MOUNT PLANTAIN

 HOFT FARM

Optional Exercise:

1K. Optional (and Unfair) Exercise: Review the SELECT statement and result table

for Sample Query 1.4. This SELECT statement is:

SELECT PNAME, ACRES, STATE

FROM PRESERVE

 This result table does not show any duplicate rows. However, sometime in the future,

in a very unusual circumstance, this result table could contain duplicate rows. Why

might this happen?

 Although it is highly unlikely, a new preserve could be assigned the same name, be

located in the same state, and have the same number of acres. This is possible because

neither PNAME, nor ACRES, nor STATE is defined as a UNIQUE column. In this

unusual circumstance, execution of the above SELECT statement would display

duplicate rows.

Free SQL Book, Tim Martyn 9 Copyright Pending 2020

Summary Exercises (Chapter 1)

Exercise 1D asked you to display the EMPLOYEE table.

The result should contain the following rows.

ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 2000 LARRY 2000.00 10

 3000 CURLY 3000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

 6000 GEORGE 9000.00 20

The following exercises reference the EMPLOYEE table. This table has four columns that

are described below.

ENO (Employee Number) Fixed-length character string: CHAR (4)

 This column contains unique values.

 Note: This “number” is represented by a character-string.

ENAME (Employee Name) Variable-length character string: VARCHAR (25)

SALARY (Employee Salary) Decimal: DECIMAL (7,2)

DNO (Employee’s Department Number) Integer: INTEGER

1L. Display all information about any employee whose SALARY value exceeds

$1,000.00.

 SELECT *

 FROM EMPLOYEE

 WHERE SALARY > 1000.00

 The result should contain the following rows.

 ENO ENAME SALARY DNO

1000 MOE 2000.00 20

2000 LARRY 2000.00 10

3000 CURLY 3000.00 20

6000 GEORGE 9000.00 20

Free SQL Book, Tim Martyn 10 Copyright Pending 2020

1M. Display all information about Employee 2000 (i.e., ENO value is '2000').

 SELECT *

 FROM EMPLOYEE

 WHERE ENO = '2000'

The result should look like:

ENO ENAME SALARY DNO

2000 LARRY 2000.00 10

1N. Display the ENAME and DNO values of every employee.

 SELECT ENAME, DNO

 FROM EMPLOYEE

 The result should contain the following rows.

ENAME DNO

MOE 20

LARRY 10

CURLY 20

SHEMP 40

JOE 10

GEORGE 20

1O. Display the ENAME and SALARY values of every employee whose SALARY value

is less than $1,000.00.

 SELECT ENAME, SALARY

 FROM EMPLOYEE

 WHERE SALARY < 1000.00

The result should contain the following rows.

ENAME SALARY

 SHEMP 500.00

 JOE 400.00

Free SQL Book, Tim Martyn 11 Copyright Pending 2020

Chapter-2 – Sorting the Result Table: ORDER BY

2A. Display the entire PRESERVE table. Sort the result by the ACRES column in

ascending sequence.

 SELECT *

 FROM PRESERVE

 ORDER BY ACRES

 The result should look like:

 PNO PNAME STATE ACRES FEE

 11 MIACOMET MOORS MA 4 0.00

 13 TATKON MA 40 0.00

 14 MCELWAIN-OLSEN MA 66 0.00

 10 HOFT FARM MA 90 0.00

 40 SOUTH FORK MADISON MT 121 0.00

 80 RAMSEY CANYON AZ 380 3.00

 5 HASSAYAMPA RIVER AZ 660 3.00

 3 DANCING PRAIRIE MT 680 0.00

 12 MOUNT PLANTAIN MA 730 0.00

 9 DAVID H. SMITH MA 830 0.00

 1 COMERTOWN PRAIRIE MT 1130 0.00

 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

 2 PINE BUTTE SWAMP MT 15000 0.00

 7 MULESHOE RANCH AZ 49120 0.00

2B. Display the preserve name and admission fee of every nature preserve located in

Montana. Sort the result by preserve name in descending sequence.

 SELECT PNAME, FEE

 FROM PRESERVE

 WHERE STATE = 'MT'

 ORDER BY PNAME DESC

 The result should look like:

 PNAME FEE
 SOUTH FORK MADISON 0.00

 PINE BUTTE SWAMP 0.00

 DANCING PRAIRIE 0.00

 COMERTOWN PRAIRIE 0.00

Free SQL Book, Tim Martyn 12 Copyright Pending 2020

2C. Display the FEE and ACRES columns (in that order) for every row in the

PRESERVE table. Sort the displayed rows by ACRES within FEE. (FEE is the

major sort field, and ACRES is the minor sort field.)

 SELECT FEE, ACRES

 FROM PRESERVE

 ORDER BY FEE, ACRES

 The result should look like:

 FEE ACRES

 0.00 4

 0.00 40

 0.00 66

 0.00 90

 0.00 121

 0.00 680

 0.00 730

 0.00 830

 0.00 1130

 0.00 15000

 0.00 49120

 3.00 380

 3.00 660

 3.00 1200

Free SQL Book, Tim Martyn 13 Copyright Pending 2020

2D. Display the entire PRESERVE table sorted by the fourth column in descending

sequence.

 SELECT *

 FROM PRESERVE

 ORDER BY 4 DESC

 The result should look like:

 PNO PNAME STATE ACRES FEE

 7 MULESHOE RANCH AZ 49120 0.00

 2 PINE BUTTE SWAMP MT 15000 0.00

 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

 1 COMERTOWN PRAIRIE MT 1130 0.00

 9 DAVID H. SMITH MA 830 0.00

 12 MOUNT PLANTAIN MA 730 0.00

 3 DANCING PRAIRIE MT 680 0.00

 5 HASSAYAMPA RIVER AZ 660 3.00

 80 RAMSEY CANYON AZ 380 3.00

 40 SOUTH FORK MADISON MT 121 0.00

 10 HOFT FARM MA 90 0.00

 14 MCELWAIN-OLSEN MA 66 0.00

 13 TATKON MA 40 0.00

 11 MIACOMET MOORS MA 4 0.00

Free SQL Book, Tim Martyn 14 Copyright Pending 2020

2E. Assume (unrealistically) that PNO values are considered to be confidential. Display

the PNAME value for each Arizona nature preserve. Display the result in ascending

PNO sequence without displaying the PNO values.

 SELECT PNAME

 FROM PRESERVE

 WHERE STATE = 'AZ'

 ORDER BY PNO

 The result should look like:

PNAME

 HASSAYAMPA RIVER

 PAPAGONIA-SONOITA CREEK

 MULESHOE RANCH

RAMSEY CANYON

Free SQL Book, Tim Martyn 15 Copyright Pending 2020

2F. Display the STATE, FEE, and PNO values for any preserve having more than 100

acres. Sort the result table. STATE is the first-level sort field in descending sequence.

FEE is the second-level sort field in descending sequence. PNO is the third-level sort

field in ascending sequence.

 SELECT STATE, FEE, PNO

 FROM PRESERVE

 WHERE ACRES > 100

 ORDER BY STATE DESC, FEE DESC, PNO

 The result should look like:

 STATE FEE PNO

 MT 0.00 1

 MT 0.00 2

 MT 0.00 3

 MT 0.00 40

 MA 0.00 9

 MA 0.00 12

 AZ 3.00 5

 AZ 3.00 6

 AZ 3.00 80

 AZ 0.00 7

2G. Display all rows where the STATE value is greater than or equal to the letter M.

 SELECT *

 FROM PRESERVE

 WHERE STATE >= 'M'

 The result should contain the following rows.

 PNO PNAME STATE ACRES FEE

 3 DANCING PRAIRIE MT 680 0.00

 40 SOUTH FORK MADISON MT 121 0.00

 14 MCELWAIN-OLSEN MA 66 0.00

 13 TATKON MA 40 0.00

 9 DAVID H. SMITH MA 830 0.00

 11 MIACOMET MOORS MA 4 0.00

 12 MOUNT PLANTAIN MA 730 0.00

 1 COMERTOWN PRAIRIE MT 1130 0.00

 2 PINE BUTTE SWAMP MT 15000 0.00

 10 HOFT FARM MA 90 0.00

Free SQL Book, Tim Martyn 16 Copyright Pending 2020

2H. Display every row where the preserve name value is less than TATKON.

 SELECT *

 FROM PRESERVE

 WHERE PNAME < 'TATKON'

 The result should contain the following rows.

 PNO PNAME STATE ACRES FEE

 5 HASSAYAMPA RIVER AZ 660 3.00

 3 DANCING PRAIRIE MT 680 0.00

 7 MULESHOE RANCH AZ 49120 0.00

 40 SOUTH FORK MADISON MT 121 0.00

 14 MCELWAIN-OLSEN MA 66 0.00

 9 DAVID H. SMITH MA 830 0.00

 11 MIACOMET MOORS MA 4 0.00

 12 MOUNT PLANTAIN MA 730 0.00

 1 COMERTOWN PRAIRIE MT 1130 0.00

 2 PINE BUTTE SWAMP MT 15000 0.00

 80 RAMSEY CANYON AZ 380 3.00

 10 HOFT FARM MA 90 0.00

 6 PAPAGONIA-SONOITA CREEK AZ 1200 3.00

Free SQL Book, Tim Martyn 17 Copyright Pending 2020

Summary Exercises (Chapter 2)

The following three exercises pertain to the previously described EMPLOYEE table. Its

column-names are ENO, ENAME, SALARY, and DNO.

2I. Display the entire EMPLOYEE table sorted by employee name in ascending sequence.

 SELECT *

 FROM EMPLOYEE

 ORDER BY ENAME

 The result should look like:

 ENO ENAME SALARY DNO

 3000 CURLY 3000.00 20

 6000 GEORGE 9000.00 20

 5000 JOE 400.00 10

 2000 LARRY 2000.00 10

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

2J. Display the name and salary of any employee whose salary is greater than $2,000.00.

Sort the result by salary in descending sequence.

 SELECT ENAME, SALARY

 FROM EMPLOYEE

 WHERE SALARY > 2000.00

 ORDER BY ENAME DESC

 The result should look like:

 ENAME SALARY

GEORGE 9000.00

CURLY 3000.00

Free SQL Book, Tim Martyn 18 Copyright Pending 2020

2K. Display the department number, employee number, and employee name of all

employees. Sort the result by employee number (in ascending sequence) within

department number (in descending sequence).

 SELECT DNO, ENO, ENAME

 FROM EMPLOYEE

 ORDER BY DNO DESC, ENO

 The result should look like:

 DNO ENO ENAME

 40 4000 SHEMP

 20 1000 MOE

 20 3000 CURLY

 20 6000 GEORGE

 10 2000 LARRY

 10 5000 JOE

2L. Do Sample Queries 2.3 - 2.5 return deterministic result tables?

SQ 2.3: SELECT PNO, PNAME, ACRES

FROM PRESERVE

WHERE STATE = 'AZ'

ORDER BY PNO DESC

SQ 2.4: SELECT PNO, ACRES, PNAME

FROM PRESERVE

WHERE STATE = 'AZ'

ORDER BY 3

SQ 2.5: SELECT PNO, PNAME

FROM PRESERVE

ORDER BY ACRES DESC

All result tables are deterministic because each result table displays unique PNO

values.

Free SQL Book, Tim Martyn 19 Copyright Pending 2020

Chapter-3 – Eliminating Duplicate Rows: DISTINCT

3A1. Retrieve every row in PRESERVE. Only display the FEE value for each row. (Do

not attempt to remove duplicate rows.) Before you execute the SELECT statement

for this exercise, ask yourself the following question. “Can duplicate values

possibly appear in this result?”

 SELECT FEE

 FROM PRESERVE

 Duplicate FEE values are obvious when you display PRESERVE. More precisely,

you have not been told that the FEE column is unique. Therefore, you should

assume that duplicate values might be present.

3A2. Retrieve every row in PRESERVE. Only display the ACRES value for each row.

(Do not attempt to remove duplicate rows.) Before you execute the SELECT

statement for this exercise, ask yourself the following question. “Can duplicate

values possibly appear in this result?”

 SELECT ACRES

 FROM PRESERVE

 Examination of PRESERVE does not show duplicate ACRES values. And, it is

highly unlikely that any two preserves will ever have the exact same number of

acres. However, you have not been told that ACRES is unique. Therefore, you

should assume that duplicate values can possibly occur sometime in the future.

3B. Display all admission fees in the PRESERVE table. Do not display duplicate

values.

 SELECT DISTINCT FEE

 FROM PRESERVE

Free SQL Book, Tim Martyn 20 Copyright Pending 2020

3C. Display the FEE and ACRES values for every row in the PRESERVE table.

Before you execute the SELECT statement for this exercise, ask yourself the

following question. “Can duplicate rows possibly appear in this result?” What

know-your-data insights help you answer this question?

 SELECT FEE, ACRES

 FROM PRESERVE

 Currently, there are no duplicate ACRES values in PRESERVE. Hence, there are

no duplicate pairs of (FEE, ACRES) values. In this circumstance, executing the

above statement would not produce duplicate rows. However, because neither

column is defined as unique, future updates to PRESERVE could introduce

duplicate pairs of (FEE, ACRES) values.

3D. Display the FEE and ACRES values for every row in the PRESERVE table. Do not

display duplicate rows in the result table.

 SELECT DISTINCT FEE, ACRES

 FROM PRESERVE

3E. Optional Exercise: Remove the ORDER BY clause shown in the above Sample Query

3.4 such that it looks like:

 SELECT DISTINCT STATE, FEE

FROM PRESERVE

 Execute this statement. Most likely you will observe that the result table is incidentally

sorted. If this sort occurs, the first-level sort could be on either the STATE column or

the FEE column.

 If FEE is the first-level sort column, the sorted result would look like:

STATE FEE

 AZ 0.00

MA 0.00

 MT 0.00

 AZ 3.00

 If STATE is the first-level sort column, the sorted result would look like:

STATE FEE

 AZ 0.00

 AZ 3.00

MA 0.00

 MT 0.00

Free SQL Book, Tim Martyn 21 Copyright Pending 2020

3F. The following two statements return the same rows. Will these rows be in the same

row sequence? Answer: Yes, No, or Maybe.

 SELECT PNO

 FROM PRESERVE;

 SELECT DISTINCT PNO

 FROM PRESERVE;

 Maybe. These statements return the same rows because PNO is unique. Hence the

second SELECT statement does not remove any duplicates.

 These rows may or may not be in the same sequence because neither statement

specifies an ORDER BY clause. Therefore, if you execute these statements, an

incidental sort could appear in either or both of the result tables.

Summary Exercises: (Chapter-3)

The following exercises pertain to the EMPLOYEE table.

3G. Display all DNO values in the EMPLOYEE table. Do not display duplicate values.

 SELECT DISTINCT DNO

 FROM EMPLOYEE

 DNO
 10

 20

 40

 Rows may appear in any order. The above result is incidental sorted.

Free SQL Book, Tim Martyn 22 Copyright Pending 2020

3H. Execute each of the following statements. Examine the result tables and make

relevant observations.

 SELECT DNO, SALARY

 FROM EMPLOYEE

 DNO SALARY
 20 2000.00

 10 2000.00

 20 3000.00

 40 500.00

 10 400.00

 20 9000.00

Currently, there are no duplicate pairs of (DNO, SALARY) values.

But future execution of this statement could display duplicate rows because future

update operations could produce duplicates pairs of (DNO, SALARY) values.

The absence of an ORDER BY clause implies that rows may appear in any

sequence.

 SELECT DISTINCT DNO, SALARY

 FROM EMPLOYEE

 Currently, because there are no duplicate pairs of (DNO, SALARY) values, this

statement returns the same rows shown above. However, DISTINCT may cause an

incidental sort.

 SELECT DISTINCT DNO, SALARY

 FROM EMPLOYEE

 ORDER BY DNO, SALARY

 DNO SALARY
 10 400.00

 10 2000.00

 20 2000.00

 20 3000.00

 20 9000.00

 40 500.00

 This may be the best way to code this statement.

 Duplicate rows cannot appear, and row sequence is explicitly specified.

Free SQL Book, Tim Martyn 23 Copyright Pending 2020

Chapter-4 Boolean Connectors: AND-OR-NOT

4A. Display all information about any nature preserve in Montana that is smaller than

1,000 acres.

 SELECT * FROM PRESERVE

 WHERE STATE = 'MT' AND ACRES < 1000

4B. Display all information about any nature preserve that has an ACRES value

between and including 1200 and 15000.

 SELECT * FROM PRESERVE

 WHERE ACRES >= 1200 AND ACRES <= 15000

4C. Display all information about any nature preserve that is located in Montana, does

not have an admission fee, and is greater than 10,000 acres.

 SELECT * FROM PRESERVE

 WHERE STATE = 'MT' AND FEE = 0.00 AND ACRES > 10000

4D. Display all information about nature preserves located in Montana or

Massachusetts.

 SELECT * FROM PRESERVE

 WHERE STATE = 'MT' OR STATE = 'MA'

4E. Select all information about any nature preserve located in Montana or any preserve

that is less than 1,000 acres.

 SELECT * FROM PRESERVE

 WHERE STATE = 'MT' OR ACRES < 1000

4F. Select the preserve number and name of any nature preserve having an admission fee

that is not equal to zero. Use the keyword NOT in your solution.

 SELECT PNO, PNAME FROM PRESERVE

 WHERE NOT FEE = 0.00

4G. Same as the preceding example: Specify a not-equal symbol in your WHERE-

condition.

 SELECT PNO, PNAME FROM PRESERVE

 WHERE FEE <> 0.00

Free SQL Book, Tim Martyn 24 Copyright Pending 2020

4H. Display the preserve number and name of those nature preserves that do not have an

admission fee of $3.00 and do not have a fee of $10.00.

.

 SELECT PNO, PNAME FROM PRESERVE

 WHERE (NOT FEE = 3.00) AND (NOT FEE = 10.00)

 SELECT PNO, PNAME FROM PRESERVE

 WHERE FEE <> 3.00 AND FEE <> 10.00

4I. Display all information about any nature preserve located in Arizona that does not

have an admission fee, or any preserve that is smaller than 100 acres (regardless of its

STATE and FEE values).

 SELECT * FROM PRESERVE

 WHERE (STATE = 'AZ' AND FEE = 0.00)

 OR ACRES < 100

4J. Display all information about any nature preserve that is smaller than 1,000 acres, and

has an admission fee of zero dollars or is located in Arizona.

 SELECT * FROM PRESERVE

 WHERE ACRES < 1000

AND (FEE = 0.00 OR STATE = 'AZ')

4K. Select all information about any nature preserve with an admission fee that is not

greater than zero, or any other preserve, regardless of its fee, that is located in Montana

and is larger than 1,000 acres.

 SELECT * FROM PRESERVE

 WHERE (NOT FEE > 0.00) OR (STATE = 'MT' AND ACRES > 1000)

 SELECT * FROM PRESERVE

 WHERE FEE <= 0.00 OR (STATE = 'MT' AND ACRES > 1000)

4L. Display all information about every nature preserve except those Montana preserves

without an admission fee.

 SELECT * FROM PRESERVE

 WHERE NOT (STATE = 'MT' AND FEE = 0.00)

Free SQL Book, Tim Martyn 25 Copyright Pending 2020

4M. Consider the following modified WHERE-clauses (without parentheses) for Sample

Queries 4.8, 4.9 and 4.10. Which of the following modified WHERE-clauses will

satisfy the specified query objectives?

Sample Query 4.8

The sample query showed:

 WHERE ACRES > 1000 OR (STATE = 'AZ' AND FEE = 3.00)

The modified WHERE-clause is:

WHERE ACRES > 1000 OR STATE = 'AZ' AND FEE = 3.00

These WHERE-clauses are equivalent because the default hierarchy specifies

AND before OR.

Sample Query 4.9

The sample query showed:

WHERE (ACRES > 1000 OR STATE = 'AZ') AND FEE = 3.00

The modified WHERE-clause is:

WHERE ACRES > 1000 OR STATE = 'AZ' AND FEE = 3.00

These WHERE-clauses are not equivalent because the default hierarchy

specifies AND before OR.

Sample Query 4.10

The sample query showed:

WHERE NOT (STATE = 'AZ' AND FEE = 3.00)

The modified WHERE-clause is:

 WHERE NOT STATE = 'AZ' AND FEE = 3.00

These WHERE-clauses are not equivalent. In the first WHERE-clause, the

NOT applies to the result of the AND operation. In the second WHERE-

clause, the NOT only applies to the STATE = 'AZ' condition.

Free SQL Book, Tim Martyn 26 Copyright Pending 2020

The Distributed Laws apply to the following exercises.

4N1. Are the following WHERE-clauses logically equivalent?

WHERE STATE = 'MA' AND (ACRES > 1000 OR FEE = 0.0)

WHERE (STATE = 'MA' AND ACRES > 1000)

 OR

 (STATE = 'MA' AND FEE = 0.0)

 These are equivalent WHERE-clauses.

4N2. Are the following WHERE-clauses logically equivalent?

WHERE STATE = 'MA' OR (ACRES > 1000 AND FEE = 0.0)

WHERE (STATE = 'MA' OR ACRES > 1000)

 AND

 (STATE = 'MA' OR FEE = 0.0)

 These are equivalent WHERE-clauses.

Free SQL Book, Tim Martyn 27 Copyright Pending 2020

De Morgan’s Laws apply to the following exercises.

4O1. Are the following WHERE-clauses logically equivalent??

WHERE NOT (ACRES < 50 AND STATE = 'MA')

WHERE NOT ACRES < 50 AND NOT STATE = 'MA'

No.

Applying De Morgan’s Laws to the first WHERE-clause would produce:

WHERE NOT ACRES < 50 OR NOT STATE = 'MA'

4O2. Are the following WHERE-clauses logically equivalent?

WHERE NOT (ACRES < 50 AND STATE = 'MA')

WHERE ACRES >= 50 OR STATE <> 'MA'

Yes.

Applying De Morgan’s Laws to the first WHERE-clause produces:

WHERE NOT ACRES < 50 OR NOT STATE = 'MA'

Then, removing the NOT keywords produce the second WHERE-clause.

4P. Are the following WHERE-clauses logically equivalent?

WHERE NOT (ACRES < 50 OR STATE = 'MA')

WHERE NOT ACRES < 50 OR NOT STATE = 'MA'

No.

Applying De Morgan’s Laws to the first WHERE-clause would produce:

WHERE NOT ACRES < 50 AND NOT STATE = 'MA'

4Q. Are the following WHERE-clauses logically equivalent?

WHERE NOT (ACRES < 50 OR STATE = 'MA')

WHERE NOT ACRES < 50 AND NOT STATE = 'MA'

 Yes.

Free SQL Book, Tim Martyn 28 Copyright Pending 2020

Summary Exercises (Chapter 4)

The following exercises 4R-4T reference the EMPLOYEE table.

4R. Display all information about any employee who works in Department 20 and earns

less than $5,000.00.

 SELECT *

 FROM EMPLOYEE

 WHERE DNO = 20

 AND SALARY < 5000.00

4S. Display the name and salary of any employee who earns less than $1,000.00 or

more than $6,000.00.

 SELECT ENAME, SALARY

 FROM EMPLOYEE

 WHERE SALARY < 1000.00

 OR SALARY > 6000.00

4T. Display the name and department number of all employees who do not work for

Department 20. Sort the result in ascending sequence by employee name.

 SELECT ENAME, DNO

 FROM EMPLOYEE

 WHERE NOT DNO = 20

 ORDER BY ENAME;

 SELECT ENAME, DNO

 FROM EMPLOYEE

 WHERE DNO <> 20

 ORDER BY ENAME;

Free SQL Book, Tim Martyn 29 Copyright Pending 2020

The following exercise references the PRESERVE table. It is relatively complex. Yet it

should be doable with a little thought.

4U. OR means Inclusive-OR. Code an “Exclusive- OR” for the following query which

is a modification of Sample Query 4.5

 Display the PNAME, ACRES, and STATE value of any preserve that matches just

one (but not both) of the following conditions. (1) The preserve is located in

Arizona, or (2) the preserve has more than 1000 acres. The result should look like:

PNAME ACRES STATE
HASSAYAMPA RIVER 660 AZ
COMERTOWN PRAIRIE 1130 MT
PINE BUTTE SWAMP 15000 MT
RAMSEY CANYON 380 AZ

 Hint: Assume you have two conditions, C1 and C2. The most direct way to think
about the Exclusive-OR is:

 The first condition (C1) is True or the second condition (C2) is True.
 AND
 It is not the case that both conditions are True.

 Another way to think about the exclusive-OR is:

 The first condition is True and the second condition is False.
 OR
 The first condition is False and the second condition is True.

First hint implies: (C1 OR C2)
 AND
 NOT (C1 AND C2)

Solution-1: SELECT PNAME, ACRES, STATE

FROM PRESERVE

WHERE (STATE = 'AZ' OR ACRES > 1000)
 AND NOT (STATE = 'AZ' AND ACRES > 1000)

Second hint implies: (C1 AND NOT C2)
 OR
 (NOT C1 AND C2)

Solution-2: SELECT PNAME, ACRES, STATE

FROM PRESERVE

WHERE (STATE = 'AZ' AND NOT ACRES > 1000)

OR (NOT STATE = 'AZ' AND ACRES > 1000)

Free SQL Book, Tim Martyn 30 Copyright Pending 2020

 = = = = = = =

Two other solutions can be derived from Solution-1 are shown below

Solution-3 (Apply DeMorgan’s Laws)

SELECT PNAME, ACRES, STATE

FROM PRESERVE

WHERE (STATE = 'AZ' OR ACRES > 1000)
 AND (NOT STATE = 'AZ' OR NOT ACRES > 1000)

 Solution-4

SELECT PNAME, ACRES, STATE

FROM PRESERVE

WHERE (STATE = 'AZ' OR ACRES > 1000)
 AND (STATE <> 'AZ' OR ACRES <= 1000)

= = = = = = =

Another solution can be derived from Solution-2 is shown below

Solution-5 (Eliminate NOT keyword_

SELECT PNAME, ACRES, STATE

FROM PRESERVE

WHERE (STATE = 'AZ' AND ACRES <= 1000)

OR (STATE <> 'AZ' AND ACRES > 1000)

4V. Optional Exercise: Draw a truth table for the Exclusive-OR.

C1 C2 C1 XOR C2

T T F

T F T

F T T

F F F

Free SQL Book, Tim Martyn 31 Copyright Pending 2020

Chapter-5 IN & BETWEEN

5A. Display all information about any nature preserve that has a preserve number in the

set {2, 4, 6, 8, 10}.

 SELECT * FROM PRESERVE

 WHERE PNO IN (2, 4, 6, 8, 10)

5B. Display all information about the following nature preserves: DANCING PRAIRIE,

MULESHOE RANCH, MCELWAIN-OLSEN, and TATKON.

 SELECT * FROM PRESERVE

WHERE PNAME IN ('DANCING PRAIRIE', 'MULESHOE RANCH',

'MCELWAIN-OLSEN', 'TATKON')

5C. Display all information about all nature preserves except: DANCING PRAIRIE,

MULESHOE RANCH, MCELWAIN-OLSEN, and TATKON.

 SELECT * FROM PRESERVE

WHERE PNAME NOT IN

('DANCING PRAIRIE', 'MULESHOE RANCH',

 'MCELWAIN-OLSEN', 'TATKON')

5D. Display all information about any nature preserve having PNO value between and

including 3 and 10.

 SELECT * FROM PRESERVE

WHERE PNO BETWEEN 3 AND 10

5E. Display all information about any nature preserve having a PNO value that is less than

3 or greater than 10.

 SELECT * FROM PRESERVE

WHERE PNO NOT BETWEEN 3 AND 10

5F. Display the state, preserve number, and size of any nature preserve that is not in

Montana and not in Arizona and is less than 50 acres or greater than 800 acres. Sort

the result by preserve number in descending sequence.

 SELECT STATE, PNO, ACRES

FROM PRESERVE

WHERE STATE NOT IN (‘MT’, ‘AZ’)

AND ACRES NOT BETWEEN 50 AND 800

ORDER BY PNO DESC

Free SQL Book, Tim Martyn 32 Copyright Pending 2020

Summary Exercises (Chapter 5)

The following exercises pertain to the EMPLOYEE table. Specify the IN and BETWEEN

keywords in the SELECT statements for the following exercises.

5G. Display all information about any employee who works in any department with a

DNO value in the following list: {10, 40}.

 SELECT *

 FROM EMPLOYEE

 WHERE DNO IN (10, 40)

5H. Display all information about any employee who works in any department with a

DNO value that is not in the following list: {10, 40}.

 SELECT *

 FROM EMPLOYEE

 WHERE DNO NOT IN (10, 40)

5I. Display all information about any employee whose salary is greater than or equal to

$500.00 and less than or equal to $2,000.00.

 SELECT *

 FROM EMPLOYEE

 WHERE SALARY BETWEEN 500 AND 2000

5J. Display all information about any employee whose salary is less than $500.00 or

greater than $2,000.00.

 SELECT *

 FROM EMPLOYEE

 WHERE SALARY NOT BETWEEN 500 AND 2000

Free SQL Book, Tim Martyn 33 Copyright Pending 2020

Chapter-6 – Pattern Matching: LIKE

6A. Reference the PRESERVE table. Display the PNAME value of all nature preserves

with a name that begins with the letter D.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE 'D%'

6B. Reference the PRESERVE table. Display the name of any nature preserve with

TOWN anywhere in its name.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '%TOWN%'

6C. Reference the PRESERVE table. Display the PNAME value of all nature preserves

with a name that ends with PRAIRIE.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '%PRAIRIE'

6D. Display the name of any nature preserve where the name begins with MULE.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE 'MULE%'

6E. Display the name of any nature preserve having the string ING anywhere in its name.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '%ING%'

6F. Display the name of any nature preserve where the name ends with the letter E.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '%E'

6G. Display the name of any nature preserve that has the letter E immediately after the

letter M anywhere in its name.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '%ME%'

Free SQL Book, Tim Martyn 34 Copyright Pending 2020

6H. Display the name of any nature preserve that has the letter E anywhere after the letter

M in its name.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '%M%E%'

Reference the DEMO1 table for the following exercise.

6I. Display all CHARNAME values in the DEMO1 table where the CHARNAME value

ends with D.

(a) SQL Server users can solve this exercise.

SELECT CHARNAME FROM DEMO1

WHERE CHARNAME LIKE '%D'

CHARNAME

DAVID

EUCLID

SQL Server, unlike DB2 and ORACLE, produced the correct result because

it ignores trailing blanks.

 (b) Optionally, DB2 and ORACLE users can solve this exercise if they to jump

ahead to Sample Query 6.13 to learn about the RTRIM function.

SELECT CHARNAME FROM DEMO1

WHERE RTRIM (CHARNAME) LIKE '%D'

CHARNAME

DAVID

EUCLID

6J. Reference the PRESERVE table. Display the name of any nature preserve that has the

letter A in the second character position.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '_A%'

PNAME

HASSAYAMPA RIVER

 DANCING PRAIRIE

 TATKON

 DAVID H. SMITH

 RAMSEY CANYON

 PAPAGONIA-SONOITA CREEK

Free SQL Book, Tim Martyn 35 Copyright Pending 2020

6K. Reference the PRESERVE table. Display the name of any nature preserve that has a

blank anywhere in its name.

SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '% %'

 PNAME

 HASSAYAMPA RIVER

 DANCING PRAIRIE

 MULESHOE RANCH

 SOUTH FORK MADISON

 DAVID H. SMITH

 MIACOMET MOORS

 MOUNT PLANTAIN

 COMERTOWN PRAIRIE

 PINE BUTTE SWAMP

 RAMSEY CANYON

 HOFT FARM

 PAPAGONIA-SONOITA CREEK

6L. Display the name of any nature preserve having FARM or SWAMP or PRAIRIE

anywhere in its name.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '%FARM%'

 OR PNAME LIKE '%SWAMP%'

 OR PNAME LIKE '%PRAIRIE%'

 PNAME

DANCING PRAIRIE

COMERTOWN PRAIRIE

PINE BUTTE SWAMP

HOFT FARM

6M. Display the name of any nature preserve with a period or a hyphen anywhere in its

name.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '%.%'

 OR PNAME LIKE '%-%'

 PNAME

MCELWAIN-OLSEN

DAVID H. SMITH

PAPAGONIA-SONOITA CREEK

Free SQL Book, Tim Martyn 36 Copyright Pending 2020

6N. Display the name of any nature preserve that has the letter R in the fifth position and

ends with PRAIRIE.

 SELECT PNAME FROM PRESERVE

 WHERE PNAME LIKE '_ _ _ _ R%'

 AND PNAME LIKE '%PRAIRIE'

 PNAME

COMERTOWN PRAIRIE

6O. Reference the PRESERVE table. Display the preserve name of any nature preserve

that does not end with an E.

 Two solutions:

 SELECT PNAME FROM PRESERVE

 WHERE PNAME NOT LIKE '%E'

 SELECT PNAME FROM PRESERVE

 WHERE NOT PNAME LIKE '%E'

 PNAME
 HASSAYAMPA RIVER

 MULESHOE RANCH

 SOUTH FORK MADISON

 MCELWAIN-OLSEN

 TATKON

 DAVID H. SMITH

 MIACOMET MOORS

 MOUNT PLANTAIN

 PINE BUTTE SWAMP

 RAMSEY CANYON

 HOFT FARM

 PAPAGONIA-SONOITA CREEK

Free SQL Book, Tim Martyn 37 Copyright Pending 2020

6P. Reference the PRESERVE table. Display the preserve name of any nature preserve

that does not end with an E and does not end with an N.

 Three solutions:

SELECT PNAME FROM PRESERVE

WHERE PNAME NOT LIKE '%E'

 AND PNAME NOT LIKE '%N'

SELECT PNAME FROM PRESERVE

WHERE NOT PNAME LIKE '%E'

 AND NOT PNAME LIKE '%N'

SELECT PNAME FROM PRESERVE

WHERE NOT (PNAME LIKE '%E'

 OR PNAME LIKE '%N')

 PNAME

 HASSAYAMPA RIVER

 MULESHOE RANCH

 DAVID H. SMITH

 MIACOMET MOORS

 PINE BUTTE SWAMP

 HOFT FARM

 PAPAGONIA-SONOITA CREEK

Free SQL Book, Tim Martyn 38 Copyright Pending 2020

 Summary Exercises (Chapter 6)

The following exercises pertain to the EMPLOYEE table. The ENAME column has a

VARCHAR (25) data-type. ENAME values cannot have any trailing blanks.

6Q. Display the name of any employee whose name of begins with the letter S.

 SELECT ENAME FROM EMPLOYEE

 WHERE ENAME LIKE 'S%'

6R. Display the name of any employee whose has the consecutive letters RR anywhere in

his name.

 SELECT ENAME FROM EMPLOYEE

 WHERE ENAME LIKE '%RR%'

6S. Display the name of any employee whose name of ends with the letter Y.

 SELECT ENAME FROM EMPLOYEE

 WHERE ENAME LIKE '%Y'

6T. Display the name of any employee whose name has the letter O in the second position.

 SELECT ENAME FROM EMPLOYEE

 WHERE ENAME LIKE '_O%'

Free SQL Book, Tim Martyn 39 Copyright Pending 2020

Chapter-7 Exercises: Arithmetic Expressions

7A. What would be the size of each nature preserve if its current size were doubled?

Display the preserve name, current acreage, and adjusted acreage.

 SELECT PNAME, ACRES, ACRES*2

 FROM PRESERVE

7B. What would be the size of each nature preserve if its current size were reduced to

one third its current size? Display the preserve name, current acreage, and adjusted

acreage.

 SELECT PNAME, ACRES, ACRES/3.00

 FROM PRESERVE

7C. For all nature preserves, display the preserve name and its current admission fee. Also

display an adjusted fee that is calculated by adding $50.00 to the current fee and then

dividing by 2.

 SELECT PNAME, FEE, (FEE+50.00)/2.00

 FROM PRESERVE

Free SQL Book, Tim Martyn 40 Copyright Pending 2020

Summary Exercises (Chapter 7)

The following exercises reference the EMPLOYEE table. Use aliases for calculated columns.

7D. Assume each employee’s salary is increased by 10%. Display the employee’s number,

name, old salary, and new salary. The result table should have four columns named,

ENO, ENAME, OLDSALARY, and NEWSALARY. Sort the result by the new

salary.

 SELECT ENO, ENAME,

 SALARY OLDSALARY,

 SALARY * 1.10 NEWSALARY

FROM EMPLOYEE

 ORDER BY NEWSALARY

7E. Modify the previous Exercise 7D. Only display rows for those employees whose new

salary exceeds $2,000.00.

 SELECT ENO, ENAME,

 SALARY OLDSALARY,

 SALARY * 1.10 NEWSALARY

 FROM EMPLOYEE

WHERE SALARY * 1.10 > 2000.00

 ORDER BY NEWSALARY

7F: Optional Exercise: Commentary for Sample Query 7.3 noted that you cannot

reference a column alias in a WHERE-clause. The following WHERE-clause

causes an error.

SELECT ENO, ENAME, SALARY + 10.00 NEWSALARY

 FROM EMPLOYEE

 WHERE NEWSALARY > 2000.00 Error

 Can you speculate why the system does not allow a WHERE-clause to reference a

column alias?

 The system assigns the column alias (NEWSLARY) after rows have been selected

and the calculation has been done. Row selection, as specified by a WHERE-clause,

occurs before this process when the NEWSALARY alias is not yet defined.

Free SQL Book, Tim Martyn 41 Copyright Pending 2020

PART II

Built-in Functions

&

Null Values

Free SQL Book, Tim Martyn 42 Copyright Pending 2020

Chapter-8 - Aggregate Functions

8A. Display the average, maximum, and minimum ACRES value of all nature preserves

located in Arizona.

 SELECT AVG (ACRES), MAX (ACRES), MIN (ACRES)

 FROM PRESERVE

 WHERE STATE = 'AZ'

8B. Display the first preserve name which appears in alphabetic sequence.

 SELECT MIN (PNAME)

 FROM PRESERVE

8C. Do not consider zero admission fees. How many distinct fees are present in the

PRESERVE?

 SELECT COUNT (DISTINCT FEE)

 FROM PRESERVE

 WHERE FEE <> 0

8D. Write a SELECT statement to demonstrate that PNAME does not contain any

duplicate values.

 SELECT COUNT (*), COUNT (DISTINCT PNAME)

FROM PRESERVE

If the result shows two equal values (14 in this example), then PNAME contains

unique values.

8E. Assume that you intend to establish a new policy for calculating admission fees.

Each nature preserve will charge a fee equal to $0.02 per acre. What will be the

average admission fee for the Arizona preserves?

 SELECT AVG (ACRES*0.02)

FROM PRESERVE

 WHERE STATE = 'AZ'

Free SQL Book, Tim Martyn 43 Copyright Pending 2020

Summary Exercises (Chapter 8)

The following exercises pertain to the EMPLOYEE table.

8F. Display the sum, average, maximum, and minimum of all SALARY values.

 SELECT SUM (SALARY), AVG (SALARY),

 MAX (SALARY), MIN (SALARY)

 FROM EMPLOYEE

8G. How many employees work in Department 20?

 SELECT COUNT(*)

 FROM EMPLOYEE

 WHERE DNO = 20

8H. How many departments have employees?

 SELECT COUNT (DISTINCT DNO)

 FROM EMPLOYEE

Free SQL Book, Tim Martyn 44 Copyright Pending 2020

Chapter-9 – GROUP BY Clause: Grouping by a Single Column

9A. For each state referenced in the PRESERVE table, display the ACRES value of the

smallest nature preserve within the state.

 SELECT STATE, MIN (ACRES)

 FROM PRESERVE

 GROUP BY STATE

 STATE MIN(ACRES)

AZ 380

 MA 4

 MT 121

9B. Do not consider any nature preserve that has more than 10,000 acres. For each state

referenced in the PRESERVE table, display the ACRES value of the largest nature

preserve within the state.

 SELECT STATE, MAX (ACRES)

 FROM PRESERVE

 WHERE ACRES <= 10000

 GROUP BY STATE

 STATE MAX(ACRES)

 AZ 1200

 MA 830

 MT 1130

9C. Same as preceding Exercise 9B. (Note: Its result was incidentally sorted.) Sort the

result by the maximum values in descending sequence.

 SELECT STATE, MAX (ACRES)

 FROM PRESERVE

 WHERE ACRES <= 10000

 GROUP BY STATE

 ORDER BY 2 DESC

Alternative: ORDER BY MAX (ACRES) DESC

STATE MAX(ACRES)

 AZ 1200

 MA 830

 MT 1130

Free SQL Book, Tim Martyn 45 Copyright Pending 2020

9D. Display the size of the largest ACRES value protected by a nature preserve within

each state if that value is less than 25,000 acres.

 SELECT STATE, MAX (ACRES)

 FROM PRESERVE

 GROUP BY STATE

 HAVING MAX (ACRES) < 25000

STATE MAX(ACRES)

MA 830

MT 15000

9E. For each state referenced in the PRESERVE table, display the number of acres in

the state’s smallest preserve if that number is less than 100.

 SELECT STATE, MIN (ACRES)

 FROM PRESERVE

 GROUP BY STATE

 HAVING MIN (ACRES) < 100

STATE MIN(ACRES)

MA 4

 The above solution is the “most direct” solution that satisfies the query objective.

The following equivalent solution is a little more efficient because it produces

fewer groups and eliminates the need for the HAVING-clause.

SELECT STATE, MIN (ACRES)

 FROM PRESERVE

 WHERE ACRES < 100

 GROUP BY STATE

9F. Only consider nature preserves that have more than 1,000 acres. Display the size of

the largest ACRES value protected by a nature preserve within each state if that

value is less than 25,000 acres.

 SELECT STATE, MAX (ACRES)

 FROM PRESERVE

 WHERE ACRES > 1000

 GROUP BY STATE

 HAVING MAX (ACRES) < 25000

STATE MAX(ACRES)

MT 15000

Free SQL Book, Tim Martyn 46 Copyright Pending 2020

9G. Display the state and total size of the preserves located in the state if the total size

is greater than or equal to 10,000 acres and less than or equal to 50,000 acres.

 SELECT STATE, SUM (ACRES)

 FROM PRESERVE

 GROUP BY STATE

 HAVING SUM (ACRES) >= 10000 AND SUM (ACRES) <= 50000

STATE SUM(ACRES)

MT 16931

 Alternative Solution:

 SELECT STATE, SUM (ACRES)

 FROM PRESERVE

 GROUP BY STATE

 HAVING SUM (ACRES) BETWEEN 10000 AND 50000

9H: If your system allows the nesting of aggregate functions, then determine the

average number of preserve acres for each state and display the largest of these

averages.

 SELECT MAX (AVG (ACRES))

 FROM PRESERVE

 GROUP BY STATE

MAX(AVG(ACRES))

12840

Free SQL Book, Tim Martyn 47 Copyright Pending 2020

Summary Exercises (Chapter 9)

The following exercises reference the EMPLOYEE table.

9I. For all department DNO values found in the EMPLOYEE table, display the DNO

value followed by the average SALARY for that department.

 SELECT DNO, AVG (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO

 DNO AVG(SALARY)

 10 1200.00

 20 4666.66

 40 500.00

9J. For all department DNO values found in the EMPLOYEE table, display the DNO

value followed by the sum, maximum, and minimum of SALARY values for that

department.

 SELECT DNO, SUM (SALARY), MAX(SALARY), MIN(SALARY)

 FROM EMPLOYEE

 GROUP BY DNO

 DNO SUM(SALARY) MAX(SALARY) MIN(SALARY)

 10 2400.00 2000.00 400.00

 20 14000.00 9000.00 2000.00

 40 500.00 500.00 500.00

Free SQL Book, Tim Martyn 48 Copyright Pending 2020

9K. Consider all departments except for Department 40. For these departments, display

their DNO value followed by the number of employees who work in that

department.

 SELECT DNO, COUNT (*)

 FROM EMPLOYEE

 WHERE DNO <> 40

 GROUP BY DNO

 DNO COUNT(*)

 10 2

 20 3

9L. Assume the SALARY column contains confidential data, and that someone could

deduce this confidential data by examining the total of each department’s salaries.

Display only those departments and their average departmental salary if a

department has more than two employees.

 SELECT DNO, SUM (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO

 HAVING COUNT (*) > 2

DNO SUM(SALARY)

 20 14000.00

Free SQL Book, Tim Martyn 49 Copyright Pending 2020

9M. Outline a poor man’s cut-and-paste solution that can be used to produce the

following result. (A much better solution will be described later in thus book.)

STATE SUM(ACRES)

AZ 51360

MA 1760

MT 16931

 TOTAL 70051

 Code two statements

STATE SUM(ACRES)

AZ 51360

MA 1760

MT 16931

 TOTAL 70051

 Cut-and-paste the two result tables.

SELECT STATE, SUM (ACRES)

FROM PRESERVE

GROUP BY STATE

SELECT 'TOTAL', SUM(ACRES)

FROM P RESERVE

Free SQL Book, Tim Martyn 50 Copyright Pending 2020

Chapter-9.5 – GROUP BY Clause: Grouping by Multiple Columns

The following exercises group by one column in the PURCHASE table.

9N. Reference the PURCHASE table. For each part, display its part number (PNO)

followed by the total cost of all its parts. The result should look like:

 PNO TOTCOST

 P1 1450

 P2 3200

 P3 6150

 P4 6700

 P5 8400

 P6 1800

 P7 5400

 P8 600

SELECT SNO, SUM (COST) TOTCOST

FROM PURCHASE

GROUP BY SNO

ORDER BY SNO

9O. Reference the PURCHASE table. For each employee who purchased a part, display

his employee number (ENO) followed by the total cost of all parts purchased by

the employee. The result should look like:

 ENO TOTCOST

 E1 11700

 E2 6600

 E3 7800

 E4 7600

SELECT ENO, SUM (COST) TOTCOST

FROM PURCHASE

GROUP BY ENO

ORDER BY ENO

Free SQL Book, Tim Martyn 51 Copyright Pending 2020

The following exercises group by two columns.

9P. Access the PURCHASE table. Calculate the total of COST for each combination of

(PJNO, ENO) of values. Display these columns in the (PJNO, ENO) left-to-right

column sequence followed by the total cost. Sort the result in ascending sequence

by (PJNO, ENO). The result should look like:

 PJNO ENO TOTCOST

 PJ1 E1 9500

 PJ1 E3 3900

 PJ1 E4 3500

 PJ2 E1 1200

 PJ2 E2 6000

 PJ2 E3 3900

 PJ2 E4 4100

 PJ3 E1 1000

PJ3 E2 600

SELECT PJNO, ENO, SUM (COST) TOTCOST

FROM PURCHASE

GROUP BY PJNO, ENO

ORDER BY PJNO, ENO

Free SQL Book, Tim Martyn 52 Copyright Pending 2020

9Q. Access the PURCHASE table. Calculate the total of COST for each combination of

(PNO, SNO) of values. Display these columns in the (PNO, SNO) left-to-right

column sequence followed by the total cost. Sort the result in ascending sequence

by (PNO, SNO). The result should look like:

 PNO SNO TOTCOST

 P1 S1 1150

 P1 S2 300

 P2 S1 3200

 P3 S1 1550

 P3 S3 2400

 P3 S4 2200

 P4 S1 900

 P4 S2 1000

 P4 S3 2400

 P4 S4 2400

 P5 S1 3900

 P5 S3 3000

 P5 S4 1500

 P6 S2 300

 P6 S4 1500

 P7 S3 2000

 P7 S4 3400

 P8 S1 500

 P8 S2 100

SELECT PNO, SNO, SUM (COST) TOTCOST

FROM PURCHASE

GROUP BY PNO, SNO

ORDER BY PNO, SNO

Free SQL Book, Tim Martyn 53 Copyright Pending 2020

The following exercises group by three columns.

9R. Access the PURCHASE table. Calculate the total of COST for each combination of

(PJNO, ENO, SNO) values. Display these columns in the (PJNO, ENO, SNO) left-

to-right column sequence followed by the total cost. Sort the result in ascending

sequence by (PJNO, ENO, SNO). The result should look like:

 PJNO ENO SNO TOTCOST

 PJ1 E1 S1 6500

 PJ1 E1 S3 2000

 PJ1 E1 S4 1000

 PJ1 E3 S3 3900

 PJ1 E4 S4 3500

 PJ2 E1 S1 1100

 PJ2 E1 S2 100

 PJ2 E2 S1 2600

 PJ2 E2 S2 1000

 PJ2 E2 S4 2400

 PJ2 E3 S3 3900

 PJ2 E4 S4 4100

 PJ3 E1 S1 1000

 PJ3 E2 S2 600

SELECT PJNO, ENO, SNO, SUM (COST) TOTCOST

FROM PURCHASE

GROUP BY PJNO, ENO, SNO

ORDER BY PJNO, ENO, SNO

Free SQL Book, Tim Martyn 54 Copyright Pending 2020

9S. Access the PURCHASE table. Calculate the total of COST for each combination of

(PNO, SNO, ENO) values. Display these columns in the (PNO, SNO, ENO) left-to-

right column sequence followed by the total cost. Sort the result in ascending

sequence by (PNO, SNO, ENO). The result should look like:

 PNO SNO ENO TOTCOST

 P1 S1 E1 1150

 P1 S2 E2 300

 P2 S1 E1 1000

 P2 S1 E2 2200

 P3 S1 E1 1550

 P3 S3 E3 2400

 P3 S4 E4 2200

 P4 S1 E1 600

 P4 S1 E2 300

 P4 S2 E2 1000

 P4 S3 E3 2400

 P4 S4 E4 2400

 P5 S1 E1 3900

 P5 S3 E3 3000

 P5 S4 E4 1500

 P6 S2 E2 300

 P6 S4 E4 1500

 P7 S3 E1 2000

 P7 S4 E1 1000

 P7 S4 E2 2400

 P8 S1 E1 400

 P8 S1 E2 100

 P8 S2 E1 100

SELECT PNO, SNO, ENO, SUM (COST) TOTCOST

FROM PURCHASE

GROUP BY PNO, SNO, ENO

ORDER BY PNO, SNO, ENO

Free SQL Book, Tim Martyn 55 Copyright Pending 2020

9T. Access the PURCHASE table. Exclude from consideration all rows associated with

Project PJ2. Display the total of COST for each combination of (PJNO, ENO, SNO)

of values (excluding Project PJ2). The result should look like:

 PJNO ENO SNO TOTCOST

PJ1 E1 S1 6500

PJ1 E1 S3 2000

PJ1 E1 S4 1000

PJ1 E3 S3 3900

PJ1 E4 S4 3500

PJ3 E1 S1 1000

PJ3 E2 S2 600

SELECT PJNO, ENO, SNO, SUM (COST) TOTCOST

FROM PURCHASE

WHERE PJNO <> 'PJ2'

GROUP BY PJNO, ENO, SNO

ORDER BY PJNO, ENO, SNO

9U. Access the PURCHASE table. Display the total COST for each combination of

(PNO, SNO, ENO) values if that total is greater than or equal to 2000. The result

should look like:

 PNO SNO ENO TOTCOST

 P2 S1 E2 2200

 P3 S3 E3 2400

 P3 S4 E4 2200

 P4 S3 E3 2400

 P4 S4 E4 2400

 P5 S1 E1 3900

 P5 S3 E3 3000

 P7 S3 E1 2000

 P7 S4 E2 2400

SELECT PNO, SNO, ENO, SUM (COST) TOTCOST

FROM PURCHASE

GROUP BY PNO, SNO, ENO

HAVING SUM (COST) >= 2000

ORDER BY PNO, SNO, ENO

Free SQL Book, Tim Martyn 56 Copyright Pending 2020

Summary Exercise (Chapter 9.5)

9V. Reconsider Exercise 9S [Access the PURCHASE table. Calculate the total of COST

for each combination of (PNO, SNO, ENO) values. Display these columns in the

(PNO, SNO, ENO) left-to-right column sequence followed by the total cost. Sort

the result in ascending sequence by (PNO, SNO, ENO)].

This final result table contained 23 rows. Some of these rows corresponded to groups

that summarized over just one or two individual PURCHASE rows. To reduce the

number rows in the final result, exclude any summary row from the final result if that

summary represents a total of just one or two rows. The result should look like:

 PNO SNO ENO TOTCOST GPCT

 P1 S1 E1 1150 5

 P3 S1 E1 1550 3

 P4 S2 E2 1000 3

 P5 S1 E1 3900 3

 P8 S1 E1 400 4

 The GPCT column contains the number of rows in the group.

SELECT PNO, SNO, ENO, SUM (COST) TOTCOST, COUNT(*) GPCT

FROM PURCHASE

GROUP BY PNO, SNO, ENO

HAVING COUNT (*) >=3

ORDER BY PNO, SNO, ENO

Free SQL Book, Tim Martyn 57 Copyright Pending 2020

Chapter-10 – Individual Functions

Optional Summary Exercise

VARCHAR columns rarely contain character-strings with leading or trailing blanks.

Assume you think that some character-strings with leading or trailing blanks (somehow)

found their way into the V1 column in the DEMO2 table. You would like to discover these

problematic rows.

Code a SELECT statement to display the V1 value and its length if that value has a blank

in its first-character position or a blank in its last-character position.

The current version of DEMO2 does not have any V1 values with leading/trailing blanks.

Therefore, to test your SELECT statement, you must execute two INSERT statements to

insert two problematic rows. (Do not worry about details of these INSERT statements.

INSERT will be covered in Chapter 15.)

After you have tested your SELECT statement, delete the two problematic rows by

executing the following DELETE statement. (Again, do not worry about details of this

DELTE statement. DELETE will be covered in Chapter 15.)

INSERT INTO DEMO2 VALUES (999, 999, ' JOSEPHINE', 'XXX');

INSERT INTO DEMO2 VALUES (888, 888, 'JACQUELINE ', 'XXX');

SELECT V1, LENGTH (V1)

FROM DEMO2

WHERE SUBSTR (V1,1,1) = ' '

OR SUBSTR (V1, LENGTH(V1), 1) = ' ';

V1 LENGTH(V1)

 JOSEPHINE 11

JACQUELINE 12

DELETE FROM DEMO2 WHERE I1 IN (999, 888);

SQL Server: The above SUBSTR function works in DB2 and ORACLE. SQL Server users must

replace SUBSTR with SUBSTRING.

Free SQL Book, Tim Martyn 58 Copyright Pending 2020

Chapter-10.5: Processing DATE Values

10A. Consider the following two statements where the ORDER BY clauses reference

character-string columns. One of these statements (somehow) produces a desired

result where the rows are sorted in chronological sequence. Which statement?

Execute the statements to verify your answer.

Both results are in ascending alphanumeric sequence. Sorting by the BDCHAR1 column

is interesting because sorting in an YYYY-MM-DD format “just happens to” correspond

to a chronological sequence. For this reason, the YYYY-MM-DD format was very popular

in ancient history file/database systems that did not support a “real” DATE date-type.

SELECT MNAME, BDCHAR3

FROM DEMO3

ORDER BY BDCHAR3

 MNAME BDCHAR2

 JACQUELINE January 10, 2019

 JOSEPHINE June 13, 2017

 EVAN June 5, 2017

 JESSIE March 7, 1982

 JONHHY May 10, 2015

 JULIE May 17, 1978

 HANNAH November 25, 2014

SELECT MNAME, BDCHAR1

FROM DEMO3

ORDER BY BDCHAR1

 MNAME BDCHAR1

 JULIE 1978-05-17

 JESSIE 1982-03-07

 HANNAH 2014-11-25

 JONHHY 2015-05-10

 EVAN 2017-06-05

 JOSEPHINE 2017-06-13

 JACQUELINE 2019-01-10

Free SQL Book, Tim Martyn 59 Copyright Pending 2020

Chapter-11 - Null Values

Display the result table produced by executing:

11A. SELECT A, B, A-B

 FROM NTAB2

 A B A-B

10 - -

15 10 5

- 30 -

- 10 -

40 40 0

- - -

11B. SELECT SUM (A), SUM (B)

 FROM NTAB2

 SUM (A) SUM (B)

65 90

11C. SELECT SUM (A+B), SUM(A) + SUM(B)

 FROM NTAB2

SUM (A+B) SUM (A) + SUM (B)

105 155

11D. SELECT *

 FROM NTAB2

 WHERE A = B

A B

 40 40

11E. SELECT *

 FROM NTAB2

 WHERE A <> B

A B

15 10

11F. SELECT COUNT(*), COUNT(A), COUNT(B)

 FROM NTAB2

 COUNT (*) COUNT (A) COUNT (B)

/////////////////////////////////////// 6 3 4

Free SQL Book, Tim Martyn 60 Copyright Pending 2020

11G. SELECT *

 FROM NTAB2

 WHERE A <> B OR B < 20

A B

 15 10

- 10

11H. SELECT *

 FROM NTAB2

 WHERE A=B OR A<>B

A B

15 10

40 40

11I. SELECT B

 FROM NTAB2

 ORDER BY B

[DB2 & ORACLE Result]

 B

 10

 10

 30

 40

 -

 -

[SQL Server Result]

 B
 -

 -

 10

 10

 30

 40

Free SQL Book, Tim Martyn 61 Copyright Pending 2020

11J. SELECT DISTINCT A

 FROM NTAB2

 A

 10

 15

 40

 -

 Here, DISTICT caused an incidental sort, and the null value sorted high.

 If SQL Server causes incidental sort, the null value will sort low.

11K. SELECT A, SUM (B)

 FROM NTAB2

 GROUP BY A

 A SUM (B)

 10 -

 15 10

 40 40

 - 40

 Here an incidental sort occurred, and the null A value sorted high.

 If SQL Server causes incidental sort, the null value will sort low and the result will

look like.

 A SUM (B)

 - 40

 10 -

 15 10

 40 40

Free SQL Book, Tim Martyn 62 Copyright Pending 2020

Summary Exercises (Chapter 11)

You are given the following NTAB3 table. Execute the following statements. Sorry! Answers

are not show. Determine answer by executing the statements on your system.

1. SELECT A, B, A*B FROM NTAB3;

2. SELECT MAX(A), MIN (B) FROM NTAB3;

3. SELECT SUM(A)+SUM(B), SUM(A+B) FROM NTAB3;

4. SELECT COUNT (*), COUNT(A) FROM NTAB3;

5. SELECT * FROM NTAB3 WHERE A = B;

6. SELECT * FROM NTAB3 WHERE A <> B;

7. SELECT COUNT (*) FROM NTAB3 WHERE A = B OR A <> B;

8. SELECT * FROM NTAB3 WHERE A <> 10 AND B < 10

9. SELECT * FROM NTAB3 WHERE A = 10 OR B < 10

10. SELECT * FROM NTAB3 ORDER BY A;

11. SELECT DISTINCT A FROM NTAB3;

12. SELECT A, SUM(B) FROM NTAB3 GROUP BY A;

13. SELECT * FROM NTAB3 WHERE A IS NULL;

14. SELECT * FROM NTAB3 WHERE A IS NOT NULL;

15. SELECT SUM(A)+SUM(B), SUM(A+B) FROM NTAB3

 WHERE A IS NOT NULL AND B IS NOT NULL;

16. SELECT COALESCE (A,25), COALESCE (B,15) FROM NTAB3;

 A B

20 20

50 -

 - -

 - 30

10 50

10 10

40 50

Free SQL Book, Tim Martyn 63 Copyright Pending 2020

PART III

Data Definition

&

Data Manipulation

Free SQL Book, Tim Martyn 64 Copyright Pending 2020

Chapter-12: No Exercises

Chapter-13 - CREATE TABLE: Optional Appendix Exercise

These exercises are optional. (They pertain to database design, a topic that is not the

primary focus of this book.) For all exercises, you are given a Conceptual Data Model

(CDM) that has been produced by database analysis. Transform this model into a Logical

Data Model (LDM) and then into a collection of CREATE TABLE statements. Specify

foreign-keys. Make reasonable assumptions about data-types. All columns are non-null.

13.1 Professional Sports Team: Each player plays on just one team. Each team has many

players.

 CDM

 LDM

Implementation

PLAYER

PNO

PNAME

POSITION

HIRES TEAM

TNO

TNAME

BUDGET

DROP TABLE TEAM;

DROP TABLE PLAYER;

CREATE TABLE TEAM

(TNO INTEGER NOT NULL,

 TNAME CHAR (20) NOT NULL,

 BUDGET INTEGER NOT NULL,

 PRIMARY KEY (TNO));

CREATE TABLE PLAYER

(PNO INTEGER NOT NULL,

 PNAME CHAR (20) NOT NULL,

 POSITION CHAR (10) NOT NULL,

 TNO INTEGER NOT NULL,

 PRIMARY KEY (PNO),

 FOREIGN KEY (TNO) REFERENCES TEAM);

HIRES PLAYER

PNO [INTEGER]

PNAME [CHAR(20)]

POSITION [CHAR(10)]

TNO [INTEGER] (FK)

TEAM

TNO [INTEGER]

TNAME [CHAR(20)

BUDGET [INTEGER]

Free SQL Book, Tim Martyn 65 Copyright Pending 2020

13.2 College Sports Team: A student may play on many teams. Each team has many

players.

 CDM

LDM

 Implementation

STUDENT

SNO

SNAME

PHONE

MEMBER_OF TEAM

TNO

TNAME

BUDGET

DROP TABLE MEMBER_OF;

DROP TABLE STUDENT;

DROP TABLE TEAM;

CREATE TABLE STUDENT

(SNO INTEGER NOT NULL,

 SNAME CHAR (20) NOT NULL,

 PHONE CHAR (10) NOT NULL,

 PRIMARY KEY (SNO));

CREATE TABLE TEAM

(TNO INTEGER NOT NULL,

 TNAME CHAR (20) NOT NULL,

 BUDGET INTEGER NOT NULL,

 PRIMARY KEY (TNO));

CREATE TABLE MEMBER_OF

(SNO INTEGER NOT NULL,

 TNO INTEGER NOT NULL,

 PRIMARY KEY (SNO, TNO),

 FOREIGN KEY (SNO) REFERENCES STUDENT,

 FOREIGN KEY (TNO) REFERENCES TEAM);

STUDENT

SNO [INTEGER]

SNAME [CHAR(20)]

PHONE [CHAR(10)]

TEAM

TNO [INTEGER]

TNAME [CHAR(20)]

BUDGET [INTEGER]

MEMBER_OF

SNO [INTEGER] (FK1)

TNO [INTEGER] (FK2)

Free SQL Book, Tim Martyn 66 Copyright Pending 2020

13.3 Book Publishing: A publisher sells many books. Each book has one publisher. A book

may have multiple coauthors. An author may write many books.

 CDM

 LDM

PUBLISHER

PNAME

ADDRESS

PHONE

BOOK

ISBN

TITLE

YEAR_PUB

SELLS

WRITES AUTHOR

ANO

ANAME

AUTHOR

ANO [INTEGER]

ANAME [VARCHAR(30)]

PUBLISHER

PNAME [VARCHAR(30)]

ADDRESS [VARCHAR(40)]

PHONE [CHAR(10)]

BOOK

ISBN [VARCHAR(20)]

TITLE [VARCHAR(40)]

YEAR_PUB [CHAR(4)]

PNAME [VARCHAR(30)] (FK)

WRITES

ANO [INTEGER] (FK1)

ISBN [VARCHAR(20)] (FK2)

Free SQL Book, Tim Martyn 67 Copyright Pending 2020

Implementation

DROP TABLE WRITES;

DROP TABLE AUTHOR;

DROP TABLE BOOK;

DROP TABLE PUBLISHER;

CREATE TABLE PUBLISHER

(PNAME VARCHAR (30) NOT NULL,

 ADDRESS VARCHAR (40) NOT NULL,

 PHONE CHAR (10),

 PRIMARY KEY (PNAME));

CREATE TABLE BOOK

(ISBN VARCHAR (20) NOT NULL,

 TITLE VARCHAR (40) NOT NULL,

 YEAR_PUB CHAR (4) NOT NULL,

 PNAME VARCHAR (30) NOT NULL,

 PRIMARY KEY (ISBN),

 FOREIGN KEY (PNAME) REFERENCES PUBLISHER);

CREATE TABLE AUTHOR

(ANO INTEGER NOT NULL,

 ANAME VARCHAR (30) NOT NULL,

 PRIMARY KEY (ANO));

CREATE TABLE WRITES

(ANO INTEGER NOT NULL,

 ISBN VARCHAR (20) NOT NULL,

 PRIMARY KEY (ANO, ISBN),

 FOREIGN KEY (ANO) REFERENCES AUTHOR,

 FOREIGN KEY (ISBN) REFERENCES BOOK);

Free SQL Book, Tim Martyn 68 Copyright Pending 2020

13.4 Star Design: Sometimes, within a data warehouse application, a designer creates a

CDM that looks like a star. The following “star model” shows an EVENT object-type

as the center of the star where all other object-types (OBJA, OBJB, OBJC, and OBJD)

surround EVENT and have a one-to-many-relationship with EVENT.

 CDM

 LDM

EVENT

ANO

BNO

CNO

DNO

EDATE

OBJA

ANO

ANAME

OBJD

DNO

DNAME

OBJC

CNO

CNAME

OBJB

BNO

BNAME

EVENT

ANO [INTEGER] (FK1)

BNO [INTEGER] (FK2)

CNO [INTEGER] (FK3)

DNO [INTEGER] (FK4)

EDATE [DATE]

OBJA

ANO [INTEGER]

ANAME [VARCHAR(30)]

OBJB

BNO [INTEGER]

BNAME [VARCHAR(30)]

OBJD

DNO [INTEGER]

DNAME [VARCHAR(30)]

OBJC

CNO [INTEGER]

CNAME [VARCHAR(30)]

Free SQL Book, Tim Martyn 69 Copyright Pending 2020

 Implementation

DROP TABLE OBJA;

DROP TABLE OBJB;

DROP TABLE OBJC;

DROP TABLE OBJD;

DROP TABLE EVENT;

CREATE TABLE OBJA

(ANO INTEGER NOT NULL,

 ANAME VARCHAR (30) NOT NULL,

PRIMARY KEY (ANO));

CREATE TABLE OBJB

(BNO INTEGER NOT NULL,

 BNAME VARCHAR (30) NOT NULL,

PRIMARY KEY (BNO));

CREATE TABLE OBJC

(CNO INTEGER NOT NULL,

 CNAME VARCHAR (30) NOT NULL,

PRIMARY KEY (CNO));

CREATE TABLE OBJD

(DNO INTEGER NOT NULL,

 DNAME VARCHAR (30) NOT NULL,

PRIMARY KEY (DNO));

CREATE TABLE EVENT

(ANO INTEGER NOT NULL,

 BNO INTEGER NOT NULL,

 CNO INTEGER NOT NULL,

 DNO INTEGER NOT NULL,

 ENO DATE,

 PRIMARY KEY (ANO, BNO, CNO, DNO),

 FOREIGN KEY (ANO) REFERENCES OBJA,

 FOREIGN KEY (BNO) REFERENCES OBJB,

 FOREIGN KEY (CNO) REFERENCES OBJC,

 FOREIGN KEY (DNO) REFERENCES OBJD)

 FOREIGN KEY (ISBN) REFERENCES BOOK);

Free SQL Book, Tim Martyn 70 Copyright Pending 2020

13.5 Cyclic Design: Sometimes multiple relationships between

object-types can form a cycle. Assume we have the MAN and DOG

object-types with the following two relationships.

 OWNS Relationship: A man can own many dogs; and, each dog

must be owned by one man.

 BITES Relationship: A dog may bite many men; and each man

must be bitten by one dog.

 CDM

The following two CREATE TABLE statements are “almost

correct.” The problem involves designating which table to

create first. In the following example, which initially

attempts to create the MAN table, an error occurs because its

foreign-key references DOG, a table that has not yet been

created. A similar problem occurs if we attempt to create the

DOG table first.

Utilize ALTER TABLE statements, as illustrated in Figure 13.4

to resolve this problem.

“Almost” Correct (Chicken-Egg Problem)

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR (10) NOT NULL,

 DNO INTEGER NOT NULL,

 PRIMARY KEY (MNO),

 FOREIGN KEY (DNO) REFERENCES DOG);

CREATE TABLE DOG

(DNO INTEGER NOT NULL,

 DNAME CHAR (10) NOT NULL,

 MNO INTEGER NOT NULL,

 PRIMARY KEY (DNO),

 FOREIGN KEY (MNO) REFERENCES MAN);

OWNS

BITES

DOG

DNO

DNAME

MNO (FK)

MAN

MNO

MNAME

DNO (FK)

Free SQL Book, Tim Martyn 71 Copyright Pending 2020

LDM

 Implementation

 Comment: Having created these tables, we will encounter special considerations

regarding the sequence of INSERT statements. See the following page.

OWNS

BITES

DOG

DNO [INTEGER]

DNAME [CHAR (10)]

MNO [INTEGER] (FK)

MAN

MNO [INTEGER]

MNAME [CHAR (10)]

DNO [INTEGER] (FK)

Correct (Chicken-Egg Problem)

DROP TABLE MAN;

DROP TABLE DOG;

CREATE TABLE MAN

(MNO INTEGER NOT NULL,

 MNAME CHAR (10) NOT NULL,

 DNO INTEGER NOT NULL,

 PRIMARY KEY (MNO));

CREATE TABLE DOG

(DNO INTEGER NOT NULL,

 DNAME CHAR (10) NOT NULL,

 MNO INTEGER NOT NULL,

 PRIMARY KEY (DNO));

ALTER TABLE MAN

 ADD CONSTRAINT FK_DOG

FOREIGN KEY (DNO) REFERENCES DOG;

ALTER TABLE DOG

 ADD CONSTRAINT FK_MAN

FOREIGN KEY (MNO) REFERENCES MAN;

Free SQL Book, Tim Martyn 72 Copyright Pending 2020

Disabling and Enabling Constraints

Assume the MAN and DOG tables have just been created, and they are empty.

Now you want to insert the first row into MAN. For example:

INSERT INTO MAN VALUES (123 , 'JOHNNY', 456)

Problem: The DNO value 456 must fail because there is no matching row in the DOG

table.

Likewise, assume you want to insert the first row into DOG where the MAN table is still

empty. For example:

INSERT INTO DOG VALUES (456 , 'ROVER',789)

Problem: The MNO value 123 must fail because there is no matching row in the MAN

table.

To solution to this problem is to temporally disable the enforcement of foreign-key

constraints. Some systems use the ALTER TABLE statement to satisfy this objective.

Again, you will find considerable variation among different systems.

ALTER TABLE MAN ALTER FOREIGN KEY FK_DOG NOT ENFORCED;

ALTER TABLE DOG ALTER FOREIGN KEY FK_MAN NOT ENFORCED;

INSERT INTO MAN VALUES (123 , 'JOHNNY', 456);

INSERT INTO DOG VALUES (456 , 'ROVER',789);

ALTER TABLE MAN ALTER FOREIGN KEY FK_DOG ENFORCED;

ALTER TABLE DOG ALTER FOREIGN KEY FK_MAN ENFORCED;

Free SQL Book, Tim Martyn 73 Copyright Pending 2020

Chapter-14 CREATE INDEX

14.1 Assume that the solution to Exercise 13.1 is coded in the following script.

a. Create an index on all foreign-keys.

CREATE INDEX XPNAME ON BOOK (PNAME);

CREATE INDEX XANO ON WRITES (ANO);

 CREATE INDEX XISBN ON WRITES (ISBN);

b. Create a composite index on the TITLE and YEAR_PUB columns (in that order)

found in the BOOK table.

 CREATE INDEX XTB ON BOOK (TITLE, YEAR_PUB);

c. The four above indexes on foreign-keys, plus the four automatically created indexes

on the four primary-keys, implies a total number of 8 indexes

DROP TABLE WRITES;

DROP TABLE AUTHOR;

DROP TABLE BOOK;

DROP TABLE PUBLISHER;

CREATE TABLE PUBLISHER

(PNAME VARCHAR (30) NOT NULL,

 ADDRESS VARCHAR (40) NOT NULL,

 PHONE CHAR (10),

 PRIMARY KEY (PNAME));

CREATE TABLE BOOK

(ISBN VARCHAR (20) NOT NULL,

 TITLE VARCHAR (40) NOT NULL,

 YEAR_PUB CHAR (4) NOT NULL,

 PNAME VARCHAR (30) NOT NULL,

 PRIMARY KEY (ISBN),

 FOREIGN KEY (PNAME) REFERENCES PUBLISHER);

CREATE TABLE AUTHOR

(ANO INTEGER NOT NULL,

 ANAME VARCHAR (30) NOT NULL,

 PRIMARY KEY (ANO));

CREATE TABLE WRITES

(ANO INTEGER NOT NULL,

 ISBN VARCHAR (20) NOT NULL,

 PRIMARY KEY (ANO, ISBN),

 FOREIGN KEY (ANO) REFERENCES AUTHOR,

 FOREIGN KEY (ISBN) REFERENCES BOOK);

Free SQL Book, Tim Martyn 74 Copyright Pending 2020

14.2 Assume that: (i) both the TESTDEPT and TESTEMP tables are very large, (ii) the

ENAME column is not unique because two employees may have the same name,

and (iii) your organization has an unusual policy of forbidding the assignment of

two employees having the same name to the same job. Consider the following query

pattern:

You will frequently search on JOBCODE only.

WHERE JOBCODE = _______

You almost never execute a query that searches on ENAME only.

WHERE ENAME = _______

Occasionally you execute a query with a WHERE-clause that looks like:

WHERE ENAME = _______ AND JOBCODE = _______

or

WHERE JOBCODE = _______ AND ENAME = _______

Create one composite index on both the ENAME and JOBCODE columns that

could be helpful.

.

 CREATE UNIQUE INDEX XJOBSAL

 ON EMPLOYEE (JOBCODE, ENAME)

14.3 This is an unfair exercise. But we invite you to speculate on an answer.

 Discussion of Sample Statement 14.2 raised a design decision. If a column will

contain unique values, should you declare a UNIQUE constraint or create a UNIQUE

index? We stated that declaring a UNIQUE column within the CREATE TABLE

statement is usually the preferred approach. Justify this preference.

 The fact that a column must contain unique values is logical, not a physical, constraint.

Hence, this constraint should be declared in the CREATE TABLE statement.

Free SQL Book, Tim Martyn 75 Copyright Pending 2020

Chapter-15 - INSERT – UPDATE - DELETE

15A. Execute the following statement.

 CREATE TABLE JUNK1

 (C1 INTEGER NOT NULL PRIMARY KEY,

 C2 CHAR (5),

 C3 VARCHAR (10));

 Insert the following row into JUNK1.

 INSERT INTO JUNK1 VALUES (250, 'HELLO', 'DOOPY');

 Verify the CREATE TABLE and INSERT operations by executing:

 SELECT * FROM JUNK1

15B. Insert the following three rows into JUNK1. (The hyphen represents a null value.)

INSERT INTO JUNK1 VALUES (150, NULL, 'HAPPY');

INSERT INTO JUNK1 VALUES (350, 'HI', 'SAD');

INSERT INTO JUNK1 VALUES (850, 'BYE', NULL);

 Verify these insert operations by executing: SELECT * FROM JUNK1

15C. Update the JUNK1 table. Change the row where C1 is 150. Its new C3 value should

be set to “GRUMPY”.

 UPDATE JUNK1

 SET C3 = 'GRUMPY'

 WHERE C1 = 150

 Verify this update operation by executing: SELECT * FROM JUNK1

150 - HAPPY

350 HI SAD

850 BYE -

250 HELLO DOOPY

Free SQL Book, Tim Martyn 76 Copyright Pending 2020

15D. Update the JUNK1 table. Change all rows having a C2 value beginning with the

letter H. The new C3 value for each row should be set to CRANKY.

 UPDATE JUNK1

 SET C3 = 'CRANKY'

 WHERE C2 LIKE 'H%'

 Verify this UPDATE operation by executing: SELECT * FROM JUNK1

15E. Delete any row from the JUNK1 table with a C1 value that exceeds 300.

 DELETE

FROM JUNK1

WHERE C1 > 300

 Verify this DELETE operation by executing: SELECT * FROM JUNK1

Free SQL Book, Tim Martyn 77 Copyright Pending 2020

Summary Exercises (Chapter 15)

15F. DELETE all rows from JUNK1.

 DELETE FROM JUNK1

15G. INSERT the following rows into JUNK1.

INSERT INTO JUNK1 VALUES (98, 'YES1', 'YES2');

INSERT INTO JUNK1 VALUES (95, 'NO1', 'NO2');

15H. Update JUNK1 set all C2 values to MAYBE.

 UPDATE JUNK1

 SET C2 = 'MAYBE'

15I. DELETE any row where the C1 value is greater than 95.

 DELETE FROM JUNK1

 WHERE C1 > 95

15J. Drop the JUNK1 table.

 DROP TABLE JUNK1

98 YES1 YES2

95 NO1 NO2

Free SQL Book, Tim Martyn 78 Copyright Pending 2020

PART IV

Join Operations

Free SQL Book, Tim Martyn 79 Copyright Pending 2020

Chapter-16 - Inner-Join: Getting Started

16A. What result tables are produced by executing the following statements?

a. SELECT ENAME, DNAME

 FROM EMPLOYEE, DEPARTMENT

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

 AND BUDGET <= 50000.00

 ORDER BY ENAME

 ENAME DNAME

CURLY INFO. SYS.

GEORGE INFO. SYS.

MOE INFO. SYS.

SHEMP ENGINEERING

b. SELECT ENAME, DNAME

 FROM EMPLOYEE2, DEPARTMENT

 WHERE EMPLOYEE2.DNO = DEPARTMENT.DNO

 AND BUDGET <= 50000.00

 ORDER BY ENAME

 ENAME DNAME

CURLY INFO. SYS.

MOE INFO. SYS.

SHEMP ENGINEERING

c. SELECT ENAME, DNAME

 FROM EMPLOYEE3, DEPARTMENT

 WHERE EMPLOYEE3.DNO = DEPARTMENT.DNO

 AND BUDGET <= 50000.00

 ORDER BY ENAME

ENAME DNAME

CURLY INFO. SYS.

SHEMP ENGINEERING

Free SQL Book, Tim Martyn 80 Copyright Pending 2020

16B. What result tables are produced by executing the following statements?

a. SELECT DEPARTMENT.DNO, DNAME, ENO, ENAME

 FROM DEPARTMENT, EMPLOYEE

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

 AND ENAME NOT LIKE '%O%E%'

 ORDER BY DEPARTMENT.DNO, ENAME

b. SELECT DEPARTMENT.DNO, DNAME, ENO, ENAME

 FROM DEPARTMENT, EMPLOYEE2

 WHERE EMPLOYEE2.DNO = DEPARTMENT.DNO

 AND ENAME NOT LIKE '%O%E%'

 ORDER BY DEPARTMENT.DNO, ENAME

 c. SELECT DEPARTMENT.DNO, DNAME, ENO, ENAME

 FROM DEPARTMENT, EMPLOYEE3

 WHERE EMPLOYEE3.DNO = DEPARTMENT.DNO

 AND ENAME NOT LIKE '%O%E%'

 ORDER BY DEPARTMENT.DNO, ENAME

 Same result for all three queries:

 DNO DNAME ENO ENAME

 10 ACCOUNTING 2000 LARRY

 20 INFO. SYS. 3000 CURLY

40 ENGINEERING 4000 SHEMP

Free SQL Book, Tim Martyn 81 Copyright Pending 2020

The next three exercises reference Design-1 (DEPARTMENT and EMPLOYEE tables).

16C. Display every employee’s name, salary, and the name of the department he works

in. Sort the result table by employee name.

SELECT ENAME, SALARY, DNAME

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

ORDER BY ENAME

ENAME SALARY DNAME

 CURLY 3000.00 INFO. SYS.

 GEORGE 9000.00 INFO. SYS.

 JOE 400.00 ACCOUNTING

 LARRY 2000.00 ACCOUNTING

 MOE 2000.00 INFO. SYS.

 SHEMP 500.00 ENGINEERING

16D. Display the employee number and name of any employee who works for a

department having a budget that is greater than $24,000.00. Sort the result table by

employee number.

SELECT ENO, ENAME

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND BUDGET > 24000.00

ORDER BY ENO

 ENO ENAME

 2000 LARRY

 4000 SHEMP

 5000 JOE

Free SQL Book, Tim Martyn 82 Copyright Pending 2020

16E. Display the department numbers and names of all departments that have at least

one employee earning a salary that is greater than $1,000.00. Sort the result table

by department number.

SELECT DEPARTMENT.DNO, DNAME

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

AND SALARY > 1000.00

 DNO DNAME

 10 ACCOUNTING

 20 INFO. SYS.

 20 INFO. SYS.

 20 INFO. SYS.

 This statement only displays columns from the parent-table (DEPARTMENT).

Hence, duplicate rows can occur. You can specify DISTINCT to remove the duplicate

rows.

16F. Re-write the following statement using:

(a) Alias D for DEPARTMENT and alias E for EMPLOYEE

(b) The JOIN-ON syntax without table aliases

(c) The JOIN-ON syntax with table aliases

 SELECT ENO, ENAME, SALARY,

 DEPARTMENT.DNO, DNAME, BUDGET

FROM EMPLOYEE, DEPARTMENT

 WHERE EMPLOYEE.DNO = DEPARTMENT.DNO

 a. SELECT E.ENO, E.ENAME, E.SALARY,

 D.DNO, DNAME,D.BUDGET

FROM EMPLOYEE E, DEPARTMENT D

 WHERE E.DNO = D.DNO

 b. SELECT ENO, ENAME, SALARY,

 DEPARTMENT.DNO, DNAME, BUDGET

FROM EMPLOYEE INNER JOIN DEPARTMENT

 ON EMPLOYEE.DNO = DEPARTMENT.DNO

 c. SELECT E.ENO, E.ENAME, E.SALARY,

 D.DNO, D.DNAME, D.BUDGET

FROM EMPLOYEE E INNER JOIN DEPARTMENT D

 ON E.DNO = D.DNO

Free SQL Book, Tim Martyn 83 Copyright Pending 2020

16G. Re-write the following statement using:

(a) Alias DP for DEPARTMENT and alias EMP for EMPLOYEE

(b) The JOIN-ON syntax without table aliases

 (c) The JOIN-ON syntax with table aliases

 SELECT DEPARTMENT.DNO, ENAME

FROM DEPARTMENT, EMPLOYEE

 WHERE DEPARTMENT.DNO = EMPLOYEE.DNO

 AND BUDGET > 21000

ORDER BY DEPARTMENT.DNO, ENAME

a. SELECT DP.DNO, EMP.ENAME

FROM DEPARTMENT DP, EMPLOYEE EMP

 WHERE DP.DNO = EMP.DNO

 AND DP. BUDGET > 21000

ORDER BY DP.DNO, EMP.ENAME

b. SELECT DEPARTMENT.DNO, EMPLOYEE.ENAME

FROM DEPARTMENT INNER JOIN EMPLOYEE

 ON DEPARTMENT.DNO = EMPLOYEE.DNO

 AND DEPARTMENT.BUDGET > 21000

ORDER BY DEPARTMENT.DNO, EMPLOYEE.ENAME

c. SELECT DP.DNO, EMP.ENAME

FROM DEPARTMENT DP INNER JOIN EMPLOYEE EMP

 ON DP.DNO = EMP.DNO

 AND DP.BUDGET > 21000

ORDER BY DP.DNO, EMP.ENAME

Free SQL Book, Tim Martyn 84 Copyright Pending 2020

Summary Exercises (Chapter 16)

These exercises reference Design-1 (DEPARTMENT and EMPLOYEE tables). Do not

display duplicate rows in any result table. Produce two solutions using the FROM-

WHERE syntax and the JOIN-ON syntax. Both solutions should specify table aliases.

16H. Display every employee’s number, department number, and the name of the

department he works in. Sort the result table by employee number. The result

should look like:

ENO DNO DNAME

 1000 20 INFO. SYS.

 2000 10 ACCOUNTING

 3000 20 INFO. SYS.

 4000 40 ENGINEERING

 5000 10 ACCOUNTING

 6000 20 INFO. SYS.

SELECT E.ENO, D.DNO, D.DNAME

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DNO = D.DNO

ORDER BY E.ENO

SELECT E.ENO, D.DNO, D.DNAME

FROM EMPLOYEE E INNER JOIN DEPARTMENT D

ON E.DNO = D.DNO

ORDER BY E.ENO

Free SQL Book, Tim Martyn 85 Copyright Pending 2020

16I. Display the employee name and salary of any employee who works for a

department having a budget that is less than $25,000.00. Sort the result table by

employee name. The result should look like:

ENAME SALARY

CURLY 3000.00

GEORGE 9000.00

MOE 2000.00

SELECT E.ENAME, E.SALARY

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DNO = D.DNO

AND D.BUDGET < 25000.00

ORDER BY E.ENAME

SELECT E.ENAME, E.SALARY

FROM EMPLOYEE E INNER JOIN DEPARTMENT D

ON E.DNO = D.DNO

WHERE D.BUDGET < 25000.00

ORDER BY E.ENAME

The SELECT statement only displays columns from the child-table (EMPLOYEE).

Hence, including DISTINCT is unnecessary.

Free SQL Book, Tim Martyn 86 Copyright Pending 2020

16J. Display the department numbers and budgets of all departments that have at least

one employee earning a salary that is greater than $1,000.00. Sort the result table

by department number. The result should look like:

 DNO DNAME BUDGET

 10 ACCOUNTING 75000.00

40 ENGINEERING 25000.00

SELECT DISTINCT D.DNO, D.DNAME, D.BUDGET

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DNO = D.DNO

AND E.SALARY < 1000.00

ORDER BY D.DNO

SELECT DISTINCT D.DNO, D.DNAME, D.BUDGET

FROM EMPLOYEE E INNER JOIN DEPARTMENT D

ON E.DNO = D.DNO

AND E.SALARY < 1000.00

ORDER BY D.DNO

DISTINCT is necessary because SELECT only displays columns from the parent-

table.

Free SQL Book, Tim Martyn 87 Copyright Pending 2020

Chapter-17 Exercises: More About Inner-Join

17A. Modify Sample Query 17.2 to express each ratio as a percentage.

SELECT E.ENO, E.SALARY,

 D.DNO, D.BUDGET, (E.SALARY/D.BUDGET)*100

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 ENO SALARY DNO BUDGET (SALARY/BUDGET)*100

 1000 2000.00 20 20000.00 10.00

 2000 2000.00 10 75000.00 2.66

 3000 3000.00 20 20000.00 15.00

 4000 500.00 40 25000.00 2.00

 5000 400.00 10 75000.00 0.53

 6000 9000.00 20 20000.00 45.00

17B. Display the average salary of employees who work for a department with a budget

that is greater than $20,000.00.

SELECT AVG (SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

AND D.BUDGET > 20000.00

 AVG (SALARY)

 966.66

Free SQL Book, Tim Martyn 88 Copyright Pending 2020

17Ca. Reference the DEPARTMENT and EMPLOYEE tables. For each department that

has employees, display the department name along with the maximum

departmental salary for employees who work in the department.

SELECT D.DNAME, MAX (E.SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 GROUP BY D.DNAME

 DNAME MAX(SALARY)

 ACCOUNTING 2000.00

 ENGINEERING 500.00

 INFO. SYS. 9000.00

17Cb. Reference the DEPARTMENT and EMPLOYEE tables. For each department with

at least one employee, display the department number, department name,

department budget, maximum salary, and minimum salary of all employees who

work in the department.

 SELECT D.DNO, D.DNAME, D.BUDGET,

 MAX (E.SALARY), MIN (E.SALARY)

 FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DNO = E.DNO

 GROUP BY D.DNO, D.DNAME, D.BUDGET

 DNO DNAME BUDGET MAX(SALARY) MIN(SALARY)

 10 ACCOUNTING 75000.00 2000.00 400.00

 20 INFO. SYS. 20000.00 9000.00 2000.00

 40 ENGINEERING 25000.00 500.00 500.00

Free SQL Book, Tim Martyn 89 Copyright Pending 2020

17D. Assume every employee is given a $20,000.00 raise. Under this circumstance, does

any employee have a new salary that exceeds the budget of his own department? If

yes, display the employee’s name, old salary, and new salary.

SELECT E.ENAME, E.SALARY, E.SALARY + 20000.00

FROM EMPLOYEE E, DEPARTMENT D

 WHERE E.DNO = D.DNO

 AND (E.SALARY + 20000.00) > D.BUDGET

 ENAME SALARY SALARY+20000.00

 MOE 2000.00 22000.00

 CURLY 3000.00 23000.00

 GEORGE 9000.00 29000.00

Free SQL Book, Tim Martyn 90 Copyright Pending 2020

Summary Exercises (Chapter 17)

17E. Assume that every employee is given a raise equal to 5% of the employee’s

departmental budget. Display every employee’s name, old salary, and new salary.

SELECT E.ENAME, SALARY, SALARY+ (0.05 * BUDGET) NEWSAL

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 ENAME SALARY NEWSAL

 MOE 2000.00 3000.0000

 LARRY 2000.00 5750.0000

 CURLY 3000.00 4000.0000

 SHEMP 500.00 1750.0000

 JOE 400.00 4150.0000

 GEORGE 9000.00 10000.0000

17F. Only consider departments that have employees. How many of these departments

have a budget that exceeds $20.000.00? And, what is the total number of employees

hired by these departments?

SELECT COUNT (DISTINCT D.DNO) DCT, COUNT (E.ENO) EMPCT

FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DNO = E.DNO

 AND D.BUDGET > 20000.00

 DCT EMPCT
 2 3

We need to specify DISTINCT in “COUNT (DISTINCT D.DNO)” because

duplicate D.DNO values can appear in the join result. We did not specify

DISTINCT for COUNT (E.ENO) because we know that the join result cannot

contain duplicate E.ENO values.

Free SQL Book, Tim Martyn 91 Copyright Pending 2020

17G. Extend the previous exercise. Calculate a third column by dividing the second

column (number of employees) by the first value (number of departments) to

determine the overall average of employees per department.

 SELECT COUNT (DISTINCT D.DNO) DCT, COUNT (E.ENO) EMPCT,

 (COUNT (E.ENO) *1.00) /COUNT (DISTINCT D.DNO) OAVG

 FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DNO = E.DNO

 AND D.BUDGET > 20000.00

DCT EMPCT OAVG

 2 3 1.50

COUNT returns integer values. Hence, the calculation for the third column divides

an integer by an integer. We multiplied by 1.00 to produce get a decimal result.

17H. Only consider departments that have employees. Display the department name and

the average departmental salary for each department.

SELECT D.DNAME, AVG (E.SALARY) AVGSAL

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 GROUP BY D.DNAME

 DNAME AVGSAL

ACCOUNTING 1200.00

ENGINEERING 500.00

 INFO. SYS. 4666.66

Free SQL Book, Tim Martyn 92 Copyright Pending 2020

17I. Modify the previous exercise. Display the department name and the average

departmental salary if that average is less than $1,000.00

SELECT D.DNAME, AVG (E.SALARY) AVGSAL

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 GROUP BY D.DNAME

 HAVING AVG (E.SALARY) < 1000.00

 DNAME AVGSAL

ENGINEERING 500.00

17J. Only consider departments that have employees. For each such department, display

the department name and the minimum salary paid to an employee who works in the

department.

SELECT D.DNAME, MIN (E.SALARY) MINSAL

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 GROUP BY D.DNAME

 DNAME MINSAL

 ACCOUNTING 400.00

 ENGINEERING 500.00

 INFO. SYS. 2000.00

Free SQL Book, Tim Martyn 93 Copyright Pending 2020

17K. Modify the previous exercise. We want to display the department name and the smallest

salary paid to some employee who works in the department if that minimum salary

value is less than $1,000.00.

SELECT D.DNAME, MIN (E.SALARY) MINSAL

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 GROUP BY D.DNAME

 HAVING MIN (E.SALARY) < 1000.00

 DNAME MINSAL

 ACCOUNTING 400.00

 ENGINEERING 500.00

 The logic of this query allows for an alternative solution (that could be more efficient).

We use the WHERE-clause to only select rows with a SALARY this is less than

$1,000.00.

SELECT D.DNAME, MIN (E.SALARY) MINSAL

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 AND E.SALARY < 1000.00

 GROUP BY D.DNAME

Free SQL Book, Tim Martyn 94 Copyright Pending 2020

Chapter-18 Exercises: Multi-Table Inner-Join

18A. Display the name of every customer, followed by the name of the state and the

name of the region where the customer is located. Display the result in ascending

sequence by customer name.

SELECT C.CNAME, ST.STNAME, R.RNAME

FROM REGION R,

 STATE ST,

 CUSTOMER C

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

ORDER BY C.CNAME

 CNAME STNAME RNAME

 BOLYAI MASSACHUSETTS NORTHEAST

 BOOLE FLORIDA SOUTHEAST

 CANTOR FLORIDA SOUTHEAST

 CHURCH NEW MEXICO SOUTHWEST

 DECARTES WASHINGTON NORTHWEST

 EUCLID MASSACHUSETTS NORTHEAST

 GODEL GEORGIA SOUTHEAST

 HILBERT MASSACHUSETTS NORTHEAST

 HYPATIA MASSACHUSETTS NORTHEAST

 LEIBNIZ OREGON NORTHWEST

 MANDELBROT ARIZONA SOUTHWEST

 NEWTON OREGON NORTHWEST

 PASCAL WASHINGTON NORTHWEST

 PYTHAGORAS MASSACHUSETTS NORTHEAST

 RUSSELL GEORGIA SOUTHEAST

 TURING ARIZONA SOUTHWEST

 VON NEUMANN NEW MEXICO SOUTHWEST

 ZENO MASSACHUSETTS NORTHEAST

Free SQL Book, Tim Martyn 95 Copyright Pending 2020

18B. Display the name of every supplier, followed by the names of the region and state

where the supplier is located. Display the result in ascending sequence by supplier

name.

SELECT S.SNAME, R.RNAME, ST.STNAME

FROM REGION R,

 STATE ST,

 SUPPLIER S

WHERE R.RNO = ST.RNO

AND ST.STCODE = S.STCODE

ORDER BY S.SNAME

 SNAME RNAME STNAME

 SUPPLIER1 NORTHEAST MASSACHUSETTS

 SUPPLIER2 NORTHEAST MASSACHUSETTS

 SUPPLIER3 NORTHEAST CONNECTICUT

 SUPPLIER4 SOUTHEAST FLORIDA

 SUPPLIER5 SOUTHEAST GEORGIA

 SUPPLIER6 NORTHWEST WASHINGTON

 SUPPLIER7 NORTHWEST OREGON

 SUPPLIER8 NORTHWEST OREGON

Free SQL Book, Tim Martyn 96 Copyright Pending 2020

18C. For every supplier who can sell your organization some part, display the supplier

number and name, the part number and name, and the price you will pay to the

supplier for the part. Display the columns in the following left-to-right sequence:

SNO, SNAME, PNO, PNAME, and PSPRICE. Sort the result by SNO, PNO.

SELECT S.SNO, S.SNAME, P.PNO, P.PNAME, PS.PSPRICE

FROM PARTSUPP PS,

 PART P,

 SUPPLIER S

WHERE PS.SNO = S.SNO

AND PS.PNO = P.PNO

ORDER BY S.SNO, P.PNO

 SNO SNAME PNO PNAME PSPRICE

 S1 SUPPLIER1 P5 PART5 10.00

 S2 SUPPLIER2 P1 PART1 10.50

 S2 SUPPLIER2 P5 PART5 10.00

 S2 SUPPLIER2 P7 PART7 2.00

 S3 SUPPLIER3 P3 PART3 12.00

 S4 SUPPLIER4 P1 PART1 11.00

 S4 SUPPLIER4 P3 PART3 12.50

 S4 SUPPLIER4 P4 PART4 12.00

 S4 SUPPLIER4 P5 PART5 11.00

 S4 SUPPLIER4 P6 PART6 4.00

 S4 SUPPLIER4 P7 PART7 3.00

 S4 SUPPLIER4 P8 PART8 5.00

 S5 SUPPLIER5 P7 PART7 3.50

 S6 SUPPLIER6 P6 PART6 4.00

 S6 SUPPLIER6 P7 PART7 3.50

 S6 SUPPLIER6 P8 PART8 4.00

 S8 SUPPLIER8 P6 PART6 4.00

 S8 SUPPLIER8 P8 PART8 3.00

Free SQL Book, Tim Martyn 97 Copyright Pending 2020

18D. We are only interested in customers who have one or more purchase orders. Display

the customer’s number and name, followed by the name of the state and the name

of the region where the customer is located, followed by the date of the purchase

order. Display the result in ascending sequence by purchase order date within

customer number.

SELECT C.CNO, C.CNAME, ST.STNAME, R.RNAME, PO.PODATE

FROM REGION R,

 STATE ST,

 CUSTOMER C,

 PUR_ORDER PO

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

AND C.CNO = PO.CNO

ORDER BY C.CNO, PO.PODATE

 CNO CNAME STNAME RNAME PODATE

 100 PYTHAGORAS MASSACHUSETTS NORTHEAST 1

 100 PYTHAGORAS MASSACHUSETTS NORTHEAST 3

 110 EUCLID MASSACHUSETTS NORTHEAST 47

 110 EUCLID MASSACHUSETTS NORTHEAST 49

 200 HYPATIA MASSACHUSETTS NORTHEAST 20

 200 HYPATIA MASSACHUSETTS NORTHEAST 21

 220 ZENO MASSACHUSETTS NORTHEAST 5

 220 ZENO MASSACHUSETTS NORTHEAST 22

 220 ZENO MASSACHUSETTS NORTHEAST 23

 230 BOLYAI MASSACHUSETTS NORTHEAST 6

 300 NEWTON OREGON NORTHWEST 7

 300 NEWTON OREGON NORTHWEST 8

 330 LEIBNIZ OREGON NORTHWEST 9

 330 LEIBNIZ OREGON NORTHWEST 61

 400 DECARTES WASHINGTON NORTHWEST 62

 400 DECARTES WASHINGTON NORTHWEST 63

 440 PASCAL WASHINGTON NORTHWEST 64

 440 PASCAL WASHINGTON NORTHWEST 65

 440 PASCAL WASHINGTON NORTHWEST 71

 500 HILBERT MASSACHUSETTS NORTHEAST 72

 600 BOOLE FLORIDA SOUTHEAST 73

 600 BOOLE FLORIDA SOUTHEAST 74

 660 CANTOR FLORIDA SOUTHEAST 1

 660 CANTOR FLORIDA SOUTHEAST 75

 700 RUSSELL GEORGIA SOUTHEAST 1

 770 GODEL GEORGIA SOUTHEAST 3

 800 VON NEUMANN NEW MEXICO SOUTHWEST 3

 880 TURING ARIZONA SOUTHWEST 3

 880 TURING ARIZONA SOUTHWEST 4

 880 TURING ARIZONA SOUTHWEST 10

 880 TURING ARIZONA SOUTHWEST 10

Free SQL Book, Tim Martyn 98 Copyright Pending 2020

18E. For every part that you can purchase from some supplier, display the part number

and name, followed by the supplier number and name, followed by the name of the

state where the supplier is located, followed by the price you will pay (PSPRICE)

to the supplier for the part. Sort the result by PNO, SNO.

SELECT P.PNO, P.PNAME, S.SNO, S.SNAME, ST.STNAME, PS.PSPRICE

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S,

 STATE ST

WHERE P.PNO = PS.PNO

AND PS.SNO = S.SNO

AND S.STCODE = ST.STCODE

ORDER BY P.PNO, S.SNO

PNO PNAME SNO SNAME STNAME PSPRICE

 P1 PART1 S2 SUPPLIER2 MASSACHUSETTS 10.50

 P1 PART1 S4 SUPPLIER4 FLORIDA 11.00

 P3 PART3 S3 SUPPLIER3 CONNECTICUT 12.00

 P3 PART3 S4 SUPPLIER4 FLORIDA 12.50

 P4 PART4 S4 SUPPLIER4 FLORIDA 12.00

 P5 PART5 S1 SUPPLIER1 MASSACHUSETTS 10.00

 P5 PART5 S2 SUPPLIER2 MASSACHUSETTS 10.00

 P5 PART5 S4 SUPPLIER4 FLORIDA 11.00

 P6 PART6 S4 SUPPLIER4 FLORIDA 4.00

 P6 PART6 S6 SUPPLIER6 WASHINGTON 4.00

 P6 PART6 S8 SUPPLIER8 OREGON 4.00

 P7 PART7 S2 SUPPLIER2 MASSACHUSETTS 2.00

 P7 PART7 S4 SUPPLIER4 FLORIDA 3.00

 P7 PART7 S5 SUPPLIER5 GEORGIA 3.50

 P7 PART7 S6 SUPPLIER6 WASHINGTON 3.50

 P8 PART8 S4 SUPPLIER4 FLORIDA 5.00

 P8 PART8 S6 SUPPLIER6 WASHINGTON 4.00

 P8 PART8 S8 SUPPLIER8 OREGON 3.00

Free SQL Book, Tim Martyn 99 Copyright Pending 2020

18F. We are only interested in customers who have purchased parts. (These are

customers who have completed a purchase order with line items. Recall that some

purchase orders may not have any line items.) Display the customer’s name,

followed by the name of the state and the name of the region where the customer is

located, followed by the date of the purchase order, followed by the part number of

the purchased part. Display the result in ascending sequence by CNAME,

PODATE, PNO.

SELECT C.CNAME, ST.STNAME, R.RNAME, PO.PODATE, LI.PNO

FROM REGION R,

 STATE ST,

 CUSTOMER C,

PUR_ORDER PO,

 LINEITEM LI

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

AND C.CNO = PO.CNO

AND PO.PONO = LI.PONO

ORDER BY C.CNAME, PO.PODATE, LI.PNO

 CNAME STNAME RNAME PODATE PNO

 BOLYAI MASSACHUSETTS NORTHEAST 6 P4

 BOLYAI MASSACHUSETTS NORTHEAST 6 P5

 BOOLE FLORIDA SOUTHEAST 73 P5

 BOOLE FLORIDA SOUTHEAST 73 P7

 BOOLE FLORIDA SOUTHEAST 73 P8

 BOOLE FLORIDA SOUTHEAST 74 P8

 CANTOR FLORIDA SOUTHEAST 1 P8

 CANTOR FLORIDA SOUTHEAST 75 P1

 CANTOR FLORIDA SOUTHEAST 75 P3

 CANTOR FLORIDA SOUTHEAST 75 P4

 CANTOR FLORIDA SOUTHEAST 75 P5

 DECARTES WASHINGTON NORTHWEST 62 P6

 DECARTES WASHINGTON NORTHWEST 62 P7

 DECARTES WASHINGTON NORTHWEST 63 P7

 DECARTES WASHINGTON NORTHWEST 63 P8

 ZENO MASSACHUSETTS NORTHEAST 5 P1

 ZENO MASSACHUSETTS NORTHEAST 5 P3

 ZENO MASSACHUSETTS NORTHEAST 22 P4

 ZENO MASSACHUSETTS NORTHEAST 22 P5

 ZENO MASSACHUSETTS NORTHEAST 23 P6

 ZENO MASSACHUSETTS NORTHEAST 23 P7

 Total of 62 rows

Free SQL Book, Tim Martyn 100 Copyright Pending 2020

18G. We are only interested in parts that you can purchase from some supplier. For these

parts, display the part number and name, followed by the price you will pay of the

part, followed by the number and name of the supplier who will sell you this part

at this price. Also include the names of the state and region where the supplier is

located. Display the result in ascending sequence by price with part number.

SELECT P.PNO, P.PNAME, PS.PSPRICE,

 S.SNO, S.SNAME, ST.STNAME, R.RNAME

FROM PART P,

 PARTSUPP PS,

 SUPPLIER S,

 STATE ST,

 REGION R

WHERE P.PNO = PS.PNO

AND PS.SNO = S.SNO

AND S.STCODE = ST.STCODE

AND ST.RNO = R.RNO

ORDER BY P.PNO, PS.PSPRICE

 PNO PNAME PSPRICE SNO SNAME STNAME RNAME

 P1 PART1 10.50 S2 SUPPLIER2 MASSACHUSETTS NORTHEAST

 P1 PART1 11.00 S4 SUPPLIER4 FLORIDA SOUTHEAST

 P3 PART3 12.00 S3 SUPPLIER3 CONNECTICUT NORTHEAST

 P3 PART3 12.50 S4 SUPPLIER4 FLORIDA SOUTHEAST

 P4 PART4 12.00 S4 SUPPLIER4 FLORIDA SOUTHEAST

 P5 PART5 10.00 S1 SUPPLIER1 MASSACHUSETTS NORTHEAST

 P5 PART5 10.00 S2 SUPPLIER2 MASSACHUSETTS NORTHEAST

 P5 PART5 11.00 S4 SUPPLIER4 FLORIDA SOUTHEAST

 P6 PART6 4.00 S4 SUPPLIER4 FLORIDA SOUTHEAST

 P6 PART6 4.00 S6 SUPPLIER6 WASHINGTON NORTHWEST

 P6 PART6 4.00 S8 SUPPLIER8 OREGON NORTHWEST

 P7 PART7 2.00 S2 SUPPLIER2 MASSACHUSETTS NORTHEAST

 P7 PART7 3.00 S4 SUPPLIER4 FLORIDA SOUTHEAST

 P7 PART7 3.50 S5 SUPPLIER5 GEORGIA SOUTHEAST

 P7 PART7 3.50 S6 SUPPLIER6 WASHINGTON NORTHWEST

 P8 PART8 3.00 S8 SUPPLIER8 OREGON NORTHWEST

 P8 PART8 4.00 S6 SUPPLIER6 WASHINGTON NORTHWEST

 P8 PART8 5.00 S4 SUPPLIER4 FLORIDA SOUTHEAST

Free SQL Book, Tim Martyn 101 Copyright Pending 2020

18H. We are only interested in customers who have purchased parts. (These are

customers who have completed a purchase order with line items. Recall that some

purchase orders may not have any line items.) Display the customer’s name,

followed by the names of the state and region where the customer is located,

followed by the purchase order number, followed by the part number, line-item

price (LIPRICE) and purchase price (PSPRICE) of the part. Display the result in

ascending sequence by CNAME, PONO, PNO.

SELECT C.CNAME, ST.STNAME, R.RNAME,

 PO.PONO, LI.PNO, LI.LIPRICE, PS.PSPRICE

FROM REGION R,

 STATE ST,

 CUSTOMER C,

PUR_ORDER PO,

 LINEITEM LI,

 PARTSUPP PS

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

AND C.CNO = PO.CNO

AND PO.PONO = LI.PONO

AND LI.PNO = PS.PNO AND LI.SNO = PS.SNO

ORDER BY C.CNAME, PO.PONO, LI.PNO

 CNAME STNAME RNAME PONO PNO LIPRICE PSPRICE

 BOLYAI MASSACHUSETTS NORTHEAST 11124 P4 13.00 12.00

 BOLYAI MASSACHUSETTS NORTHEAST 11124 P5 11.00 10.00

 BOOLE FLORIDA SOUTHEAST 11152 P5 12.00 11.00

 BOOLE FLORIDA SOUTHEAST 11152 P7 3.00 2.00

 BOOLE FLORIDA SOUTHEAST 11152 P8 4.00 3.00

 BOOLE FLORIDA SOUTHEAST 11153 P8 4.00 3.00

 CANTOR FLORIDA SOUTHEAST 11154 P1 11.50 10.50

 CANTOR FLORIDA SOUTHEAST 11154 P3 14.50 12.50

 CANTOR FLORIDA SOUTHEAST 11154 P4 13.00 12.00

 CANTOR FLORIDA SOUTHEAST 11154 P5 11.00 10.00

 CANTOR FLORIDA SOUTHEAST 11155 P8 4.50 3.00

 DECARTES WASHINGTON NORTHWEST 11142 P6 5.00 4.00

 DECARTES WASHINGTON NORTHWEST 11142 P7 3.00 2.00

 DECARTES WASHINGTON NORTHWEST 11144 P7 4.00 3.00

 DECARTES WASHINGTON NORTHWEST 11144 P8 5.00 4.00

 VON NEUMANN NEW MEXICO SOUTHWEST 11158 P1 11.50 10.50

 VON NEUMANN NEW MEXICO SOUTHWEST 11158 P3 13.50 12.50

 ZENO MASSACHUSETTS NORTHEAST 11120 P4 13.00 12.00

 ZENO MASSACHUSETTS NORTHEAST 11120 P5 11.00 10.00

 ZENO MASSACHUSETTS NORTHEAST 11121 P6 5.00 4.00

 ZENO MASSACHUSETTS NORTHEAST 11121 P7 4.00 3.00

 ZENO MASSACHUSETTS NORTHEAST 11122 P1 11.50 10.50

 ZENO MASSACHUSETTS NORTHEAST 11122 P3 13.00 12.00

 Total of 62 rows

Free SQL Book, Tim Martyn 102 Copyright Pending 2020

18I. This example extends the previous Exercise 18H. We are only interested in

customers who have purchased parts. (These are customers who have completed a

purchase order with line items. Recall that some purchase orders may not have any

line items.) Display the customer’s name, followed by the names of the state and

region where the customer is located, followed by the purchase order number,

followed by the part number and name, followed by the line-item price (LIPRICE)

and purchase price (PSPRICE) of the part. Display the result in ascending sequence

by CNAME, PONO, PNO.

SELECT C.CNAME, ST.STNAME, R.RNAME, PO.PONO,

 LI.PNO, P.PNAME, LI.LIPRICE, PS.PSPRICE

FROM REGION R,

 STATE ST,

 CUSTOMER C,

 PUR_ORDER PO,

 LINEITEM LI,

 PARTSUPP PS,

 PART P

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

AND C.CNO = PO.CNO

AND PO.PONO = LI.PONO

AND LI.PNO = PS.PNO AND LI.SNO = PS.SNO

AND PS.PNO = P.PNO

ORDER BY C.CNAME, PO.PONO, LI.PNO

CNAME STNAME RNAME PONO PNO PNAME LIPRICE PSPRICE

BOLYAI MASSACHUSETTS NORTHEAST 11124 P4 PART4 13.00 12.00

BOLYAI MASSACHUSETTS NORTHEAST 11124 P5 PART5 11.00 10.00

BOOLE FLORIDA SOUTHEAST 11152 P5 PART5 12.00 11.00

BOOLE FLORIDA SOUTHEAST 11152 P7 PART7 3.00 2.00

BOOLE FLORIDA SOUTHEAST 11152 P8 PART8 4.00 3.00

BOOLE FLORIDA SOUTHEAST 11153 P8 PART8 4.00 3.00

 .

ZENO MASSACHUSETTS NORTHEAST 11120 P4 PART4 13.00 12.00

ZENO MASSACHUSETTS NORTHEAST 11120 P5 PART5 11.00 10.00

ZENO MASSACHUSETTS NORTHEAST 11121 P6 PART6 5.00 4.00

ZENO MASSACHUSETTS NORTHEAST 11121 P7 PART7 4.00 3.00

ZENO MASSACHUSETTS NORTHEAST 11122 P1 PART1 11.50 10.50

ZENO MASSACHUSETTS NORTHEAST 11122 P3 PART3 13.00 12.00

Total of 62 rows

Free SQL Book, Tim Martyn 103 Copyright Pending 2020

18J. We are only interested in customers having names that begin with the letter “B”.

Display the customers’ name, followed by the name of the state and the name of

the region where the customer is located. Display the result in ascending sequence

by customer name.

SELECT C.CNAME, ST.STNAME, R.RNAME

FROM REGION R,

 STATE ST,

 CUSTOMER C

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

AND CNAME LIKE 'B%'

ORDER BY C.CNAME

 CNAME STNAME RNAME

 BOLYAI MASSACHUSETTS NORTHEAST

 BOOLE FLORIDA SOUTHEAST

18K. We are only interested in suppliers who are located in Florida (STCODE = ‘FL’)

who sell parts having a weight (PWT) that is less than 20 pounds. Display each

supplier’s number and name, followed by the part number, name, and weight,

followed by the price you will pay to the supplier for the part. Sort the result by

SNO, PNO.

SELECT S.SNO, S.SNAME, P.PNO, P.PNAME, P.PWT, PS.PSPRICE

FROM PARTSUPP PS,

 PART P,

 SUPPLIER S

WHERE PS.SNO = S.SNO

AND PS.PNO = P.PNO

AND S.STCODE = 'FL'

AND P.PWT < 20

 ORDER BY S.SNO, P.PNO

SNO SNAME PNO PNAME PWT PSPRICE

 S4 SUPPLIER4 P4 PART4 10 12.00

 S4 SUPPLIER4 P6 PART6 12 4.00

 S4 SUPPLIER4 P8 PART8 15 5.00

Free SQL Book, Tim Martyn 104 Copyright Pending 2020

18L. The basic objective is to determine total number of parts each customer has

purchased. This amount is equal to sum of the LINEITEM.QTY values for each

customer. Display the customer’s number followed by the total number of parts

purchased. Sort the result in ascending sequence by customer number.

SELECT C.CNO, SUM (LI.QTY) SUMQTY

FROM CUSTOMER C,

 PUR_ORDER PO,

 LINEITEM LI

WHERE C.CNO = PO.CNO

AND PO.PONO = LI.PONO

GROUP BY C.CNO

 ORDER BY C.CNO

 CNO SUMQTY

 100 60

 110 70

 200 50

 220 100

 230 20

 300 30

 330 60

 400 60

 440 120

 500 30

 600 95

 660 90

 700 40

 770 30

 800 30

 880 60

Free SQL Book, Tim Martyn 105 Copyright Pending 2020

18M. This example is a minor modification to the previous exercise (18L). Along with

the customer number, we also want to display the customer name and state code.

(This exercise is really a review of grouping.)

 SELECT C.CNO, C.CNAME, C.STCODE, SUM (LI.QTY) SUMQTY

FROM CUSTOMER C,

 PUR_ORDER PO,

 LINEITEM LI

WHERE C.CNO = PO.CNO

AND PO.PONO = LI.PONO

GROUP BY C.CNO, C.CNAME, C.STCODE

 ORDER BY C.CNO

 CNO CNAME STCODE SUMQTY
 100 PYTHAGORAS MA 60

 110 EUCLID MA 70

 200 HYPATIA MA 50

 220 ZENO MA 100

 230 BOLYAI MA 20

 300 NEWTON OR 30

 330 LEIBNIZ OR 60

 400 DECARTES WA 60

 440 PASCAL WA 120

 500 HILBERT MA 30

 600 BOOLE FL 95

 660 CANTOR FL 90

 700 RUSSELL GE 40

 770 GODEL GE 30

 800 VON NEUMANN NM 30

 880 TURING AZ 60

Free SQL Book, Tim Martyn 106 Copyright Pending 2020

18N. This example extends the previous exercise (18M). We only want to display

information about those customers who have purchased a total of more than 100

parts.

SELECT C.CNO, C.CNAME, C.STCODE, SUM (LI.QTY) SUMQTY

FROM CUSTOMER C,

 PUR_ORDER PO,

 LINEITEM LI

WHERE C.CNO = PO.CNO

AND PO.PONO = LI.PONO

GROUP BY C.CNO, C.CNAME, C.STCODE

HAVING SUM (LI.QTY) > 100

 ORDER BY C.CNO

 CNO CNAME STCODE SUMQTY

 440 PASCAL WA 120

Free SQL Book, Tim Martyn 107 Copyright Pending 2020

18O. Re-code and execute Sample Queries 18.9 and 18.10 using the JOIN-ON syntax.

Sample Query 18.9:

SELECT R.RNAME, ST.STNAME, S.SNAME, P.PNAME, LI.PONO

FROM REGION R

INNER JOIN STATE ST ON R.RNO = ST.RNO

INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

INNER JOIN PARTSUPP PS ON S.SNO = PS.SNO

INNER JOIN PART P ON PS.PNO = P.PNO

 INNER JOIN LINEITEM LI ON PS.PNO = LI.PNO AND PS.SNO = LI.SNO

ORDER BY R.RNAME, ST.STNAME, S.SNAME, P.PNAME, LI.PONO

Sample Query 18.10:

SELECT R.RNAME, ST.STNAME, S.SNAME, P.PNAME, LI.PONO, PO.POSTATUS

FROM REGION R

INNER JOIN STATE ST ON R.RNO = ST.RNO

INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

INNER JOIN PARTSUPP PS ON S.SNO = PS.SNO

INNER JOIN PART P ON PS.PNO = P.PNO

INNER JOIN LINEITEM LI ON PS.PNO = LI.PNO AND PS.SNO = LI.SNO

 INNER JOIN PUR_ORDER PO ON LI.PONO = PO.PONO

ORDER BY R.RNAME, ST.STNAME, S.SNAME, P.PNAME, LI.PONO

Free SQL Book, Tim Martyn 108 Copyright Pending 2020

Summary Exercises (Chapter 18)

18P. Consider all customers. Display each customer’s location (region name and state

name) followed by the customer’s name. Display the result in ascending sequence

by customer name within region name.

SELECT R.RNAME, ST.STNAME, C.CNAME

FROM REGION R,

 STATE ST,

 CUSTOMER C

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

ORDER BY R.RNAME, C.CNAME

 RNAME STNAME CNAME

 NORTHEAST MASSACHUSETTS BOLYAI

 NORTHEAST MASSACHUSETTS EUCLID

 NORTHEAST MASSACHUSETTS HILBERT

 NORTHEAST MASSACHUSETTS HYPATIA

 NORTHEAST MASSACHUSETTS PYTHAGORAS

 NORTHEAST MASSACHUSETTS ZENO

 NORTHWEST WASHINGTON DECARTES

 NORTHWEST OREGON LEIBNIZ

 NORTHWEST OREGON NEWTON

 NORTHWEST WASHINGTON PASCAL

 SOUTHEAST FLORIDA BOOLE

 SOUTHEAST FLORIDA CANTOR

 SOUTHEAST GEORGIA GODEL

 SOUTHEAST GEORGIA RUSSELL

 SOUTHWEST NEW MEXICO CHURCH

 SOUTHWEST ARIZONA MANDELBROT

 SOUTHWEST ARIZONA TURING

 SOUTHWEST NEW MEXICO VON NEUMANN

Free SQL Book, Tim Martyn 109 Copyright Pending 2020

18Q. Only consider regions that have suppliers. Display the name of the region name

followed by the name of the supplier. Display the result in ascending sequence by

supplier name within region name.

SELECT R.RNAME, S.SNAME

FROM REGION R,

 STATE ST,

 SUPPLIER S

WHERE R.RNO = ST.RNO

AND ST.STCODE = S.STCODE

ORDER BY R.RNAME, S.SNAME

 RNAME SNAME

 NORTHEAST SUPPLIER1

 NORTHEAST SUPPLIER2

 NORTHEAST SUPPLIER3

 NORTHWEST SUPPLIER6

 NORTHWEST SUPPLIER7

 NORTHWEST SUPPLIER8

 SOUTHEAST SUPPLIER4

 SOUTHEAST SUPPLIER5

18R. Only consider Massachusetts (STCODE=‘MA’) customers that have completed a

purchase order. For each such customer, display the customer’s name, and the

number of purchase orders the customer has completed. (This only requires a two-

table join. This exercise sets the stage for the next two exercises.)

SELECT C.CNAME, COUNT (*) POCT

FROM CUSTOMER C,

 PUR_ORDER PO

WHERE C.CNO = PO.CNO

AND C.STCODE = 'MA'

GROUP BY C.CNAME

ORDER BY C.CNAME’

 CNAME POCT

 BOLYAI 1

 EUCLID 2

 HILBERT 1

 HYPATIA 2

 PYTHAGORAS 2

 ZENO 3

Free SQL Book, Tim Martyn 110 Copyright Pending 2020

18S. Only consider customers located in Region3 (RNO=3) that have completed a

purchase order. For each such customer, display the customer’s name, and the

number of purchase orders the customer has completed.

SELECT C.CNAME, COUNT (*) POCT

FROM STATE ST,

 CUSTOMER C,

 PUR_ORDER PO

WHERE ST.STCODE = C.STCODE

AND C.CNO = PO.CNO

AND ST.RNO = 3

GROUP BY C.CNAME

ORDER BY C.CNAME

 CNAME POCT

 BOOLE 2

 CANTOR 2

 GODEL 1

 RUSSELL 1

18T. Reconsider the preceding exercise. You realize that customer names (CNAME

values) are not necessarily unique. Revise the query objective to state: Only

consider customers located in Region 3 (RNO=3) who have completed a purchase

order. For each such customer, display the customer’s number and name, followed

by the number of purchase orders the customer has completed.

SELECT C.CNO, C.CNAME, COUNT (*) POCT

FROM STATE ST,

 CUSTOMER C,

 PUR_ORDER PO

WHERE ST.STCODE = C.STCODE

AND C.CNO = PO.CNO

AND ST.RNO = 3

GROUP BY C.CNO, C.CNAME

ORDER BY C.CNO, C.CNAME

 CNO CNAME POCT

 600 BOOLE 2

 660 CANTOR 2

 700 RUSSELL 1

 770 GODEL 1

Free SQL Book, Tim Martyn 111 Copyright Pending 2020

18U. How many parts were sold in states that are located in the Northeast or Southeast

regions? Display the region name, followed by the state name, followed by the total

quantity of parts sold in the state. Sort the result in ascending sequence by state

name within region name.

SELECT R.RNAME, ST.STNAME, SUM (LI.QTY) SUMQTY

FROM REGION R,

STATE ST,

CUSTOMER C,

PUR_ORDER PO,

LINEITEM LI

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

AND C.CNO = PO.CNO

AND PO.PONO = LI.PONO

AND R.RNAME IN ('NORTHEAST', 'SOUTHEAST')

GROUP BY R.RNAME, ST.STNAME

ORDER BY R.RNAME, ST.STNAME

 RNAME STNAME SUMQTY

 NORTHEAST MASSACHUSETTS 330

 SOUTHEAST FLORIDA 185

 SOUTHEAST GEORGIA 70

Free SQL Book, Tim Martyn 112 Copyright Pending 2020

18V. Display the region name and state name, followed by the total quantity of parts sold

in the state if that quantity exceeds 100. Sort the result in ascending sequence by

state name within region name.

SELECT R.RNAME, ST.STNAME, SUM (LI.QTY) PARTQTY

FROM REGION R,

STATE ST,

CUSTOMER C,

PUR_ORDER PO,

LINEITEM LI

WHERE R.RNO = ST.RNO

AND ST.STCODE = C.STCODE

AND C.CNO = PO.CNO

AND PO.PONO = LI.PONO

GROUP BY R.RNAME, ST.STNAME

HAVING SUM (LI.QTY) > 100

ORDER BY R.RNAME, ST.STNAME

 RNAME STNAME PARTQTY

 NORTHEAST MASSACHUSETTS 330

 NORTHWEST WASHINGTON 180

 SOUTHEAST FLORIDA 185

Free SQL Book, Tim Martyn 113 Copyright Pending 2020

Chapter-19 - Outer-Join: Getting Started

19A. Reference the REGION and STATE tables in the MTPCH database. Designate

REGION as the left-table. Execute a full outer-join.

 SELECT *

 FROM REGION R FULL OUTER JOIN STATE ST

 ON R.RNO = ST.RNO

RNO RNAME CLIMATE STCODE STNAME POPULATION RNO

 1 NORTHEAST Cold CT CONNECTICUT 3502000 1

 1 NORTHEAST Cold MA MASSACHUSETTS 6450000 1

 2 NORTHWEST Cold OR OREGON 3747000 2

 2 NORTHWEST Cold WA WASHINGTON 6468000 2

 3 SOUTHEAST Hot FL FLORIDA 18251000 3

 3 SOUTHEAST Hot GE GEORGIA 9545000 3

 4 SOUTHWEST Hot NM NEW MEXICO 1970000 4

 4 SOUTHWEST Hot AZ ARIZONA 6339000 4

 5 MIDWEST Empty - - - -

19B. Reference the REGION and STATE tables. Execute a left outer-join. Designate

REGION as the left-table. (Observe that the result is the same as the previous

exercise.)

 SELECT *

 FROM REGION R LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO

 Result: Same as previous exercise. But row sequence may be different because

neither statement specifies an ORDER BY clause/

Free SQL Book, Tim Martyn 114 Copyright Pending 2020

19C. Reference the REGION and STATE tables. Execute a right outer-join. Designate

STATE as the right-table. (Observe that the result is the same as that produced by

an inner-join.)

 SELECT *

 FROM REGION R RIGHT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO

RNO RNAME CLIMATE STCODE STNAME POPULATION RNO

 1 NORTHEAST Cold CT CONNECTICUT 3502000 1

 1 NORTHEAST Cold MA MASSACHUSETTS 6450000 1

 2 NORTHWEST Cold OR OREGON 3747000 2

 2 NORTHWEST Cold WA WASHINGTON 6468000 2

 3 SOUTHEAST Hot FL FLORIDA 18251000 3

 3 SOUTHEAST Hot GE GEORGIA 9545000 3

 4 SOUTHWEST Hot NM NEW MEXICO 1970000 4

 4 SOUTHWEST Hot AZ ARIZONA 6339000 4

19D. We generally discourage use of the right outer-join. But, for tutorial purposes only,

we ask you to use the right outer-join to satisfy the query objective for Sample

Query 19.2: Reference the DEPARTMENT and EMPLOYEE3 tables. Display all

information about all departments along with all information about employees who

work in those departments. (Display information about every department, even if

the department does not have any employees.) Sort the result by DNO, ENO.

SELECT D.DNO, D.DNAME, D.BUDGET,

 E.ENO, E.ENAME, E.SALARY, E.DNO

FROM EMPLOYEE3 E RIGHT OUTER JOIN DEPARTMENT D

ON E.DNO = D.DNO

ORDER BY D.DNO, E. ENO

DNO DNAME BUDGET ENO ENAME SALARY DNO

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 30 PRODUCTION 7000.00 - - - -

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Free SQL Book, Tim Martyn 115 Copyright Pending 2020

Exercises 19E AND 19F reference the following versions of the MAN and DOG tables.

These tables are related via a PK-FK relationship (DOG.MNO references MAN.MNO).

These are “paper and pencil” exercises. The MAN and DOG tables were not created in the

CREATE-ALL-TABLES scripts for the sample tables.

 MAN DOG

MNO MNAME DNO DNAME MNO

 77 MOE 1000 SPOT 99

 88 LARRY 3000 ROVER 77

99 CURLY 2000 WALLY 99

 4000 SPIKE 99

19E. What are the result tables produced by the following left outer-join operations?

a. SELECT *

 FROM MAN LEFT OUTER JOIN DOG

 ON MAN.MNO = DOG.MNO

 WHERE MAN.MNAME LIKE '%R%'

MNO MNAME DNO DNAME MNO1

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

 99 CURLY 4000 SPIKE 99

Note: WHERE-clause applied after outer-join.

b. SELECT *

 FROM MAN LEFT OUTER JOIN DOG

 ON MAN.MNO = DOG.MNO AND MAN.MNAME LIKE '%R%'

MNO MNAME DNO DNAME MNO1

77 MOE - - -

88 LARRY - - -

99 CURLY 1000 SPOT 99

99 CURLY 2000 WALLY 99

 99 CURLY 4000 SPIKE 99

Note: AND-clause applied during outer-join.

Observation: MOE’s dog (ROVER) information is not displayed

Free SQL Book, Tim Martyn 116 Copyright Pending 2020

19F. What are the result tables produced by the following left outer-join operations?

 a. SELECT *

 FROM MAN LEFT OUTER JOIN DOG

 ON MAN.MNO = DOG.MNO

 WHERE DOG.DNAME LIKE 'S%'

MNO MNAME DNO DNAME MNO1

99 CURLY 1000 SPOT 99

99 CURLY 4000 SPIKE 99

 This WHERE-clause is applied after the outer-join. Note that it references a column

(DNAME) in the right-table (the child-table). Hence, it will never select any of the

non-matching parent rows. You should consider coding an inner-join from this

statement.

 SELECT *

 FROM MAN INNER JOIN DOG

 ON MAN.MNO = DOG.MNO

 WHERE DOG.DNAME LIKE 'S%'

b. SELECT *

 FROM MAN LEFT OUTER JOIN DOG

 ON MAN.MNO = DOG.MNO AND DOG.DNAME LIKE 'S%'

 MNO MNAME DNO DNAME MNO1

 77 MOE - - -

 88 LARRY - - -

 99 CURLY 1000 SPOT 99

99 CURLY 4000 SPIKE 99

Free SQL Book, Tim Martyn 117 Copyright Pending 2020

Summary Exercises (Chapter 19)

Exercises 19G-19J reference the DEPARTMENT and EMPLOYEE tables.

19G. Display the name and budget for all departments. Also display the name and salary

of any employee who works in a department having a budget that exceeds

$50,000.00. The result should look like:

DNAME BUDGET ENAME SALARY

 ACCOUNTING 75000.00 LARRY 2000.00

ACCOUNTING 75000.00 JOE 400.00

INFO. SYS. 20000.00 - -

PRODUCTION 7000.00 - -

ENGINEERING 25000.00 - -

SELECT DNAME, BUDGET, ENAME, SALARY

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND D.BUDGET > 50000.00

19H. Display the name and budget of those departments having a budget that is less than

$50,000.00. If any such department has employees, also display name and salary of

the employees. The result should look like:

 DNAME BUDGET ENAME SALARY

INFO. SYS. 20000.00 MOE 2000.00

INFO. SYS. 20000.00 GEORGE 9000.00

INFO. SYS. 20000.00 CURLY 3000.00

PRODUCTION 7000.00 - -

ENGINEERING 25000.00 SHEMP 500.00

SELECT DNAME, BUDGET, ENAME, SALARY

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO

 WHERE D.BUDGET < 50000.00

Free SQL Book, Tim Martyn 118 Copyright Pending 2020

19I. Display the name and salary of any employee who earns more than $1,000.00,

along with the employee’s departmental name and budget. The result should look

like:

 ENAME SALARY DNAME BUDGET

 LARRY 2000.00 ACCOUNTING 75000.00

MOE 2000.00 INFO. SYS. 20000.00

GEORGE 9000.00 INFO. SYS. 20000.00

CURLY 3000.00 INFO. SYS. 20000.00

 Following left outer-join will work.

 SELECT ENAME, SALARY, DNAME, BUDGET

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO

WHERE E.SALARY > 1000.00

 It is better to code an inner join. Observe that the WHERE-clause is applied to a

column from the EMPLOYEE table (the right-table). This would eliminate any

non-matching EMPLOYEE rows containing null values produced by the left outer-

join. (I.e., The WHERE-clause effectively “undoes” the left-outer-join)

 SELECT ENAME, SALARY, DNAME, BUDGET

FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON D.DNO = E.DNO

WHERE E.SALARY > 1000.00

19J. Display the name and budget for all departments. Also, display the name and salary

of any employee who works in each department and earns more than $1,000.00.

The result should look like:

 DNAME BUDGET ENAME SALARY

ACCOUNTING 75000.00 LARRY 2000.00

INFO. SYS. 20000.00 MOE 2000.00

INFO. SYS. 20000.00 GEORGE 9000.00

INFO. SYS. 20000.00 CURLY 3000.00

PRODUCTION 7000.00 - -

ENGINEERING 25000.00 - -

SELECT DNAME, BUDGET, ENAME, SALARY

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND E.SALARY > 1000.00

Free SQL Book, Tim Martyn 119 Copyright Pending 2020

19K. Consider Sample Query 19.10 shown below.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND D.BUDGET < 24000.00

WHERE D.DNO <> 40

ORDER BY D.DNO, E.ENO

 Assume you replaced the keyword WHERE with the keyword AND to formulate the

following statement.

SELECT *

FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

ON D.DNO = E.DNO AND D.BUDGET < 24000.00

AND D.DNO <> 40

ORDER BY D.DNO

Is this statement equivalent to the result shown for Sample Query 19.10? (Does it

produce the same correct result?)

Answer: Different results.

In Sample Query 19.10, the DEPARTMENT 40 row does not match the join-

condition, but it appears in the outer-join intermediate result because

DEPARTMENT is the left table. Then the WHERE D.DNO <> 40 condition,

executed after of outer-join, removes the DEPARTMENT 40 row from the final

result.

 In modified statement, AND D.DNO <> 40 is part of outer-join and the row for

DEPARTMENT 40 does not match the outer join-condition. However, it appears

in the outer-join result because DEPARTMENT is the left table. Hence, the

DEPARTMENT 40 row appears in the final result.

Free SQL Book, Tim Martyn 120 Copyright Pending 2020

Chapter-20 - Multi-Table Left Outer-Joins

20A. Display the number and name of every region, the number and name of every state

in each region, and the number and name of every supplier in each state. Display

the columns in the following left-to-right sequence: RNO, RNAME, STCODE,

STNAME, SNO, and SNAME. Sort the result by SNO within STCODE within

RNO. (Hint: Follow the REGION-STATE-SUPPLIER hierarchical path.)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME, S.SNO, S.SNAME

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

ORDER BY R.RNO, ST.STCODE, S.SNO

 RNO RNAME STCODE STNAME SNO SNAME

 1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3

 1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2

 2 NORTHWEST OR OREGON S7 SUPPLIER7

 2 NORTHWEST OR OREGON S8 SUPPLIER8

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4

 3 SOUTHEAST GE GEORGIA S5 SUPPLIER5

 4 SOUTHWEST AZ ARIZONA - -

 4 SOUTHWEST NM NEW MEXICO - -

 5 MIDWEST - - - -

Free SQL Book, Tim Martyn 121 Copyright Pending 2020

20B. Display the number and name of every region, the code and name of every state in

each region, the number and name of every supplier in each state, and the part

number of every part that you can purchase from these suppliers. Display the

columns in the following left-to-right sequence: RNO, RNAME, STCODE,

STNAME, SNO, SNAME, PNO. Sort the result by PNO within SNO within

STCODE within RNO. (Hint: Follow the REGION-STATE-SUPPLIER-

PARTSUPP hierarchical path.)

SELECT R.RNO, R.RNAME, ST.STCODE,ST.STNAME,

 S.SNO, S.SNAME, PS.PNO

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

LEFT OUTER JOIN PARTSUPP PS ON S.SNO = PS.SNO

ORDER BY R.RNO, ST.STCODE, S.SNO, PS.PNO

 RNO RNAME STCODE STNAME SNO SNAME PNO

 1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3 P3

 1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1 P5

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P1

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P5

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P7

 2 NORTHWEST OR OREGON S7 SUPPLIER7 -

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P6

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P8

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P6

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P7

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P8

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P1

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P3

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P4

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P5

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P6

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P7

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P8

 3 SOUTHEAST GE GEORGIA S5 SUPPLIER5 P7

 4 SOUTHWEST AZ ARIZONA - - -

 4 SOUTHWEST NM NEW MEXICO - - -

 5 MIDWEST - - - - -

Free SQL Book, Tim Martyn 122 Copyright Pending 2020

20C. Display the number and name of every region, the code of every state in each

region, the number and name of every supplier in each state, and the purchase-order

number and part-number that appeared in every line-item for each supplier. Sort the

result by PNO within PONO within SNO within STCODE within RNO. (Hints:

Follow the REGION-STATE-SUPPLIER-PARTSUPP-LINEITEM hierarchy.

Note that no data from the PARTSUPP table is displayed. This table serves as a

link-table between the SUPPLIER and LINEITEM tables.)

SELECT R.RNO, R.RNAME, ST.STCODE, S.SNO, S.SNAME,

 LI.PONO, LI.PNO

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

LEFT OUTER JOIN PARTSUPP PS ON S.SNO = PS.SNO

LEFT OUTER JOIN LINEITEM LI

ON PS.SNO = LI.SNO AND PS.PNO = LI.PNO

ORDER BY R.RNO, ST.STCODE,S.SNO, LI.PONO,LI.PNO

 RNO RNAME STCODE SNO SNAME PONO PNO

 1 NORTHEAST CT S3 SUPPLIER3 11101 P3

 1 NORTHEAST CT S3 SUPPLIER3 11102 P3

 1 NORTHEAST CT S3 SUPPLIER3 11122 P3

 1 NORTHEAST MA S1 SUPPLIER1 11108 P5

 .

 .

 1 NORTHEAST MA S2 SUPPLIER2 11160 P7

 2 NORTHWEST OR S7 SUPPLIER7 - -

 2 NORTHWEST OR S8 SUPPLIER8 11142 P6

 2 NORTHWEST OR S8 SUPPLIER8 11149 P8

 2 NORTHWEST OR S8 SUPPLIER8 11152 P8

 2 NORTHWEST OR S8 SUPPLIER8 11153 P8

 2 NORTHWEST OR S8 SUPPLIER8 11155 P8

 2 NORTHWEST WA S6 SUPPLIER6 11121 P6

 2 NORTHWEST WA S6 SUPPLIER6 11144 P8

 2 NORTHWEST WA S6 SUPPLIER6 11146 P8

 2 NORTHWEST WA S6 SUPPLIER6 - -

 3 SOUTHEAST FL S4 SUPPLIER4 11102 P4

 .

 .

 3 SOUTHEAST GE S5 SUPPLIER5 11149 P7

 4 SOUTHWEST AZ - - - -

 4 SOUTHWEST NM - - - -

 5 MIDWEST - - - - -

Result table has 67 rows

Free SQL Book, Tim Martyn 123 Copyright Pending 2020

20D. Display the number and name of every part, the supplier number of every supplier

who can sell the part, and the line-item price for each sale of the part by the supplier.

Display the columns in the following left-to-right sequence: PNO, PNAME, SNO,

and LIPRICE. Sort the result by SNO within PNO. (Hint: Follow the PART-

PARTSUPP-LINEITEM hierarchy.)

SELECT P.PNO, P.PNAME, PS.SNO, LI.LIPRICE

FROM PART P

LEFT OUTER JOIN PARTSUPP PS ON P.PNO = PS.PNO

LEFT OUTER JOIN LINEITEM LI ON PS.PNO = LI.PNO

 AND PS.SNO = LI.SNO

ORDER BY P.PNO, PS.SNO

 PNO PNAME SNO LIPRICE

 P1 PART1 S2 11.50

 P1 PART1 S4 12.00

 P2 PART2 - -

 P3 PART3 S3 12.00

 P7 PART7 S2 3.00

 P7 PART7 S2 3.00

 P7 PART7 S2 3.00

 P7 PART7 S2 3.00

 P7 PART7 S2 3.00

 P7 PART7 S2 3.00

 P7 PART7 S4 4.00

 P7 PART7 S4 4.00

 P7 PART7 S5 4.50

 P7 PART7 S5 4.50

 P7 PART7 S6 -

 P8 PART8 S4 6.00

 P8 PART8 S4 6.00

 P8 PART8 S4 6.00

 P8 PART8 S6 5.00

 P8 PART8 S6 5.00

 P8 PART8 S8 4.00

 P8 PART8 S8 4.00

 P8 PART8 S8 4.00

 P8 PART8 S8 4.50

Result table has 64 rows

Free SQL Book, Tim Martyn 124 Copyright Pending 2020

20E. Display the number and name of every region followed by the minimum and

maximal PSPRICE values of parts sold by suppliers in each region. Display the

columns in the following left-to-right sequence: RNO, RNAME, and

MINPSPRICE and MAXPSPRICE values (column headings for the min and max

prices of parts sold by suppliers in each region). Sort the result by RNO. Display

zero for null values. (Hint: Follow the REGION-STATE-SUPPLIER-PARTSUPP

hierarchy.)

SELECT R.RNO, R.RNAME,

COALESCE (MIN (PS.PSPRICE), 0) MINPSPRICE,

COALESCE (MAX (PS.PSPRICE), 0) MAXPSPRICE

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

 LEFT OUTER JOIN PARTSUPP PS ON S.SNO = PS.SNO

GROUP BY R.RNO, R.RNAME

ORDER BY R.RNO

 RNO RNAME MINPSPRICE MAXPSPRICE

 1 NORTHEAST 2.00 12.00

 2 NORTHWEST 3.00 4.00

 3 SOUTHEAST 3.00 12.50

 4 SOUTHWEST 0.00 0.00

 5 MIDWEST 0.00 0.00

Free SQL Book, Tim Martyn 125 Copyright Pending 2020

20F. Display the number and name of every Western region. (The RNAME value ends

with ‘WEST’.) Also, display the code and name of every state in each Western

region, and the number and name of every supplier in each Western region. Sort the

result by SNO within STCODE within RNO. (Hint: Follow the REGION-STATE-

SUPPLIER hierarchical path.)]

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME, S.SNO, S.SNAME

FROM REGION R

LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

LEFT OUTER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

WHERE RTRIM (RNAME) LIKE '%WEST'

ORDER BY R.RNO, ST.STCODE, S.SNO

 RNO RNAME STCODE STNAME SNO SNAME

 2 NORTHWEST OR OREGON S7 SUPPLIER7

 2 NORTHWEST OR OREGON S8 SUPPLIER8

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6

 4 SOUTHWEST AZ ARIZONA - -

 4 SOUTHWEST NM NEW MEXICO - -

 5 MIDWEST - - - -

20G. Display the number and name of every region, the code, name. and population of

every state with a population over 4 million people, and the number and name of

every supplier in these states. Sort the result by SNO within STCODE within RNO.

(Hint: Follow the REGION-STATE-SUPPLIER hierarchical path.)]

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME, ST.POPULATION,

S.SNO, S.SNAME

FROM REGION R

 LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO AND ST.POPULATION > 4000000

 LEFT OUTER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

ORDER BY R.RNO, ST.STCODE, S.SNO

 RNO RNAME STCODE STNAME POPULATION SNO SNAME

 1 NORTHEAST MA MASSACHUSETTS 6450000 S1 SUPPLIER1

 1 NORTHEAST MA MASSACHUSETTS 6450000 S2 SUPPLIER2

 2 NORTHWEST WA WASHINGTON 6468000 S6 SUPPLIER6

 3 SOUTHEAST FL FLORIDA 18251000 S4 SUPPLIER4

 3 SOUTHEAST GE GEORGIA 9545000 S5 SUPPLIER5

 4 SOUTHWEST AZ ARIZONA 6339000 - -

 5 MIDWEST - - - - -

Free SQL Book, Tim Martyn 126 Copyright Pending 2020

20H Work backwards. Describe the join-sequence for the following FROM-clause.

Then, transform this sequence into pseudo-code.

FROM REGION R

LEFT OUTER JOIN STATE ST

 LEFT OUTER JOIN CUSTOMER C

 LEFT OUTER JOIN PUR_ORDER PO

 LEFT OUTER JOIN LINEITEM LI

 ON PO.PONO = LI.PONO 1

 ON C.CNO = PO.CNO 2

 ON ST.STCODE = C.STCODE 3

ON R.RNO = ST.RNO 4

The join-sequence follows the ON-clauses from top to bottom:

1. ON PO.PONO = LI.PONO → Join PUR_ORDER and LINEITEM

2. ON C.CNO = PO.CNO → Join CUSTOMER and PUR_ORDER

3. ON ST.STCODE = C.STCODE → Join STATE and CUSTOMER

4. ON R.RNO = ST.RNO → Join REGION and STATE

 REGION LOJ (STATE LOJ (CUSTOMER LOJ (PUR_ORDER LOJ LINEITEM)))

 4 3 2 1

Free SQL Book, Tim Martyn 127 Copyright Pending 2020

20Ia. Transform the following pseudo-code into a FROM-clause.

 REGION LOJ ((STATE LOJ CUSTOMER) LOJ PUR_ORDER)

 Assign sequence-numbers.

REGION LOJ ((STATE LOJ CUSTOMER) LOJ PUR_ORDER)

 3 1 2

Corresponding sequence of ON-clauses

ON ST.STCODE = C.STCODE

ON C.CNO = PO.CNO

ON R.RNO = ST.RNO

LEFT OUTER JOIN for first ON-clause.

(STATE ST LEFT OUTER JOIN CUSTOMER C

ON ST.STCODE = C.STCODE)

LEFT OUTER JOIN for second ON-clause.

((STATE ST LEFT OUTER JOIN CUSTOMER C

ON ST.STCODE = C.STCODE)

LEFT OUTER JOIN PUR_ORDER PO

ON C.CNO = PO.CNO)

 LEFT OUTER JOIN for third ON-clause, with FROM-clause

FROM

REGION R LEFT OUTER JOIN

((STATE ST LEFT OUTER JOIN CUSTOMER C

ON ST.STCODE = C.STCODE)

LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO)

 ON R.RNO = ST.RNO

Free SQL Book, Tim Martyn 128 Copyright Pending 2020

20Ib. Transform the following pseudo-code into a FROM-clause.

 (REGION LOJ STATE) LOJ (CUSTOMER LOJ PUR_ORDER)

 Assign sequence-numbers.

(REGION LOJ STATE) LOJ (CUSTOMER LOJ PUR_ORDER)

 1 3 2

Corresponding sequence of ON-clauses

ON R.RNO = ST.RNO

ON C.CNO = PO.CNO

ON ST.STCODE = C.STCODE

LEFT OUTER JOIN for first ON-clause.

(REGION R LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO)

LEFT OUTER JOIN for second ON-clause.

(CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO)

 LEFT OUTER JOIN for third ON-clause, with FROM-clause

 FROM

 (REGION R LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO)

 LEFT OUTER JOIN

(CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE

Free SQL Book, Tim Martyn 129 Copyright Pending 2020

Summary Exercise (Chapter 20)

20J. Optional Exercise: Modify the SELECT statement for Sample Query 20.5. Change

the FROM-clause. Specify an INNER JOIN operation to join the LINEITEM and

PARTSUPP tables as shown below.

SELECT R.RNO, R.RNAME, ST.STCODE, C.CNO,

 PO.PONO, LI.PNO, LI.SNO, LI.LIPRICE, PS.PSPRICE

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUSTOMER C ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

 INNER JOIN PARTSUPP PS

 ON LI.PNO = PS.PNO AND LI.SNO = PS.SNO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PONO, LI.PNO

Execute this statement and examine the result. All LEFT OUTER JOIN operations

appear to behave like INNER JOIN operations. Why did this happen?

This happened because the four LEFT OUTER JOIN operations produce a join-

result with null values in the PNO and SNO columns for the five non-matching

rows. (See result table for Sample Query 20.4) These five rows with null values

will not be preserved by the INNER JOIN operation because no value can match

on a null value. The next chapter will address this topic.

Free SQL Book, Tim Martyn 130 Copyright Pending 2020

Chapter 20.5 - Mixing Inner-Joins and Left Outer-Joins

20K. Display the number and name of every region that contains at least one state, the

code and name of every state (including states without any suppliers), and the

number and name of every supplier in each state. Display the columns in the

following left-to-right sequence: RNO, RNAME, STCODE, STNAME, SNO, and

SNAME. Sort the result by SNO within STCODE within RNO. (Hint: Follow the

REGION-STATE-SUPPLIER hierarchy.)

Pseudo-code: (REGION IJ STATE) LOJ SUPPLIER

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 S.SNO, S.SNAME

FROM REGION R

 INNER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

ORDER BY R.RNO, ST.STCODE, S.SNO

 RNO RNAME STCODE STNAME SNO SNAME

1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3

1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1

1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2

2 NORTHWEST OR OREGON S7 SUPPLIER7

2 NORTHWEST OR OREGON S8 SUPPLIER8

2 NORTHWEST WA WASHINGTON S6 SUPPLIER6

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4

3 SOUTHEAST GE GEORGIA S5 SUPPLIER5

4 SOUTHWEST AZ ARIZONA - -

4 SOUTHWEST NM NEW MEXICO - -

Free SQL Book, Tim Martyn 131 Copyright Pending 2020

20L. Display the number and name of every region, the code and name of those states

that have at least one supplier, and the number and name of these suppliers. Display

the columns in the following left-to-right sequence: RNO, RNAME, STCODE,

STNAME, SNO, and SNAME. Sort the result by SNO within STCODE within

RNO. (Hint: Follow the REGION-STATE-SUPPLIER hierarchy.)

 Pseudo-code: REGION LOJ (STATE IJ SUPPLIER)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 S.SNO, S.SNAME

FROM REGION R

 LEFT OUTER JOIN

 STATE ST INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

 ON R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE, S.SNO

RNO RNAME STCODE STNAME SNO SNAME

1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3

1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1

1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2

2 NORTHWEST OR OREGON S7 SUPPLIER7

2 NORTHWEST OR OREGON S8 SUPPLIER8

2 NORTHWEST WA WASHINGTON S6 SUPPLIER6

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4

3 SOUTHEAST GE GEORGIA S5 SUPPLIER5

4 SOUTHWEST - - - -

5 MIDWEST - - - -

Two regions have null STCODE and STNAME values.

Region 4 (SOUTHWEST) has two states (AZ and NM), but these states do not

have any suppliers.

Region 5 (MIDWEST) has no states

Free SQL Book, Tim Martyn 132 Copyright Pending 2020

20M. Display the number and name of every region with at least one state, the code and

name of every state with at least one supplier, the number and name of every

supplier (including suppliers who do not sell any parts), and the part numbers of

parts that can be purchased from these suppliers. Display the columns in the

following left-to-right sequence: RNO, RNAME, STCODE, STNAME, SNO,

SNAME, and PNO. Sort the result by PNO within SNO within STCODE within

RNO. (Hint: Traverse REGION-STATE-SUPPLIER-PARTSUPP hierarchy.)

 Join-sequence: ((REGION IJ STATE) IJ SUPPLIER) LOJ PARTSUPP

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 S.SNO, S.SNAME, PS.PNO

 FROM REGION R

 INNER JOIN STATE ST ON R.RNO = ST.RNO

 INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

 LEFT OUTER JOIN PARTSUPP PS ON S.SNO = PS.SNO

ORDER BY R.RNO, S.STCODE, S.SNO, PS.PNO

RNO RNAME STCODE STNAME SNO SNAME PNO

 1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3 P3

 1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1 P5

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P1

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P5

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P7

 2 NORTHWEST OR OREGON S7 SUPPLIER7 -

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P6

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P8

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P6

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P7

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P8

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P1

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P3

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P4

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P5

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P6

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P7

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P8

 3 SOUTHEAST GE GEORGIA S5 SUPPLIER5 P7

Free SQL Book, Tim Martyn 133 Copyright Pending 2020

20N. Display the number and name of every region, the code and name of every state

with at least one supplier, the number and name of every supplier that sells at least

one part, and the part number and PSPRICE of these parts. Display the columns in

the following left-to-right sequence: RNO, RNAME, STCODE, STNAME, SNO,

SNAME, PNO, and PSPRICE. Sort the result by PNO within SNO within

STCODE within RNO.

 Join-sequence is:

REGION LOJ ((STATE IJ SUPPLIER) IJ PARTSUPP)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 S.SNO, S.SNAME, PS.PNO, PS.PSPRICE

FROM REGION R

 LEFT OUTER JOIN

 STATE ST INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE

 INNER JOIN PARTSUPP PS ON S.SNO = PS.SNO

 ON R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE, S.SNO, PS.PNO

RNO RNAME STCODE STNAME SNO SNAME PNO PSPRICE

1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3 P3 12.00

1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1 P5 10.00

1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P7 2.00

1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P5 10.00

1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P1 10.50

2 NORTHWEST OR OREGON S8 SUPPLIER8 P8 3.00

2 NORTHWEST OR OREGON S8 SUPPLIER8 P6 4.00

2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P7 3.50

2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P6 4.00

2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P8 4.00

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P7 3.00

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P6 4.00

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P8 5.00

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P1 11.00

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P5 11.00

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P4 12.00

3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P3 12.50

3 SOUTHEAST GE GEORGIA S5 SUPPLIER5 P7 3.50

4 SOUTHWEST - - - - - -

5 MIDWEST - - - - - -

Free SQL Book, Tim Martyn 134 Copyright Pending 2020

20O. Display the number and name of every region, the code and name of every state,

the number and name of every supplier that sells at least one part, and the part

number and PSPRICE value of these parts. Display the columns in the following

left-to-right sequence: RNO, RNAME, STCODE, STNAME, SNO, SNAME,

PNO, and PSPRICE. Sort the result by PNO within SNO within STCODE within

RNO.

 Join-sequence is: (REGION LOJ STATE) LOJ (SUPPLIER IJ PARTSUPP)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 S.SNO, S.SNAME, PS.PNO, PS.PSPRICE

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN

 SUPPLIER S INNER JOIN PARTSUPP PS ON S.SNO=PS.SNO

 ON ST.STCODE = S.STCODE

ORDER BY R.RNO, ST.STCODE, S.SNO, PS.PNO

 RNO RNAME STCODE STNAME SNO SNAME PNO PSPRICE

 1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3 P3 12.00

 1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1 P5 10.00

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P1 10.50

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P5 10.00

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P7 2.00

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P6 4.00

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P8 3.00

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P6 4.00

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P7 3.50

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P8 4.00

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P1 11.00

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P3 12.50

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P4 12.00

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P5 11.00

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P6 4.00

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P7 3.00

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P8 5.00

 3 SOUTHEAST GE GEORGIA S5 SUPPLIER5 P7 3.50

 4 SOUTHWEST AZ ARIZONA - - - -

 4 SOUTHWEST NM NEW MEXICO - - - -

 5 MIDWEST - - - - - -

Free SQL Book, Tim Martyn 135 Copyright Pending 2020

20P. Display the following information about regions, states, suppliers, and the parts that

each supplier is allowed to sell, and the parts the supplier has already sold.

• Display the number and name of all regions.

• Display the code and name for all states.

• Display the supplier numbers and names for those suppliers who are allowed to

sell at least one part.

• Display the part numbers of these parts.

• Display the LIPRICE value of those parts these suppliers have already sold.

Join-sequence is:

((REGION LOJ STATE) LOJ (SUPPLIER IJ PARTSUPP)) LOJ LINEITEM

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME, S.SNO, S.SNAME,

 PS.PNO, LI.LIPRICE

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN

 SUPPLIER S INNER JOIN PARTSUPP PS ON S.SNO = PS.SNO

 ON ST.STCODE = S.STCODE

 LEFT OUTER JOIN LINEITEM LI

ON PS.PNO = LI.PNO AND PS.SNO = LI.SNO

ORDER BY R.RNO, ST.STCODE, S.SNO, PS.PNO, LI.PNO

Show some of result table’s 66 rows.

Observe that Supplier S6 is allowed to sell Part P7, but has not yet sold this part.

 RNO RNAME STNAME SNO SNAME PNO LIPRICE

 1 NORTHEAST CONNECTICUT S3 SUPPLIER3 P3 12.00

 1 NORTHEAST CONNECTICUT S3 SUPPLIER3 P3 13.00

 1 NORTHEAST CONNECTICUT S3 SUPPLIER3 P3 13.00

.

. . .

 2 NORTHWEST WASHINGTON S6 SUPPLIER6 P6 5.00

 2 NORTHWEST WASHINGTON S6 SUPPLIER6 P7 -

 2 NORTHWEST WASHINGTON S6 SUPPLIER6 P8 5.00

 2 NORTHWEST WASHINGTON S6 SUPPLIER6 P8 5.00

 .

.

 3 SOUTHEAST GEORGIA S5 SUPPLIER5 P7 4.50

 3 SOUTHEAST GEORGIA S5 SUPPLIER5 P7 4.50

 4 SOUTHWEST ARIZONA - - - -

 4 SOUTHWEST NEW MEXICO - - - -

 5 MIDWEST - - - - -

Free SQL Book, Tim Martyn 136 Copyright Pending 2020

20Q. Display the following information about regions, states, suppliers, and parts.

• Display the number and name of any region that has at least one state.

• Display the code and name of any state that has at least one supplier.

• Display the number and name of all suppliers, including those suppliers who are

not yet allowed to sell any parts.

• Display the part number and LIPRICE of each part the supplier has sold.

 Join-sequence is:

 ((REGION IJ STATE) IJ SUPPLIER) LOJ (PARTSUPP IJ LINEITEM)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME, S.SNO, S.SNAME,

 LI.PNO, LI.LIPRICE

FROM

((REGION R INNER JOIN STATE ST ON R.RNO = ST.RNO)

 INNER JOIN SUPPLIER S ON ST.STCODE = S.STCODE)

 LEFT OUTER JOIN

 (PARTSUPP PS INNER JOIN LINEITEM LI

 ON PS.PNO = LI.PNO AND PS.SNO = LI.SNO)

 ON S.SNO = PS.SNO

ORDER BY R.RNO, ST.STCODE, S.SNO, LI.PNO

Show some of result table’s 63 rows.

Observe Supplier S7 is not allowed to sell any parts.

Also, every supplier has sold at least one part that the supplier is allowed to sell.

 RNO RNAME STCODE STNAME SNO SNAME PNO LIPRICE

 1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3 P3 12.00

 1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3 P3 13.00

 1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3 P3 13.00

 1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1 P5 11.00

 .

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P7 3.00

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2 P7 3.00

 2 NORTHWEST OR OREGON S7 SUPPLIER7 - -

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P6 5.00

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P8 4.00

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P8 4.00

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P8 4.00

 2 NORTHWEST OR OREGON S8 SUPPLIER8 P8 4.50

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P6 5.00

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P8 5.00

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6 P8 5.00

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P1 12.00

 .

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P8 6.00

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4 P8 6.00

 3 SOUTHEAST GE GEORGIA S5 SUPPLIER5 P7 4.50

 3 SOUTHEAST GE GEORGIA S5 SUPPLIER5 P7 4.50

Free SQL Book, Tim Martyn 137 Copyright Pending 2020

Summary Exercises (Chapter 20.5)

Exercises 20R1, 20R2, 20S1, and 20S2 are optional exercises.

20R1. Work backwards. Transform the following FROM-clauses into equivalent pseudo-

code.

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN

 CUSTOMER C INNER JOIN PUR_ORDER PO

 ON C.CNO=PO.CNO

 ON ST.STCODE = C.STCODE

1. ON R.RNO = ST.RNO ➔ Join REGION and STATE

2. ON C.CNO=PO.CNO ➔ Join CUSTOMER and PUR_ORDER

3. ON ST.STCODE = C.STCODE ➔ Join STATE and CUSTOMER

(REGION LOJ STATE) LOJ (CUSTOMER IJ PUR_ORDER)

 1 3 2

20R2. Work backwards. Transform the following FROM-clauses into equivalent pseudo-

code.

FROM REGION R

 LEFT OUTER JOIN STATE ST ON R.RNO = ST.RNO

 LEFT OUTER JOIN

 CUSTOMER C INNER JOIN PUR_ORDER PO

ON C.CNO = PO.CNO

 ON ST.STCODE = C.STCODE

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

1. ON R.RNO = ST.RNO ➔ Join REGION and STATE

2. ON C.CNO = PO.CNO ➔ Join CUSTOMER and PUR_ORDER

3. ON ST.STCODE = C.STCODE ➔ Join STATE and CUSTOMER

4. ON PO.PONO = LI.PONO ➔ Join PUR_ORDER and LINEITEM

(REGION LOJ STATE) LOJ (CUSTOMER IJ PUR_ORDER) LOJ LINEITEM

 1 3 2 4

Free SQL Book, Tim Martyn 138 Copyright Pending 2020

20S1. Convert the following pseudo-code expression into a FROM-clause.

R LOJ (ST IJ (C LOJ PO))

FROM REGION R

 LEFT OUTER JOIN

 (STATE ST INNER JOIN

 (CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO=PO.CNO)

 ON ST.STCODE = C.STCODE)

 ON R.RNO = ST.RNO

20S2. Convert the following pseudo-code expression into a FROM-clause.

(R IJ ST) IJ ((C LOJ PO) LOJ LI))

FROM (REGION R INNER JOIN STATE ST ON R.RNO = ST.RNO)

 INNER JOIN

 ((CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO

 ON C.CNO=PO.CNO)

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO)

 ON C.STCODE = ST.STCODE

Free SQL Book, Tim Martyn 139 Copyright Pending 2020

Some of the following exercises will have multiple solutions.

Suggestion: Represent query objective in pseudo-code and then transform pseudo-code to

a FROM-clause.

20T. Display the number and name of every region, the code and name of every state

with at least one supplier, and the number and name of every supplier in these states.

Display the columns in the following left-to-right sequence: RNO, RNAME,

STCODE, STNAME, SNO, and SNAME. Sort the result by SNO within STCODE

within RNO.

 Pseudo-code: REGION LOJ (STATE IJ SUPPLIER)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 S.SNO, S.SNAME

FROM REGION R LEFT OUTER JOIN

 (STATE ST INNER JOIN SUPPLIER S

 ON ST.STCODE = S.STCODE)

 ON R.RNO = ST.RNO

ORDER BY R.RNO, ST.STCODE, S.SNO

 RNO RNAME STCODE STNAME SNO SNAME

 1 NORTHEAST CT CONNECTICUT S3 SUPPLIER3

 1 NORTHEAST MA MASSACHUSETTS S1 SUPPLIER1

 1 NORTHEAST MA MASSACHUSETTS S2 SUPPLIER2

 2 NORTHWEST OR OREGON S7 SUPPLIER7

 2 NORTHWEST OR OREGON S8 SUPPLIER8

 2 NORTHWEST WA WASHINGTON S6 SUPPLIER6

 3 SOUTHEAST FL FLORIDA S4 SUPPLIER4

 3 SOUTHEAST GE GEORGIA S5 SUPPLIER5

 4 SOUTHWEST - - - -

 5 MIDWEST - - - -

Free SQL Book, Tim Martyn 140 Copyright Pending 2020

20U. Display the part number every part, the supplier number of every supplier who has

sold this part, and the purchase-order number and line-item price for each sale of

the part by the supplier. Display the columns in the following left-to-right sequence:

PNO, SNO, PONO, and LIPRICE. Sort the result by PONO, SNO within PNO.

(Hint: Follow the PART-PARTSUPP-LINEITEM hierarchy.)

Pseudo-code: PART LOJ (PARTSUPP IJ LINEITEM)

SELECT P.PNO, PS.SNO, LI.PONO, LI.LIPRICE

FROM PART P LEFT OUTER JOIN

 (PARTSUPP PS INNER JOIN LINEITEM LI

 ON PS.PNO = LI.PNO AND PS.SNO = LI.SNO)

 ON P.PNO = PS.PNO

ORDER BY P.PNO, PS.SNO, LI.PONO

Display some of result table’s 63 rows.

Observe that no supplier has sold Part P2.

 PNO SNO PONO LIPRICE

 P1 S2 11101 11.50

 P1 S2 11109 11.50

 P1 S2 11122 11.50

 P1 S2 11148 11.50

 P1 S2 11154 11.50

 P1 S2 11156 11.50

 P1 S2 11158 11.50

 P1 S2 11160 12.50

 P1 S4 11111 12.00

 P1 S4 11133 12.00

 P2 - - -

 P3 S3 11101 12.00

 P3 S3 11102 13.00

 P3 S3 11122 13.00

 P8 S4 11109 6.00

 P8 S4 11110 6.00

 P8 S4 11148 6.00

 P8 S6 11144 5.00

 P8 S6 11146 5.00

 P8 S8 11149 4.00

 P8 S8 11152 4.00

 P8 S8 11153 4.00

 P8 S8 11155 4.50

Free SQL Book, Tim Martyn 141 Copyright Pending 2020

20V. Display the number and name of any region that contains at least one state, the code

and name of every state (including states without customers), the number and name

of every customer in each state (including customers without purchase-orders), and

the date of every purchase-order completed by these customers. Display the

columns in the following left-to-right sequence: RNO, RNAME, STCODE,

STNAME, CNO, CNAME, and PODATE. Sort the result by PODATE within

CNO within STCOE within RNO.

((REGION IJ STATE) LOJ CUSTOMER) LOJ PUR_ORDER

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME, PO.PODATE

FROM ((REGION R INNER JOIN STATE ST ON R.RNO = ST.RNO)

 LEFT OUTER JOIN CUSTOMER C

 ON ST.STCODE = C.STCODE)

 LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PODATE

 Display some of result table’s 34 rows.

 RNO RNAME STCODE STNAME CNO CNAME PODATE

 1 NORTHEAST CT CONNECTICUT - - -

 1 NORTHEAST MA MASSACHUSETTS 100 PYTHAGORAS 1

 .

 .

 4 SOUTHWEST AZ ARIZONA 880 TURING 3

 4 SOUTHWEST AZ ARIZONA 880 TURING 4

 4 SOUTHWEST AZ ARIZONA 880 TURING 10

 4 SOUTHWEST AZ ARIZONA 880 TURING 10

 4 SOUTHWEST AZ ARIZONA 890 MANDELBROT -

 4 SOUTHWEST NM NEW MEXICO 780 CHURCH -

 4 SOUTHWEST NM NEW MEXICO 800 VON NEUMANN 3

Free SQL Book, Tim Martyn 142 Copyright Pending 2020

Alternative Solution to Exercise 20V.

(REGION IJ STATE) LOJ (CUSTOMER LOJ PUR_ORDER)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

 C.CNO, C.CNAME, PO.PODATE

FROM (REGION R INNER JOIN STATE ST ON R.RNO = ST.RNO)

 LEFT OUTER JOIN

 (CUSTOMER C LEFT OUTER JOIN PUR_ORDER PO ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE

ORDER BY R.RNO, ST.STCODE, C.CNO, PO.PODATE

Free SQL Book, Tim Martyn 143 Copyright Pending 2020

20W. Reference the STATE-CUSTOMER-PUR_ORDER-LINEITEM hierarchy.

• Display the RNO value of any region that has at least one state.

• Display the STCODE value of any state that has at least one customer.

• For each such state, display the CNO and CNAME values of its customers.

• For each customer with at least one purchase-order, display the customer’s

purchase-order numbers.

• For each purchase-order, display its LINE and corresponding PNO values even

if the purchase order does not have any line items.

[Note: There is no need to reference the REGION table.]

Pseudo-code:

 ((STATE IJ CUSTOMER) IJ PUR_ORDER) LOJ LINEITEM

SELECT ST.RNO, ST.STCODE, C.CNO, C.CNAME,

 PO.PONO, LI.LINE, LI.PNO

FROM ((STATE ST INNER JOIN CUSTOMER C

 ON ST.STCODE = C.STCODE)

 INNER JOIN PUR_ORDER PO ON C.CNO = PO.CNO)

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

ORDER BY ST.RNO, ST.STCODE, C.CNO, PO.PONO, LI.LINE

Show some of result table’s 63 rows.

 RNO STCODE CNO CNAME PONO LINE PNO

 1 MA 100 PYTHAGORAS 11101 1 P1

 1 MA 100 PYTHAGORAS 11101 2 P3

 1 MA 100 PYTHAGORAS 11102 1 P3

 1 MA 100 PYTHAGORAS 11102 2 P4

 1 MA 110 EUCLID 11108 1 P5

 1 MA 110 EUCLID 11108 2 P6

 1 MA 110 EUCLID 11109 1 P1

 1 MA 110 EUCLID 11109 2 P7

 1 MA 110 EUCLID 11109 3 P8

 .

 4 AZ 880 TURING 11159 1 P6

 4 AZ 880 TURING 11159 2 P7

 4 AZ 880 TURING 11160 1 P1

 4 AZ 880 TURING 11160 2 P7

 4 AZ 880 TURING 11170 1 P3

 4 AZ 880 TURING 11170 2 P4

 4 AZ 880 TURING 11198 - -

 4 NM 800 VON NEUMANN 11158 1 P1

 4 NM 800 VON NEUMANN 11158 2 P3

Free SQL Book, Tim Martyn 144 Copyright Pending 2020

Alternative Solution to Exercise 20W.

Pseudo-code:

 (STATE IJ (CUSTOMER IJ PUR_ORDER)) LOJ LINEITEM

SELECT ST.RNO, ST.STCODE, C.CNO, C.CNAME,

 PO.PONO, LI.LINE, LI.PNO

FROM

 (STATE ST INNER JOIN

 (CUSTOMER C INNER JOIN PUR_ORDER PO ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE)

 LEFT OUTER JOIN LINEITEM LI ON PO.PONO = LI.PONO

ORDER BY ST.RNO, ST.STCODE, C.CNO, PO.PONO, LI.LINE

Free SQL Book, Tim Martyn 145 Copyright Pending 2020

20X. Reference the STATE-CUSTOMER-PUR_ORDER-LINEITEM hierarchy.

• Display the STCODE and RNO values of any state that has at least one customer.

• For each such state, display the CNO and CNAME values of its customers, even

if those customers do not have any purchase-orders.

• For each customer with at least one purchase-order that has at least one line-item,

display the customer’s purchase-order numbers.

• For those purchase-orders, display each line-item’s LINE and PNO values.

Pseudo-code:

 STATE IJ (CUSTOMER LOJ (PUR-ORDER IJ LINEITEM))

SELECT ST.RNO, ST.STCODE, C.CNO, C.CNAME,

 PO.PONO, LI.LINE, LI.PNO

FROM STATE ST INNER JOIN

 (CUSTOMER C LEFT OUTER JOIN

 (PUR_ORDER PO INNER JOIN LINEITEM LI

 ON PO.PONO = LI.PONO)

 ON C.CNO = PO.CNO)

 ON ST.STCODE = C.STCODE

ORDER BY ST.RNO, ST.STCODE, C.CNO, PO.PONO, LI.LINE

 Display some of this result table’s 64 rows.

RNO STCODE CNO CNAME PONO LINE PNO

1 MA 100 PYTHAGORAS 11101 1 P1

1 MA 100 PYTHAGORAS 11101 2 P3

1 MA 100 PYTHAGORAS 11102 1 P3

1 MA 100 PYTHAGORAS 11102 2 P4

.

.

.

4 AZ 880 TURING 11170 2 P4

4 AZ 890 MANDELBROT - - - C-No-PO

4 NM 780 CHURCH - - - C-No-P

4 NM 800 VON NEUMANN 11158 1 P1

4 NM 800 VON NEUMANN 11158 2 P3

Free SQL Book, Tim Martyn 146 Copyright Pending 2020

Alternative Solution to Exercise 20X.

Pseudo-code:

 (STATE IJ CUSTOMER) LOJ (PUR_ORDER IJ LINEITEM))

SELECT ST.RNO, ST.STCODE, C.CNO, C.CNAME,

 PO.PONO, LI.LINE, LI.PNO

FROM

 (STATE ST INNER JOIN CUSTOMER C ON ST.STCODE = C.STCODE)

 LEFT OUTER JOIN

 (PUR_ORDER PO INNER JOIN LINEITEM LI ON PO.PONO = LI.PONO)

 ON C.CNO = PO.CNO

ORDER BY ST.RNO, ST.STCODE, C.CNO, PO.PONO, LI.LINE

Free SQL Book, Tim Martyn 147 Copyright Pending 2020

PART V

Set Operations

&

CASE Expressions

Free SQL Book, Tim Martyn 148 Copyright Pending 2020

PROJ1PARTS PROJ2PARTS

PNO PNAME PCOLOR QTY PNO PNAME PWT

P1 PART1 RED 16 P3 PART3 20

P2 PART2 BLUE 16 P4 PART4 10

P4 PART4 YELLOW 17 P5 PART5 20

P5 PART5 RED 15 P6 PART6 12

Chapter-21 - Set Operations

Exercises 21A-21E reference the following PROJ1PARTS and PROJ2PARTS tables.

Recall that some parts (e.g., P4 and P5) can be used in both projects.

21A. Display the part number and name of all parts used by either Project1 or Project2.

SELECT PNO, PNAME FROM PROJ1PARTS

UNION

SELECT PNO, PNAME FROM PROJ2PARTS

 PNO PNAME

 P1 PART1

 P2 PART2

 P3 PART3

 P4 PART4

 P5 PART5

 P6 PART6

21B. Display the part number and name of any part that is used by both Project1 and

Project2.

SELECT PNO, PNAME FROM PROJ1PARTS

INTERSECT

SELECT PNO, PNAME FROM PROJ2PARTS

 PNO PNAME

 P4 PART4

 P5 PART5

Free SQL Book, Tim Martyn 149 Copyright Pending 2020

21C. (i) Display the part number and name of any part that is used by Project1 but

not used by Project2.

SELECT PNO, PNAME FROM PROJ1PARTS

EXCEPT

SELECT PNO, PNAME FROM PROJ2PARTS

PNO PNAME

P1 PART1

P2 PART2

(ii) Display the part number and name of any part that is used by Project2 but

not used by Project1.

SELECT PNO, PNAME FROM PROJ2PARTS

EXCEPT

SELECT PNO, PNAME FROM PROJ1PARTS

PNO PNAME

P3 PART3

P6 PART6

Free SQL Book, Tim Martyn 150 Copyright Pending 2020

21D. The following statement produces a potentially confusing result. Why?

SELECT PNO, PNAME, QTY

FROM PROJ1PARTS

UNION

SELECT PNO, PNAME, PWT

FROM PROJ2PARTS

 ORDER BY 1

 The result looks like:

 PNO PNAME QTY

P1 PART1 16

P2 PART2 16

P3 PART3 20

P4 PART4 10

P4 PART4 17

P5 PART5 15

P5 PART5 20

 P6 PART6 12

The third column is problematic because it “mixes apples and oranges.” Although

its header is QTY, the column contains both part-quantity (QTY) values and part-

weight (PWT) values. The system allows this behavior because both of the QTY

and PWT columns have the same data type (INTEGER).

Also, given the current values in the QTY and PWT columns, no QTY value

matches any PWT value. But this could occur in the future. Assume that:

PROJ1PARTS contained a row that looked like: P9 PART9 88

and

PROJ2PARTS contained a row that looked like: P9 PART9 88

In this circumstance, the UNION operation would eliminate one of the duplicate

rows, thereby producing an ambiguous result. Therefore, this example should

encourage you to attach labels to each row in the result.

Free SQL Book, Tim Martyn 151 Copyright Pending 2020

21E. Modify the above statement to display a label to distinguish QTY values from PWT

values.

 Solution1 (Four columns in result table)

 SELECT PNO, PNAME, 'THE QUANITY IS: ' MYLABEL, QTY

 FROM PROJ1PARTS

 UNION

 SELECT PNO, PNAME, 'THE WEIGHT IS: ' MYLABEL, PWT

 FROM PROJ2PARTS

ORDER BY 1

Solution2 (Three columns in result table):

 For SQL Server:

 SELECT PNO, PNAME, 'THE QUANITY IS: ' + CAST (QTY AS CHAR(5))

 FROM PROJ1PARTS

 UNION

 SELECT PNO, PNAME, 'THE WEIGHT IS: ' + CAST (PWT AS CHAR(5))

 FROM PROJ2PARTS

ORDER BY 1

 For DB2 and ORACLE:

 SELECT PNO, PNAME, 'THE QUANITY IS: ' || CAST (QTY AS CHAR(5))

 FROM PROJ1PARTS

 UNION

 SELECT PNO, PNAME, 'THE WEIGHT IS: ' || CAST (PWT AS CHAR(5))

 FROM PROJ2PARTS

ORDER BY 1

21F. Code an alternative solution to Sample Query 21.3 using a join-operation instead

of specifying the INTERSECT operation.

SELECT E.ENO, E.ENAME

FROM EMPLOYEE E, PROJMGR P

 WHERE E.ENO = P.ENO

Free SQL Book, Tim Martyn 152 Copyright Pending 2020

Reference the PROJ1PARTS and PROJ3PARTS tables. Recall that Project1 and Project3

can never use the same part.

21G. Display the part number and name of all parts used by either Project1 or Project3.

 PNO PNAME

 P1 PART1

 P2 PART2

 P3 PART3

 P4 PART4

 P5 PART5

 P6 PART6

 P7 PART7

 P8 PART8

Two solutions:

SELECT PNO, PNAME FROM PROJ1PARTS

 UNION

 SELECT PNO, PNAME FROM PROJ3PARTS

 This works because PNO values in Project1 and Project3 are disjoint.

This result may be probably be incidentally sorted.

SELECT PNO, PNAME FROM PROJ1PARTS

 UNION ALL

 SELECT PNO, PNAME FROM PROJ3PARTS

 This result will probably not be incidentally sorted.

Free SQL Book, Tim Martyn 153 Copyright Pending 2020

21H. Reference the PROJ1PARTS1 table. Produce a result that displays every part

number and name, followed by a character-string indicating if the QTY column

contains a value that is less than, equal to, or greater than 16. Sort the result by

PNO. The result should look like:

 PNO PNAME COMMENTARY

P1 PART1 QTY EQUAL TO 16

P2 PART2 QTY EQUAL TO 16

P4 PART4 QTY GREATER THAN 16

P5 PART5 QTY LESS THAN 16

SELECT PNO, PNAME, 'QTY LESS THAN 16' COMMENTARY

FROM PROJ1PARTS

WHERE QTY < 16

 UNION ALL

SELECT PNO, PNAME, 'QTY EQUAL TO 16'

FROM PROJ1PARTS

WHERE QTY = 16

 UNION ALL

SELECT PNO, PNAME, 'QTY GREATER THAN 16'

FROM PROJ1PARTS

WHERE QTY > 16

ORDER BY 1

Free SQL Book, Tim Martyn 154 Copyright Pending 2020

Summary Exercises (Chapter 21)

21I. Reference the EMPLOYEE and PROJMGR tables. Display the employee number

and name of any person who works in or manages projects for Department 20.

SELECT ENO, ENAME

FROM EMPLOYEE

WHERE DNO = 20

 UNION

SELECT ENO, PMNAME

FROM PROJMGR

WHERE DNO = 20

ORDER BY 1

 ENO ENAME

 1000 MOE

 3000 CURLY

 6000 GEORGE

21J. Reference the EMPLOYEE and PROJMGR tables. Modify the previous exercise.

Display “EMPLOYEE” or “PROJECT MANAGER” in the third column to indicate

that the person is an employee or a project manager. (Two rows will be displayed for

any person who is both an employee and a project manager.)

SELECT ENO, ENAME, 'EMPLOYEE'

FROM EMPLOYEE

WHERE DNO = 20

UNION

SELECT ENO, PMNAME, 'PROJECT MANAGER'

FROM PROJMGR

WHERE DNO = 20

ORDER BY 1

 ENO ENAME

 1000 MOE EMPLOYEE

 1000 MOE PROJECT MANAGER

 3000 CURLY EMPLOYEE

 6000 GEORGE EMPLOYEE

 6000 GEORGE PROJECT MANAGER

Free SQL Book, Tim Martyn 155 Copyright Pending 2020

21K. Reference the EMPLOYEE and PROJMGR tables. Display the employee number and

name of any person who is both an employee and project manager in Department 20.

Sort the result by the first column.

SELECT ENO, ENAME

FROM EMPLOYEE

WHERE DNO = 20

INTERSECT

SELECT ENO, PMNAME

FROM PROJMGR

WHERE DNO = 20

ORDER BY 1

 ENO ENAME

 1000 MOE

 6000 GEORGE

21L. Reference the EMPLOYEE and PROJMGR tables. Display the employee number

and name of any project manager who is not an employee.

SELECT ENO, PMNAME

FROM PROJMGR

EXCEPT

SELECT ENO, ENAME

FROM EMPLOYEE

ORDER BY 1

 ENO PMNAME

 2500 DICK

 4500 DON

Free SQL Book, Tim Martyn 156 Copyright Pending 2020

21M. Reference the PROJ2PARTS table. Display every part number and name and a

character-string indicating if the PWT column contains a value that is less than,

equal to, or greater than 12. Sort the result by the first column. The result should

look like:

 PNO PNAME COMMENTARY

P3 PART3 WEIGHT IS GREATER THAN 12

P4 PART4 WEIGHT IS LESS THAN 12

P5 PART5 WEIGHT IS GREATER THAN 12

P6 PART6 WEIGHT IS EQUAL TO 12

SELECT PNO, PNAME, 'WEIGHT IS LESS THAN 12' COMMENTARY

FROM PROJ2PARTS

WHERE PWT < 12

 UNION ALL

SELECT PNO, PNAME, 'WEIGHT IS EQUAL TO 12'

FROM PROJ2PARTS

WHERE PWT = 12

 UNION ALL

SELECT PNO, PNAME, 'WEIGHT IS GREATER THAN 12'

FROM PROJ2PARTS

WHERE PWT > 12

ORDER BY 1

Free SQL Book, Tim Martyn 157 Copyright Pending 2020

21N. Reference the EMPLOYEE table. Display the department number and the total

salary for each department. Also, display the final total of all salaries. Your

SELECT statement should specify UNION ALL. The result should look like:

DNO SUMSALARY

 10 2400.00

 20 14000.00

 40 500.00

 FINAL 16900.00

SELECT CAST (DNO AS CHAR (5)) DNO, SUM (SALARY) SUMSALARY

FROM EMPLOYEE

GROUP BY DNO

UNION ALL

SELECT 'FINAL', SUM (SALARY)

FROM EMPLOYEE

ORDER BY 1

Notice that the different data types in the first column in each Sub-SELECT inhibit

union-compatibility. The DNO column is an integer and “FINAL” is a character

string. For this reason, the DNO column was converted to a character-string by

specifying the CAST function.

Comment: The optional Chapter 9.5 (Sample Query 9.21) described a better method

using the ROLLUP option with the GROUP BY clause.

SELECT DNO, SUM (SALARY) SUMSALARY

FROM EMPLOYEE

GROUP BY ROLLUP (DNO)

ORDER BY DNO

Free SQL Book, Tim Martyn 158 Copyright Pending 2020

21O. Consider the following SELECT statements. Produce two results for each

statement. (1) Assume that INTERSECT has precedence over UNION. (2) Assume

there is no precedence among the set operations. Sometimes, both assumptions will

produce the same result

Statement-1: (SELECT PNO, PNAME FROM PROJ2PARTS

 UNION

 SELECT PNO, PNAME FROM PROJ3PARTS)

 INTERSECT

 SELECT PNO, PNAME FROM PROJ1PARTS

Same result under both assumptions. Under both assumptions, parentheses dictate

that UNION is executed first, and the final result is:

PNO PNAME

P4 PART4

P5 PART5

Statement-2: SELECT PNO, PNAME FROM PROJ2PARTS

 UNION

SELECT PNO, PNAME FROM PROJ3PARTS

 INTERSECT

SELECT PNO, PNAME FROM PROJ1PARTS

Assume INTERSECT has precedence over UNION.

PNO PNAME

 P3 PART3

 P4 PART4

 P5 PART5

 P6 PART6

Assume no precedence among the set operations.

PNO PNAME

P4 PART4

P5 PART5

Free SQL Book, Tim Martyn 159 Copyright Pending 2020

Statement-3: SELECT PNO, PNAME FROM PROJ2PARTS

 INTERSECT

(SELECT PNO, PNAME FROM PROJ3PARTS

 UNION

SELECT PNO, PNAME FROM PROJ1PARTS)

Same result under both assumptions. Under both assumptions, parentheses dictate

that UNION is executed first, and the final result is:

 PNO PNAME

 P3 PART3

 P4 PART4

 P5 PART5

 P6 PART6

21P. Display the part numbers and names of any part this used in all three projects. (Trick

question!)

 Solution-1: Inferior solution

 (SELECT PNO, PNAME FROM PROJ1PARTS

 INTERSECT

 SELECT PNO, PNAME FROM PROJ2PARTS)

 INTERSECT

 SELECT PNO, PNAME FROM PROJ3PARTS

Result: “No rows returned”

Solution-2: Better solution - Know-your-data

Don’t bother executing any statement because we know that Project-1 and

Project-3 cannot have any parts in common.

Free SQL Book, Tim Martyn 160 Copyright Pending 2020

Chapter-22 - CASE

22A. For every row in the DEPARTMENT table, display a character-string that is

derived from the DNO value according to the following rule.

• If DNO = 10, then display DEPARTMENT-10

• If DNO = 20, then display DEPARTMENT-20

• If DNO = 30, then display DEPARTMENT-30

• If DNO = 40, then display DEPARTMENT-40

• Otherwise, display “Some other department”

 Also, display each department’s BUDGET value. Specify DEPTNO as a column-

alias for the first column generated by the CASE-expression. Code two SELECT

statements using both variations of CASE.

DEPTNO BUDGET

DEPARTMENT-10 75000.00

DEPARTMENT-20 20000.00

 DEPARTMENT-30 7000.00

 DEPARTMENT-40 25000.00

Simple-CASE

SELECT

 CASE DNO

 WHEN 10 THEN 'DEPARTMENT-10'

 WHEN 20 THEN 'DEPARTMENT-20'

 WHEN 30 THEN 'DEPARTMENT-30'

 WHEN 40 THEN 'DEPARTMENT-40'

 ELSE 'Some other department'

 END DEPTNO,

 BUDGET

FROM DEPARTMENT;

Searched-CASE

SELECT

 CASE

 WHEN DNO = 10 THEN 'DEPARTMENT-10'

 WHEN DNO = 20 THEN 'DEPARTMENT-20'

 WHEN DNO = 30 THEN 'DEPARTMENT-30'

 WHEN DNO = 40 THEN 'DEPARTMENT-40'

 ELSE 'Some other department'

 END DEPTNO,

 BUDGET

FROM DEPARTMENT;

Free SQL Book, Tim Martyn 161 Copyright Pending 2020

22B. Reference the REGION table. For each row, display a two-character code for the

RNO value followed by the value of the CLIMATE column. Character codes for

the RNO values are: 1 = NE, 2 = NW, 3 = SE, 4 = SW, and 5 = MW. Specify

“RCODE” as a column-alias for the first column generated by the CASE-

expression Code two SELECT statements using both variations of CASE.

RCODE CLIMATE

NE Cold

NW Cold

SE Hot

SW Hot

MW Empty

Solution-1 (Simple-CASE)

SELECT CASE RNO

 WHEN 1 THEN 'NE'

 WHEN 2 THEN 'NW'

 WHEN 3 THEN 'SE'

 WHEN 4 THEN 'SW'

 WHEN 5 THEN 'MW'

 ELSE 'SOME OTHER CODE'

 END RCODE,

 CLIMATE

FROM REGION;

Solution-2 (Searched-CASE)

SELECT CASE

 WHEN RNO = 1 THEN 'NE'

 WHEN RNO = 2 THEN 'NW'

 WHEN RNO = 3 THEN 'SE'

 WHEN RNO = 4 THEN 'SW'

 WHEN RNO = 5 THEN 'MW'

 ELSE 'SOME OTHER CODE'

 END RCODE,

 CLIMATE

 FROM REGION;

Free SQL Book, Tim Martyn 162 Copyright Pending 2020

22C. Reference the NTAB table. Only consider rows where both the A and B columns

contain non-null values. For each such row, display the A and B values followed

by:

• “EQUAL VALUES” if A is equal to B

• “NON-EQUAL VALUES” if A is not equal to B

 Specify NOTNULL as a column alias for the result which should look like:

A B NOTNULL

 5 5 EQUAL VALUES

 5 10 NON-EQUAL VALUES

SELECT A, B,

CASE WHEN A = B THEN 'EQUAL VALUES'

ELSE 'NON-EQUAL VALUES'

 END NOTNULL

FROM NTAB

WHERE A IS NOT NULL AND B IS NOT NULL

22D. Reference the EMPLOYEE table. Consider the total of all SALARY values in this

table. If this total is less than 10,000, display “SMALL TOTAL SALARY”. If this

total exceeds 20,000, display “LARGE TOTAL SALARY”. Otherwise, display

“OK SALARY”. The result should look like:

 TEXTMSG

 OK SALARY

SELECT CASE

 WHEN SUM (SALARY) < 10000

 THEN 'SMALL TOTAL SALARY'

 WHEN SUM (SALARY) > 20000

 THEN 'LARGE TOTAL SALARY'

 ELSE 'OK SALARY'

 END TEXTMSG

FROM EMPLOYEE

Free SQL Book, Tim Martyn 163 Copyright Pending 2020

22E. Make the following substitution and then calculate the total of all SALARY values

in the EMPLOYEE table. For each SALARY value that is less than 1,000,

substitute 1,000 for that value. The result should look like:

 ADJUSTEDSALARY

 18000.00

 SELECT SUM (CASE

 WHEN SALARY < 1000 THEN 1000

 ELSE SALARY

 END) ADJUSTEDSALARY

 FROM EMPLOYEE

22F. Reference the EMPLOYEE table. Assume that all ENAME values are unique.

Display three summary totals:

(i) The total of all employee salaries.

(ii) The total of all employee salaries assuming that MOE has been fired.

(MOE’s SALARY value is zero).

(iii) The total of all employee salaries assuming that both LARRY and CURLY

have been fired. (Both SALARY values are zero.)

The result should look like:

 ALLEMPLOYEES NOMOE NOLARRYCURLY

 16900.00 14900.00 11900.00

SELECT SUM (SALARY) ALLEMPLOYEES,

 SUM (CASE WHEN ENAME = 'MOE' THEN 0

 ELSE SALARY END) NOMOE,

 SUM (CASE WHEN ENAME IN ('LARRY', 'CURLY') THEN 0

 ELSE SALARY END) NOLARRYCURLY

 FROM EMPLOYEE

Free SQL Book, Tim Martyn 164 Copyright Pending 2020

22G. Reference the PRESERVE table. Display the state code and total acreage for all

preserves in any state having a total acreage that exceeds 15,000 acres. If a state

has less than or equal to 15,000 acres, display the state code followed by a

character-string stating “LESS THAN OR EQUAL TO 15000 ACRES”. The

result should look like:

STATE TOTACRES

AZ 51360

MA LESS THAN OR EQUAL TO 15000 ACRES

MT 16931

SELECT STATE,

 CASE

WHEN SUM (ACRES) > 15000 THEN CHAR (SUM (ACRES))

ELSE 'LESS THAN OR EQUAL TO 15000 ACRES'

 END TOTACRES

FROM PRESERVE

GROUP BY STATE

Free SQL Book, Tim Martyn 165 Copyright Pending 2020

Summary Exercises (Chapter 22)

Specify CASE-Expressions to satisfy the following query objectives.

22H. This exercise has the same query objective as Exercise 21H. Reference the

PROJ1PARTS1 table. Produce a result that displays every part number and name,

followed by a character-string indicating if the QTY column contains a value that

is less than, equal to, or greater than 16. Sort the result by PNO. The result should

look like:

PNO PNAME SIZE

P1 PART1 EQUAL TO 16

P2 PART2 EQUAL TO 16

P4 PART4 GREATER THAN 16

P5 PART5 LESS THAN 16

 SELECT PNO, PNAME,

 CASE WHEN QTY < 16 THEN 'LESS THAN 16'

 WHEN QTY = 16 THEN 'EQUAL TO 16'

 ELSE 'GREATER THAN 16'

 END SIZE

FROM PROJ1PARTS

 ORDER BY PNO

22I. This exercise has the same query objective as Sample Query 11.13b. Reference

the NTAB table. Calculate the grand total of all values using the two cross-

tabulation patterns. (1) Summarize the subtotals of column values. (2) Summarize

the subtotals of row values. Substitute 6 for any null value in column A, and

substitute 9 for any null value in column B. The result should look like:

 GRANDTOTAL1 GRANDTOTAL2

70 70

 SELECT

 SUM (CASE WHEN A IS NULL THEN 6 ELSE A END) +

 SUM (CASE WHEN B IS NULL THEN 9 ELSE B END) GRANDTOTAL1,

 SUM ((CASE WHEN A IS NULL THEN 6 ELSE A END) +

 (CASE WHEN B IS NULL THEN 9 ELSE B END)) GRANDTOTAL2

 FROM NTAB

Free SQL Book, Tim Martyn 166 Copyright Pending 2020

22J. This exercise is a variation on Exercise 22F. For each department referenced in the

EMPLOYEE table, display the department number followed by three summary

totals: (i) The total of each departmental salary assuming that MOE will be fired.

(ii) The total of each departmental salary assuming that LARRY will be fired. (iii)

The total of each departmental salary assuming that CURLY will be fired. The

result should look like:

 DNO SUMWITHOUTMOE SUMWITHOUTLARRY SUMWITHOUTCURLY

 10 2400.00 400.00 2400.00

 20 12000.00 14000.00 11000.00

 40 500.00 500.00 500.00

SELECT DNO,

 SUM (CASE WHEN ENAME = 'MOE' THEN 0

ELSE SALARY END) SUMWITHOUTMOE,

 SUM (CASE WHEN ENAME = 'LARRY' THEN 0

ELSE SALARY END) SUMWITHOUTLARRY,

 SUM (CASE WHEN ENAME = 'CURLY' THEN 0

ELSE SALARY END) SUMWITHOUTCURLY

FROM EMPLOYEE

GROUP BY DNO;

Free SQL Book, Tim Martyn 167 Copyright Pending 2020

22K. This exercise extends the preceding Exercise 22J. Display a final row in the result

table that contains the grand totals of all salaries. The result should look like:

DNO WITHOUTMOE WITHOUTLARRY WITHOUTCURLY

10 2400.00 400.00 2400.00

20 12000.00 14000.00 11000.00

40 500.00 500.00 500.00

TOTAL 14900.00 14900.00 13900.00

Hint: Consider the UNION ALL operation. Also, regarding the first column, note that

DNO contains integer values, but “TOTAL” is a character string.

SELECT CAST (DNO AS CHAR(5)),

 SUM (CASE WHEN ENAME = 'MOE' THEN 0

 ELSE SALARY END) SUMWITHOUTMOE,

 SUM (CASE WHEN ENAME = 'LARRY' THEN 0

 ELSE SALARY END) SUMWITHOUTLARRY,

 SUM (CASE WHEN ENAME = 'CURLY' THEN 0

 ELSE SALARY END) SUMWITHOUTCURLY

FROM EMPLOYEE

GROUP BY DNO

 UNION ALL

SELECT 'TOTAL',

 SUM (CASE WHEN ENAME = 'MOE' THEN 0

 ELSE SALARY END),

 SUM (CASE WHEN ENAME = 'LARRY' THEN 0

 ELSE SALARY END),

 SUM (CASE WHEN ENAME = 'CURLY' THEN 0

 ELSE SALARY END)

FROM EMPLOYEE

ORDER BY 1

Free SQL Book, Tim Martyn 168 Copyright Pending 2020

22L. Reference the EMPLOYEE table. For each department that has at least one

employee, display the department number and its average salary followed by a

comment that indicates if this departmental average is less than, equal to, or greater

than the overall average salary of all employees. Sort the result by department

numbers. The result should look like:

DNO AVGSAL COMMENTARY

 10 1200.00 LESS THAN OVERALL DEPARTMENTAL AVERAGE

 20 4666.66 GREATER THAN OVERALL DEPARTMENTAL AVERAGE

 40 500.00 LESS THAN OVERALL DEPARTMENTAL AVERAGE

SELECT DNO, AVG (SALARY) AVGSAL,

CASE

WHEN AVG (SALARY) < (SELECT AVG (SALARY) FROM EMPLOYEE)

 THEN 'LESS THAN OVERALL DEPARTMENTAL AVERAGE'

WHEN AVG (SALARY) = (SELECT AVG (SALARY) FROM EMPLOYEE)

 THEN 'EQUAL TO OVERALL DEPARTMENTAL AVERAGE'

ELSE 'GREATER THAN OVERALL DEPARTMENTAL AVERAGE'

END COMMENTARY

FROM EMPLOYEE

GROUP BY DNO

ORDER BY DNO

Free SQL Book, Tim Martyn 169 Copyright Pending 2020

22M. This exercise is a variation of the preceding Exercise 22L. Address the circumstance

where a department may have only one or two employees, allowing for the deduction

of confidential individual salaries. For each department that has at least one

employee, display the department number and a count of the number of employees

who work in the department. If the department has more than two employees,

display a comment indicating if the departmental average is less than, equal to, or

greater than the overall average salary of all employees. Otherwise, if the

department only has one or two employees, the comment should state

“CONFIDENTIAL”. The result should look like:

DNO EMPCT COMMENTARY

10 2 CONFIDENTIAL

20 3 GREATER THAN OVERALL DEPARTMENTAL AVERAGE

40 1 CONFIDENTIAL

SELECT DNO, COUNT(*) EMPCT,

CASE

 WHEN COUNT (*) < 3 THEN 'CONFIDENTIAL'

 WHEN AVG (SALARY) < (SELECT AVG (SALARY) FROM EMPLOYEE)

 THEN 'LESS THAN OVERALL DEPARTMENTAL AVERAGE'

 WHEN AVG (SALARY) = (SELECT AVG (SALARY) FROM EMPLOYEE)

 THEN 'EQUAL TO OVERALL DEPARTMENTAL AVERAGE'

 ELSE 'GREATER THAN OVERALL DEPARTMENTAL AVERAGE'

END COMMENTARY

FROM EMPLOYEE

GROUP BY DNO

ORDER BY DNO

For the sake of illustration, we present another solution that illustrates the nesting of a

CASE-expression within another CASE-expression.

 SELECT DNO, COUNT(*) EMPCT,

 CASE

 WHEN COUNT(*) < 3 THEN 'CONFIDENTIAL'

 ELSE CASE

 WHEN AVG (SALARY) < (SELECT AVG (SALARY) FROM EMPLOYEE)

 THEN 'LESS THAN OVERALL DEPARTMENTAL AVERAGE'

 WHEN AVG (SALARY) = (SELECT AVG (SALARY) FROM EMPLOYEE)

 THEN 'EQUAL TO OVERALL DEPARTMENTAL AVERAGE'

 ELSE 'GREATER THAN OVERALL DEPARTMENTAL AVERAGE'

 END

 END COMMENTARY

 FROM EMPLOYEE

 GROUP BY DNO

 ORDER BY DNO

Free SQL Book, Tim Martyn 170 Copyright Pending 2020

22N. Pivot a table: This is an optional and very challenging exercise. This exercise asks

you to use CASE to “pivot” (or “rotate”) tabular data into a spreadsheet format.

Again, we recommend using your front-end tool for this kind of report formatting.

Also, some database vendors provide special purpose built-in functions (e.g.,

PIVOT) that can pivot tabular data. [These functions are not covered in this book.

They may be presented in a future edition.]

Query Objective: Represent the following PARTSUPP table in a spreadsheet format

as illustrated below. Assume you know that supplier numbers range from S1 to S8.

Hint: Form groups of PNO values. Display PNO followed by eight SUM functions, one for

each SNO value. Each SUM function should be similar to that shown below.

SUM (CASE WHEN SNO = 'S1' THEN PSPRICE ELSE 0 END) S1

We develop the SELECT statement solution on the following pages.

PARTSUPP Table

PNO SNO PSPRICE

P5 S1 10.00

P1 S2 10.50

P5 S2 10.00

P7 S2 2.00

P3 S3 12.00

P1 S4 11.00

P3 S4 12.50

P4 S4 12.00

P5 S4 11.00

P6 S4 4.00

P7 S4 3.00

P8 S4 5.00

P7 S5 3.50

P6 S6 4.00

P7 S6 3.50

P8 S6 4.00

P6 S8 4.00

P8 S8 3.00

Spreadsheet Format

 S1 S2 S3 S4 S5 S6 S7 S8

P1 0.00 10.50 0.00 11.00 0.00 0.00 0.00 0.00

P3 0.00 0.00 12.00 12.50 0.00 0.00 0.00 0.00

P4 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00

P5 10.00 10.00 0.00 11.00 0.00 0.00 0.00 0.00

P6 0.00 0.00 0.00 4.00 0.00 4.00 0.00 4.00

P7 0.00 2.00 0.00 3.00 3.50 3.50 0.00 0.00

P8 0.00 0.00 0.00 5.00 0.00 4.00 0.00 3.00

Free SQL Book, Tim Martyn 171 Copyright Pending 2020

The final solution is:

SELECT PNO,

SUM (CASE WHEN SNO = 'S1' THEN PSPRICE ELSE 0 END) S1,

 SUM (CASE WHEN SNO = 'S2' THEN PSPRICE ELSE 0 END) S2,

SUM (CASE WHEN SNO = 'S3' THEN PSPRICE ELSE 0 END) S3,

SUM (CASE WHEN SNO = 'S4' THEN PSPRICE ELSE 0 END) S4,

SUM (CASE WHEN SNO = 'S5' THEN PSPRICE ELSE 0 END) S5,

SUM (CASE WHEN SNO = 'S6' THEN PSPRICE ELSE 0 END) S6,

SUM (CASE WHEN SNO = 'S7' THEN PSPRICE ELSE 0 END) S7,

SUM (CASE WHEN SNO = 'S8' THEN PSPRICE ELSE 0 END) S8

FROM PARTSUPP

GROUP BY PNO

ORDER BY PNO

Below we show the “components” of this statement.

After the grouping operation is applied, the intermediate result looks like:

PNO SNO PSPRICE

 P1 S2 10.50

 P1 S4 11.00

 P3 S3 12.00

 P3 S4 12.50

 P4 S4 12.00

 P5 S1 10.00

 P5 S2 10.00

 P5 S4 11.00

 P6 S4 4.00

 P6 S6 4.00

 P6 S8 4.00

 P7 S2 2.00

 P7 S4 3.00

 P7 S5 3.50

 P7 S6 3.50

 P8 S4 5.00

 P8 S6 4.00

 P8 S8 3.00

Note: There is no group for Part P2 because no suppliers currently supply this part.

Free SQL Book, Tim Martyn 172 Copyright Pending 2020

Consider first group for Part P1

 P1 S2 10.50

 P1 S4 11.00

Looking at first row in desired result table, we want to (“somehow”) have these two rows

appear in the result table as:

 S1 S2 S3 S4 S5 S6 S7 S8

 P1 0.00 10.50 0.00 11.00 0.00 0.00 0.00 0.00

Likewise, for all PNO values.

The first step in this “somehow” is to specify a CASE statement for each SNO values in

the SELECT-clause.

CASE WHEN SNO = 'S1' THEN PSPRICE ELSE 0 END S1,

CASE WHEN SNO = 'S2' THEN PSPRICE ELSE 0 END S2,

CASE WHEN SNO = 'S3' THEN PSPRICE ELSE 0 END S3,

CASE WHEN SNO = 'S4' THEN PSPRICE ELSE 0 END S4,

CASE WHEN SNO = 'S5' THEN PSPRICE ELSE 0 END S5,

CASE WHEN SNO = 'S6' THEN PSPRICE ELSE 0 END S6,

CASE WHEN SNO = 'S7' THEN PSPRICE ELSE 0 END S7,

CASE WHEN SNO = 'S8' THEN PSPRICE ELSE 0 END S8

As an experiment, temporally remove the GROUP BY clause and SUM functions from

the final solution, and execute the following statement.

SELECT PNO,

CASE WHEN SNO = 'S1' THEN PSPRICE ELSE 0 END S1,

CASE WHEN SNO = 'S2' THEN PSPRICE ELSE 0 END S2,

CASE WHEN SNO = 'S3' THEN PSPRICE ELSE 0 END S3,

CASE WHEN SNO = 'S4' THEN PSPRICE ELSE 0 END S4,

CASE WHEN SNO = 'S5' THEN PSPRICE ELSE 0 END S5,

CASE WHEN SNO = 'S6' THEN PSPRICE ELSE 0 END S6,

CASE WHEN SNO = 'S7' THEN PSPRICE ELSE 0 END S7,

CASE WHEN SNO = 'S8' THEN PSPRICE ELSE 0 END S8

FROM PARTSUPP

ORDER BY PNO

Free SQL Book, Tim Martyn 173 Copyright Pending 2020

The temporary result looks like:

 PNO S1 S2 S3 S4 S5 S6 S7 S8

 P1 0.00 10.50 0.00 0.00 0.00 0.00 0.00 0.00

 P1 0.00 0.00 0.00 11.00 0.00 0.00 0.00 0.00

 P3 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00

 P3 0.00 0.00 0.00 12.50 0.00 0.00 0.00 0.00

 P4 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00

 P5 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 P5 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00

 P5 0.00 0.00 0.00 11.00 0.00 0.00 0.00 0.00

 P6 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00

 P6 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00

 P6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00

 P7 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00

 P7 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00

 P7 0.00 0.00 0.00 0.00 3.50 0.00 0.00 0.00

 P7 0.00 0.00 0.00 0.00 0.00 3.50 0.00 0.00

Now consider first two rows for Part P1

PNO S1 S2 S3 S4 S5 S6 S7 S8

 P1 0.00 10.50 0.00 0.00 0.00 0.00 0.00 0.00

 P1 0.00 0.00 0.00 11.00 0.00 0.00 0.00 0.00

We want to “merge” the information in these two rows into one row. The “trick” is to use

the GROUP by clause.

Again, temporally, enhance the preceding statement by only specifying a GROUP BY

clause.

SELECT PNO,

CASE WHEN SNO = 'S1' THEN PSPRICE ELSE 0 END S1,

CASE WHEN SNO = 'S2' THEN PSPRICE ELSE 0 END S2,

CASE WHEN SNO = 'S3' THEN PSPRICE ELSE 0 END S3,

CASE WHEN SNO = 'S4' THEN PSPRICE ELSE 0 END S4,

CASE WHEN SNO = 'S5' THEN PSPRICE ELSE 0 END S5,

CASE WHEN SNO = 'S6' THEN PSPRICE ELSE 0 END S6,

CASE WHEN SNO = 'S7' THEN PSPRICE ELSE 0 END S7,

CASE WHEN SNO = 'S8' THEN PSPRICE ELSE 0 END S8

GROUP BY PNO

FROM PARTSUPP

ORDER BY PNO

This statement will not execute because the SELECT-clause fails the basic grouping syntax

rule. An aggregate function must be specified for every result column except the PNO

column. This leads to the specification of the SUM functions.

Free SQL Book, Tim Martyn 174 Copyright Pending 2020

SELECT PNO,

SUM (CASE WHEN SNO = 'S1' THEN PSPRICE ELSE 0 END) S1,

 SUM (CASE WHEN SNO = 'S2' THEN PSPRICE ELSE 0 END) S2,

SUM (CASE WHEN SNO = 'S3' THEN PSPRICE ELSE 0 END) S3,

SUM (CASE WHEN SNO = 'S4' THEN PSPRICE ELSE 0 END) S4,

SUM (CASE WHEN SNO = 'S5' THEN PSPRICE ELSE 0 END) S5,

SUM (CASE WHEN SNO = 'S6' THEN PSPRICE ELSE 0 END) S6,

SUM (CASE WHEN SNO = 'S7' THEN PSPRICE ELSE 0 END) S7,

SUM (CASE WHEN SNO = 'S8' THEN PSPRICE ELSE 0 END) S8

FROM PARTSUPP

GROUP BY PNO

ORDER BY PNO

Executing this statement produces the desired result. Amen!

Again, consider first two P1-rows in previous temporary result.

PNO S1 S2 S3 S4 S5 S6 S7 S8

 P1 0.00 10.50 0.00 0.00 0.00 0.00 0.00 0.00

 P1 0.00 0.00 0.00 11.00 0.00 0.00 0.00 0.00

Observe that you could have specified MAX instead of SUM and still get the desired

result.

.

Author Comment: I did not derive this solution starting from scratch. I found the basic

structure in multiple locations on the web. The moral of this story is simple. If you have a

complex query objective that conforms to some generic pattern (e.g., table-to-spreadsheet),

take the time to explore the web.

There is another lesson: I think it would have taken me a long time (perhaps forever) to

satisfy this query objective by starting from scratch. But, some very smart person did solve

it. I may know as much SQL as this person, but she “put the SQL pieces together” in a

creative manner. The moral: Learning SQL is just a starting point.

Free SQL Book, Tim Martyn 175 Copyright Pending 2020

PART VI

Sub-SELECTs

Free SQL Book, Tim Martyn 176 Copyright Pending 2020

Chapter-23 - Regular Sub-SELECTs

23A. Display all information about any employee who earns the largest salary.

 SELECT * FROM EMPLOYEE

 WHERE SALARY = (SELECT MAX (SALARY) FROM EMPLOYEE)

 ENO ENAME SALARY DNO

 6000 GEORGE 9000.00 20

23B. Display all information about any employee whose salary exceeds the overall average

salary.

 SELECT * FROM EMPLOYEE

 WHERE SALARY > (SELECT AVG (SALARY) FROM EMPLOYEE)

 ENO ENAME SALARY DNO

 6000 GEORGE 9000.00 20

23C. Be careful with your logic. Note that the above Sample Query 23.3 specified the same

WHERE-clause in the Sub-SELECT and the Outer-SELECT. Is this an unnecessary

redundancy?

(a) What if “WHERE DNO=10” is only specified in the Sub-SELECT:

 SELECT * FROM EMPLOYEE

 WHERE SALARY = (SELECT MAX (SALARY) FROM EMPLOYEE

 WHERE DNO = 10)

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

2000 LARRY 2000.00 10

(b) What if “WHERE DNO=10” is only specified in the Outer-SELECT:

 SELECT * FROM EMPLOYEE

 WHERE DNO = 10

 AND SALARY = (SELECT MAX (SALARY) FROM EMPLOYEE)

 Result is “no row returned”

 Both of the above results are wrong. (Both results differ from the correct result shown

for Sample Query 23.2.) The logic requires the “DNO = 10” condition to be specified

in both the Outer-SELECT and the Sub-SELECT.

Free SQL Book, Tim Martyn 177 Copyright Pending 2020

23D. Display the name and salary of any employee who has a salary that exceeds the

smallest BUDGET value in the DEPARTMENT table.

 SELECT ENAME, SALARY FROM EMPLOYEE

 WHERE SALARY > (SELECT MIN (BUDGET) FROM DEPARTMENT)

 ENAME SALARY

 GEORGE 9000.00

23E. Reference the REGION and STATE tables in the MTPCH database. Display the

name of every REGION that is related to some row in the STATE table. Specify a

Sub-SELECT in your solution.

 SELECT RNAME FROM REGION

WHERE RNO IN (SELECT RNO FROM STATE)

RNAME

NORTHEAST

 NORTHWEST

 SOUTHEAST

 SOUTHWEST

23F. Reference the REGION and STATE tables. Display the name of every state that is

located in the NORTHEAST region. Specify a Sub-SELECT in your solution.

 SELECT STNAME

 FROM STATE

 WHERE RNO IN (SELECT RNO FROM REGION

 WHERE RNAME = 'NORTHEAST')
 STNAME

 CONNECTICUT

 MASSACHUSETTS

23G. Review: Use join operations to solve the exercises 23E and 23F.

 [23E] SELECT DISTINCT R.RNAME

 FROM REGION R, STATE ST

 WHERE R.RNO = ST.RNO

 [23F] SELECT ST.STNAME

 FROM REGION R, STATE ST

 WHERE R.RNO = ST.RNO

 AND R.RNAME = 'NORTHEAST'

Free SQL Book, Tim Martyn 178 Copyright Pending 2020

23H. Reference the REGION and STATE tables. Display the name of any region with a

CLIMATE of “Hot” and is related to some state. Code two solutions using (i) a

Sub-SELECT and (ii) a join operation.

 SELECT RNAME

 FROM REGION

 WHERE CLIMATE = 'Hot'

AND RNO IN (SELECT RNO FROM STATE)

 SELECT DISTINCT RNAME

 FROM REGION R, STATE ST

 WHERE R.RNO = ST.RNO

 AND R.CLIMATE = 'Hot'

RNAME

 SOUTHEAST

 SOUTHWEST

23I. Important Exercise: In the commentary for Sample Query 17.3.2, we considered

the following query objective and concluded that it could not be satisfied by coding

a join-operation:

 Reference the DEPARTMENT and EMPLOYEE tables. Display the overall

total budget of those departments which have at least one employee.

 Satisfy this query objective by coding a Sub-SELECT.

SELECT SUM (BUDGET) TOTBUDGET

FROM DEPARTMENT

WHERE DNO IN (SELECT DNO FROM EMPLOYEE)

 TOTBUDGET

 120000.00

23J. Reference the REGION and STATE tables. Display the name of any region that is

not associated with a state.

 SELECT RNAME

 FROM REGION

 WHERE RNO NOT IN (SELECT RNO FROM STATE)

 RNAME

 MIDWEST

Free SQL Book, Tim Martyn 179 Copyright Pending 2020

23K. Reference the EMPLOYEE table. You are asked to display all information about any

employee who is not assigned to some department. The following statement produces

the correct result.

 SELECT * FROM EMPLOYEE

 WHERE DNO NOT IN (SELECT DNO FROM DEPARTMENT)

 However, why does this statement constitute a “silly” solution?

 “Ask a silly question – Get a silly answer”

 Executing the above statement must return an empty table. This solution is silly

because the query objective is silly. There is no need to execute any statement because

we know that every employee is assigned to some department. We know this because

EMPLOYEE.DNO is a non-null foreign-key that references DEPARTMENT.DNO.

23L. Reference the STATE and CUSTOMER tables in the MTPCH database. Display

the name of any state that does not have at least one customer.

 SELECT STNAME FROM STATE

 WHERE STCODE NOT IN (SELECT STCODE FROM CUSTOMER)

 STNAME

 CONNECTICUT

23M. Reference the CUSTOMER and PUR_ORDER tables in the MTPCH database.

Display the number and name of any customer who has not purchased any parts

(i.e., is not related to any purchase orders).

 SELECT CNO, CNAME FROM CUSTOMER

 WHERE CNO NOT IN (SELECT CNO FROM PUR_ORDER)

 CNO CNAME

 890 MANDELBROT

 780 CHURCH

Free SQL Book, Tim Martyn 180 Copyright Pending 2020

23N. Reference the STATE, CUSTOMER, and PUR-ORDER tables in the MTPCH

database. Display the name of any state that has a customer who has not purchased

any parts.

 Two Solutions:

 SELECT STNAME FROM STATE

 WHERE STCODE IN

 (SELECT STCODE FROM CUSTOMER

 WHERE CNO NOT IN

 (SELECT CNO FROM PUR_ORDER));

 SELECT ST.STNAME

 FROM STATE ST, CUSTOMER C

 WHERE ST.STCODE = C.STCODE

 AND C.CNO NOT IN (SELECT CNO FROM PUR_ORDER);

STNAME

 ARIZONA

 NEW MEXICO

Free SQL Book, Tim Martyn 181 Copyright Pending 2020

23O. Reference the PART, SUPPLIER, and PARTSUPP tables in the MTPCH database.

Display the supplier number and name of any supplier who can sell you PART5 (i.e.,

PNAME value is PART5). Code four solutions.

 (a) Code a Sub-SELECT where the Sub-SELECT specifies a two-table join.

(Similar to Sample Query 23.10)

 (b) Code a Sub-SELECT where the Outer-SELECT specifies a two-table join.

(Similar to Sample Query 23.11)

 (c) Code a Sub-SELECT nested within another Sub-SELECT. (Similar to Sample

Query 23.12)

 (d) For review purposes, code a three-table join.

 SNO SNAME

 S1 SUPPLIER1

 S2 SUPPLIER2

 S4 SUPPLIER4

(a) SELECT S.SNO, S.SNAME

 FROM SUPPLIER S

 WHERE S.SNO IN

 (SELECT PS.SNO

 FROM PART P, PARTSUPP PS

 WHERE P.PNO = PS.PNO

 AND P.PNAME = 'PART5')

(b) SELECT S.SNO, S.SNAME

 FROM SUPPLIER S, PARTSUPP PS

 WHERE S.SNO = PS.SNO

 AND PS.PNO IN

 (SELECT PNO

 FROM PART P

 WHERE PNAME = 'PART5')

(c) SELECT SNO, SNAME

 FROM SUPPLIER

 WHERE SNO IN

 (SELECT SNO

 FROM PARTSUPP

 WHERE PNO IN

 (SELECT PNO

 FROM PART P

 WHERE PNAME = 'PART5'))

(d) SELECT S.SNO, S.SNAME

 FROM SUPPLIER S, PARTSUPP PS, PART P

 WHERE S.SNO = PS.SNO

 AND P.PNO = PS.PNO

 AND P.PNAME = 'PART5'

Free SQL Book, Tim Martyn 182 Copyright Pending 2020

23P. Reference the PART, SUPPLIER, and PARTSUPP tables in the MTPCH database.

Display the supplier number and name of any supplier who can sell you PART8.

(i.e., PNAME value is PART8.) Also display the price (PSPRICE) the supplier

charges for this part. Code two solutions.

 (a) Code a Sub-SELECT where the Outer-SELECT specifies a two-table join.

(Similar to Sample Query 23.11)

 (b) For review purposes, code a three-table join.

 SNO SNAME PSPRICE

 S4 SUPPLIER4 5.00

 S6 SUPPLIER6 4.00

 S8 SUPPLIER8 3.00

(a) SELECT S.SNO, S.SNAME, PS.PSPRICE

 FROM SUPPLIER S, PARTSUPP PS

 WHERE S.SNO = PS.SNO

 AND PS.PNO IN (SELECT PNO

 FROM PART

 WHERE PNAME = 'PART8')

(b) SELECT S.SNO, S.SNAME, PS.PSPRICE

 FROM SUPPLIER S, PARTSUPP PS, PART P

 WHERE S.SNO = PS.SNO

 AND PS.PNO = P.PNO

 AND PNAME = 'PART8'

23Q: Display all information about the lowest paid employee in every department that has

at least one employee.

 SELECT *

 FROM EMPLOYEE

 WHERE (DNO, SALARY) IN (SELECT DNO, MIN (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO)

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

Free SQL Book, Tim Martyn 183 Copyright Pending 2020

23R. Reference the EMPLOYEE table. Only consider employees who earn less than

$5,000.00. Display the DNO and minimum employee salary in those departments

having a minimal employee salary that exceeds the overall average salary for all

employees under consideration.

SELECT DNO, MIN (SALARY) MINSALARY

FROM EMPLOYEE

WHERE SALARY < 5000.00

GROUP BY DNO

HAVING MIN (SALARY) > (SELECT AVG (SALARY)

 FROM EMPLOYEE

 WHERE SALARY < 5000.00)

DNO MINSALARY

 20 2000.00

23S. Consider changing each department’s BUDGET value to a value that is equal to the

largest BUDGET value minus 10% of the department’s current BUDGET value.

Display each department’s number, name, current budget, and the adjusted budget.

 SELECT DNO, DNAME, BUDGET,

 (SELECT MAX (BUDGET) FROM DEPARTMENT) - (.10 * BUDGET)

 ADJBUDGET

 FROM DEPARTMENT

 DNO DNAME BUDGET ADJBUDGET

 10 ACCOUNTING 75000.00 67500.0000

 20 INFO. SYS. 20000.00 73000.0000

 30 PRODUCTION 7000.00 74300.0000

 40 ENGINEERING 25000.00 72500.0000

Free SQL Book, Tim Martyn 184 Copyright Pending 2020

23T. For each department that has at least one employee, display its department number

and maximum departmental salary followed textual comment indicating that

departmental maximum value is less than or equal to the overall maximum salary.

SELECT DNO, MAX (SALARY) MAXSALARY,

 CASE

 WHEN MAX (SALARY) < (SELECT MAX (SALARY) FROM EMPLOYEE)

 THEN 'LESS THAN OVERALL MAX SALARY'

 WHEN MAX (SALARY) = (SELECT MAX(SALARY) FROM EMPLOYEE)

 THEN 'EQUAL TO OVERALL MAX SALARY'

 ELSE 'SOMETHING STRANGE'

END TEXTCOMMENT

FROM EMPLOYEE

GROUP BY DNO

DNO MAXSALARY TEXTCOMMENT

 10 2000.00 LESS THAN OVERALL MAX SALARY

 20 9000.00 EQUAL TO OVERALL MAX SALARY

 40 500.00 LESS THAN OVERALL MAX SALARY

23U. a. Rewrite the following join-operation using a Sub-SELECT.

SELECT E3.ENAME, E3.SALARY

FROM EMPLOYEE3 E3, DEPARTMENT D

WHERE E3.DNO = D.DNO

Sub-SELECT Solution:

SELECT ENAME, SALARY

FROM EMPLOYEE3

WHERE DNO IN (SELECT DNO FROM DEPARTMENT)

 b. Is the following statement equivalent to the above statement?

 SELECT ENAME, SALARY FROM EMPLOYEE3

 No. Observe that EMPLOEE3.DNO is not a foreign-key.

 SELECT ENAME, SALARY FROM EMPLOYEE3 will display rows

describing MOE and GEORGE. The other two statements do not.

Free SQL Book, Tim Martyn 185 Copyright Pending 2020

Summary Exercises (Chapter 23)

Code Sub-SELECTs for the following Exercises 23V – 23Ze which reference tables in the

MTPCH sample database.

23V. Display all information about the state with the largest population.

 SELECT * FROM STATE

 WHERE POPULATION = (SELECT MAX (POPULATION) FROM STATE)

 STCODE STNAME POPULATION RNO

 FL FLORIDA 18251000 3

23W. Display all information about any state having a population that is less than the overall

average population.

 SELECT * FROM STATE

 WHERE POPULATION < (SELECT AVG (POPULATION) FROM STATE)

 STCODE STNAME POPULATION RNO

 CT CONNECTICUT 3502000 1

 MA MASSACHUSETTS 6450000 1

 OR OREGON 3747000 2

 WA WASHINGTON 6468000 2

 NM NEW MEXICO 1970000 4

 AZ ARIZONA 6339000 4

Free SQL Book, Tim Martyn 186 Copyright Pending 2020

23X. (i) Display the number and name of every supplier who sells part P6.

 SELECT SNO, SNAME FROM SUPPLIER

 WHERE SNO IN

 (SELECT SNO FROM PARTSUPP WHERE PNO = 'P6')

 SNO SNAME

 S4 SUPPLIER4

S6 SUPPLIER6

 S8 SUPPLIER8

 (ii) Display the number and name of every supplier who does not sell part P6.

 SELECT SNO, SNAME FROM SUPPLIER

 WHERE SNO NOT IN

 (SELECT SNO FROM PARTSUPP WHERE PNO = 'P6')

 SNO SNAME

 S1 SUPPLIER1

 S2 SUPPLIER2

 S3 SUPPLIER3

 S5 SUPPLIER5

 S7 SUPPLIER7

Free SQL Book, Tim Martyn 187 Copyright Pending 2020

23Y. (i) Display the number and name of every supplier who sells at least one pink part.

 SELECT SNO, SNAME FROM SUPPLIER

 WHERE SNO IN

 (SELECT SNO FROM PARTSUPP WHERE PNO IN

 (SELECT PNO FROM PART WHERE PCOLOR = 'PINK'))

 SNO SNAME

 S2 SUPPLIER2

 S3 SUPPLIER3

 S4 SUPPLIER4

 S5 SUPPLIER5

 S6 SUPPLIER6

 S8 SUPPLIER8

 (ii) Display the number and name of every supplier who does not sell any pink parts.

 SELECT SNO, SNAME FROM SUPPLIER

 WHERE SNO NOT IN

 (SELECT SNO FROM PARTSUPP WHERE PNO IN

 (SELECT PNO FROM PART WHERE PCOLOR = 'PINK'))

SNO SNAME

S1 SUPPLIER1

S7 SUPPLIER7

Free SQL Book, Tim Martyn 188 Copyright Pending 2020

23Za: For each region with at least one state, display all information about the state with the

lowest population in the region.

 RNO STCODE STNAME POPULATION

 1 CT CONNECTICUT 3502000

 2 OR OREGON 3747000

 3 GE GEORGIA 9545000

 4 NM NEW MEXICO 1970000

 SELECT RNO, STCODE, STNAME, POPULATION

 FROM STATE

 WHERE (RNO, POPULATION) IN

 (SELECT RNO, MIN (POPULATION)

 FROM STATE

 GROUP BY RNO)

 If this Sub-SELECT does not work on your system, the following equivalent

statement specifies a dynamic view (to be described in Chapter 26) that will satisfy

the query objective.

 SELECT ST.RNO, ST.STCODE, ST.STNAME, ST.POPULATION

 FROM STATE ST,

 (SELECT RNO, MIN (POPULATION) MINPOPREG

 FROM STATE

 GROUP BY RNO) TEMP

 WHERE ST.RNO = TEMP.RNO

 AND ST.POPULATION = TEMP.MINPOPREG

23Zb. Consider the state with the smallest population in each region that has at least one

state. Display the region number and its smallest state population if that population

value is less than the overall average population for all states.

SELECT RNO, MIN (POPULATION) MINPOP

 FROM STATE

GROUP BY RNO

HAVING MIN (POPULATION) < (SELECT AVG (POPULATION)

 FROM STATE)

 RNO MINPOP

 1 3502000

 2 3747000

 4 1970000

Free SQL Book, Tim Martyn 189 Copyright Pending 2020

23Zc. Reference the PARTSUPP table. Determine the overall average PSPRICE value. For

each row, display its SNO, PNO, and PSPRICE values, followed by the difference

between the PSPRICE and the overall average PSPRICE value. Sort the result by the

fourth column. Observe that the fourth column will contain negative values for

PSPRICE values that are less than the average. (Hint: Consider specifying a Sub-

SELECT in the Main-SELECT-clause.)

 SELECT SNO, PNO, PSPRICE,

 PSPRICE - (SELECT AVG (PSPRICE) FROM PARTSUPP) PRDIFF

 FROM PARTSUPP

 ORDER BY 4

SNO PNO PSPRICE PRDIFF

 S2 P7 2.00 -4.94

 S4 P7 3.00 -3.94

 S8 P8 3.00 -3.94

 S5 P7 3.50 -3.44

 S6 P7 3.50 -3.44

 S4 P6 4.00 -2.94

 S6 P6 4.00 -2.94

 S8 P6 4.00 -2.94

 S6 P8 4.00 -2.94

 S4 P8 5.00 -1.94

 S1 P5 10.00 3.05

 S2 P5 10.00 3.05

 S2 P1 10.50 3.55

 S4 P1 11.00 4.05

 S4 P5 11.00 4.05

 S3 P3 12.00 5.05

 S4 P4 12.00 5.05

 S4 P3 12.50 5.55

Free SQL Book, Tim Martyn 190 Copyright Pending 2020

23Zd. Modify the above Exercise 23Zc. Only display rows for where the PSPRICE exceeds

the average PSPRICE. (Hint: Consider specifying the same Sub-SELECT in the

Main-SELECT-clause and the WHERE-clause.)

SELECT SNO, PNO, PSPRICE,

 PSPRICE - (SELECT AVG (PSPRICE) FROM PARTSUPP) PRDIFF

 FROM PARTSUPP

 WHERE PSPRICE > (SELECT AVG (PSPRICE) FROM PARTSUPP)

 Specifying the same Sub-SELECT twice is reduntant.. Chapter 27 introduces the

WITH-clause that will offer a better solution to this problem.

 SNO PNO PSPRICE PRDIFF

 S2 P1 10.50 3.55

 S4 P1 11.00 4.05

 S3 P3 12.00 5.05

 S4 P3 12.50 5.55

 S4 P4 12.00 5.05

 S1 P5 10.00 3.05

 S2 P5 10.00 3.05

 S4 P5 11.00 4.05

Free SQL Book, Tim Martyn 191 Copyright Pending 2020

23Ze. Reference the DEPARTMENT and EMPLOYEE tables. Revisit Sample Query 17.3.2

where you were asked to summarize a numeric parent-column for the parent-table

participating in a parent-child join operation: Only consider those departments that

have employees and have a budget that is less than or equal to $50,000.00. Display

the total budget for these departments.

SUM (DISTINCT D.BUDGET)

 45000.00

 Sample Query 17.3.2 considered following the following “almost correct” (i.e.,

wrong) “solution.”

SELECT SUM (DISTINCT D.BUDGET)

 FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DNO = E.DNO

 AND D.BUDGET <= 50000.00

 This solution “got lucky” because no two DEPARTMENT rows happened to have the

same BUDGET value. Code a SELECT statement that constitutes a correct solution.

 SELECT SUM (BUDGET) TOTBUDGET

 FROM DEPARTMENT

 WHERE DNO IN

 (SELECT D.DNO

 FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DNO = E.DNO

 AND D.BUDGET <= 50000.00)

 The Sub-SELECT finds the DNO values of those departments that have employees

and have a budget that is less than or equal to $50,000.00. The outer-SELECT

summarizes the BUDGET values of these departments, including any duplicate

BUDGET values corresponding to different departments that happen to have the same

budget.

Free SQL Book, Tim Martyn 192 Copyright Pending 2020

The following exercises are presented for review purposes.

23Zf. Review Exercise: Satisfy Sample Queries 23.10 and 23.11 using join-operations.

 Sample Query 23.10: Reference the PART, SUPPLIER, and PARTSUPP tables in

the MTPCH database. Display the part number and name of any part that you can

purchase from SUPPLIER2 (i.e., SNAME value is “SUPPLIER2”.)

 SELECT P.PNO, P.PNAME

 FROM PART P, SUPPLIER S, PARTSUPP PS

 WHERE S.SNO = PS.SNO

 AND P.PNO = PS.PNO

 AND S.SNAME = 'SUPPLIER2'

 Sample Query 23.11: Reference the PART, SUPPLIER, and PARTSUPP tables in

the MTPCH database. Display the part number, name, and price for any part that you

can purchase from SUPPLIER2.

 SELECT P.PNO, P.PNAME, PS.PSPRICE

 FROM PART P, SUPPLIER S, PARTSUPP PS

 WHERE S.SNO = PS.SNO

 AND P.PNO = PS.PNO

 AND S.SNAME = 'SUPPLIER2'

23Zg. Optional Review Exercise: This is a strange tutorial exercise. Assume you simply did

not want to write a statement that contains NOT IN. You are invited you to code a

very inconvenient, rather roundabout (and obviously inefficient) solution to Sample

Query 23.8 (Display the DNO, DNAME and BUDGET values for any department

that does not have any employees.) Generate two intermediate results. The first has

the DNO, DNAME and BUDGET values of all departments. The second has the

same values for those departments that have employees. Then use EXCEPT to

“subtract” the second intermediate result from the first.

SELECT DNO, DNAME, BUDGET

FROM DEPARTMENT

EXCEPT

SELECT D.DNO, D.DNAME, D.BUDGET

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DNO = E.DNO

 DNO DNAME BUDGET

 30 PRODUCTION 7000.00

Free SQL Book, Tim Martyn 193 Copyright Pending 2020

The following exercises address some previously described SQL challenges.

23Zh. Review Sample Query 8.3 which described a common error shown below.

SELECT *

FROM PRESERVE

WHERE FEE > AVG (FEE)

 Code a correct SELECT statement to satisfy this query objective.

SELECT *

FROM PRESERVE

WHERE FEE > (SELECT AVG (FEE) FROM PRESERVE)

23Zi. Review the page after Sample Query 7.6 which discussed a potential problem of

dividing-by-zero in a calculated condition. There we described two potentially

problematic statements.

Statement-A: SELECT PNAME, ACRES/FEE

 FROM PRESERVE

WHERE FEE <> 0 AND ACRES/FEE > 200.00

 Statement-B: SELECT PNAME, ACRES/FEE

 FROM PRESERVE

WHERE ACRES/FEE > 200.00 AND FEE <> 0

Code an alternative equivalent SELECT statement that satisfies this query objective

where you are asked to display the PNAME and ratio ACRES/FEE for all preserves

where this ratio exceeds 200.00.

SELECT PNAME, ACRES/FEE RATIO

FROM PRESERVE

WHERE PNO IN (SELECT PNO

 FROM PRESERVE

 WHERE FEE <> 0)

AND ACRES/FEE > 200.00

Free SQL Book, Tim Martyn 194 Copyright Pending 2020

Chapter-24 --Sub-SELECTs in DML

24A. Delete all rows from the MYEMP table.

 DELETE FROM MYEMP

24B. Copy the ENAME, SALARY and DNO values from EMPLOYEE into MYEMP.

Only copy rows for employees having a salary that is less $8,000.00.

 INSERT INTO MYEMP

 SELECT ENAME, SALARY, DNO

 FROM EMPLOYEE

 WHERE SALARY < 8000.00

 MYEMP now looks like:

 MYENAME MYSALARY MYDNO

 MOE 2000.00 20

 LARRY 2000.00 10

 CURLY 3000.00 20

 SHEMP 500.00 40

 JOE 400.00 10

24C. Update the MYEMP table. Change the MYENAME values of all rows having an

MYDNO value of 10. All modified MYENAME values should be the same as the

name of the MYEMP employee having the largest salary.

 UPDATE MYEMP

 SET MYENAME =

 (SELECT MYENAME

 FROM MYEMP

 WHERE MYSALARY = (SELECT MAX (MYSALARY)

 FROM MYEMP))

 WHERE MYDNO = 10

 MYEMP now looks like:

 MYENAME MYSALARY MYDNO

MOE 2000.00 20

 CURLY 2000.00 10

 CURLY 3000.00 20

 SHEMP 500.00 40

 CURLY 400.00 10

Free SQL Book, Tim Martyn 195 Copyright Pending 2020

24D. Delete MYEMP rows corresponding to employees who have the same name as the

highest paid employee. Assume that multiple employees can have the same largest

salary.

 DELETE FROM MYEMP

 WHERE MYENAME IN (SELECT MYENAME

 FROM MYEMP

 WHERE MYSALARY =

 (SELECT MAX (MYSALARY)

 FROM MYEMP))

 MYEMP now looks like:

 MYENAME MYSALARY MYDNO

MOE 2000.00 20

 SHEMP 500.00 40

24E. Drop the MYEMP table.

 DROP TABLE MYEMP

Free SQL Book, Tim Martyn 196 Copyright Pending 2020

Chapter-25 - Correlated Sub-SELECTs

25A. Display all information about the lowest paid employee in each department.

 SELECT *

 FROM EMPLOYEE EX

 WHERE SALARY = (SELECT MIN (SALARY)

 FROM EMPLOYEE

 WHERE DNO = EX.DNO)

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

25B. Display the name and salary of any employee whose salary is less than the average

employee salary for his department.

 SELECT ENAME, SALARY

 FROM EMPLOYEE EX

 WHERE SALARY < (SELECT AVG (SALARY)

 FROM EMPLOYEE

 WHERE DNO = EX.DNO)

 ENAME SALARY

 MOE 2000.00

 CURLY 3000.00

 JOE 400.00

25C. Code two alternative solutions for this Sample Query 25.4. The first solution should

specify IN. The second solution should specify a join-operation.

 SELECT *

 FROM DEPARTMENT

 WHERE DNO IN (SELECT DNO FROM EMPLOYEE);

 SELECT DISTINCT D.DNO, DNAME, BUDGET

 FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DNO = E.DNO;

Free SQL Book, Tim Martyn 197 Copyright Pending 2020

25D. Reference the STATE and CUSTOMER tables in the MTPCH database. Write three

different statements to display all information about every state that has at least one

customer. The first statement should specify EXISTS; the second statement should

specify IN; the third statement should specify a join-operation.

 STCODE STNAME POPULATION RNO

 MA MASSACHUSETTS 6450000 1

 OR OREGON 3747000 2

 WA WASHINGTON 6468000 2

 FL FLORIDA 18251000 3

 GE GEORGIA 9545000 3

 NM NEW MEXICO 1970000 4

 AZ ARIZONA 6339000 4

 SELECT *

 FROM STATE ST

 WHERE EXISTS (SELECT 'X' FROM CUSTOMER

 WHERE STCODE = ST.STCODE)

 SELECT *

 FROM STATE

 WHERE STCODE IN (SELECT STCODE FROM CUSTOMER)

 SELECT DISTINCT ST.STCODE, STNAME, POPULATION, RNO

 FROM STATE ST, CUSTOMER C

 WHERE ST.STCODE = C.STCODE

25E. Reference the STATE and CUSTOMER tables in the MTPCH database. Write two

different statements to display all information about every state that does not have any

customers. The first statement should specify NOT EXISTS, and the second statement

should specify NOT IN.

 STCODE STNAME POPULATION RNO

CT CONNECTICUT 3502000 1

 SELECT *

 FROM STATE ST

 WHERE NOT EXISTS (SELECT 'X' FROM CUSTOMER

 WHERE STCODE = ST.STCODE)

 SELECT *

 FROM STATE

 WHERE STCODE NOT IN (SELECT STCODE FROM CUSTOMER)

Free SQL Book, Tim Martyn 198 Copyright Pending 2020

25F. Optional Exercise: Write the ancient history solution for a full outer-join of the

DEPARTMENT and EMPLOYEE3 tables.

 SELECT D.DNO, DNAME, BUDGET, ENO, ENAME, SALARY, E.DNO

FROM DEPARTMENT D, EMPLOYEE3 E

WHERE D.DNO = E.DNO

 UNION ALL

SELECT DNO, DNAME, BUDGET, '0', 'No Emp', 0, 0

FROM DEPARTMENT DX

WHERE NOT EXISTS (SELECT 'X'

 FROM EMPLOYEE3

 WHERE DNO = DX.DNO)

 UNION ALL

SELECT 0, 'No Dept', 0, ENO, ENAME, SALARY, DNO

FROM EMPLOYEE3 EX

WHERE NOT EXISTS (SELECT 'X'

 FROM DEPARTMENT

 WHERE DNO = EX.DNO)

ORDER BY 1

DNO DNAME BUDGET ENO ENAME SALARY DNO

 0 No Dept 0.00 1000 MOE 2000.00 99

 0 No Dept 0.00 6000 GEORGE 9000.00 -

 10 ACCOUNTING 75000.00 2000 LARRY 2000.00 10

 10 ACCOUNTING 75000.00 5000 JOE 400.00 10

 20 INFO. SYS. 20000.00 3000 CURLY 3000.00 20

 30 PRODUCTION 7000.00 0 No Emp 0.00 0

 40 ENGINEERING 25000.00 4000 SHEMP 500.00 40

Free SQL Book, Tim Martyn 199 Copyright Pending 2020

Summary Exercises (Chapter 25)

Code solutions that specify correlated Sub-SELECTs unless directed otherwise.

25G. Reference the PRESERVE table. Determine the largest preserve (greatest number of

acres) in each state. Display the state code followed the preserve number, name, and

acreage.

SELECT STATE, PNO, PNAME, ACRES

FROM PRESERVE P

WHERE ACRES = (SELECT MAX (ACRES)

 FROM PRESERVE

 WHERE STATE = P.STATE)

 STATE PNO PNAME ACRES

 AZ 7 MULESHOE RANCH 49120

 MA 9 DAVID H. SMITH 830

 MT 2 PINE BUTTE SWAMP 15000

25H. Code an alternative solution to the preceding Exercise 25G. Specify a regular Sub-

SELECT that returns multiple columns. Hint: Review Exercise 23.14. [Skip this

exercise if your system does not allow regular Sub-SELECTs to return multiple

columns.]

 SELECT STATE, PNO, PNAME, ACRES

 FROM PRESERVE

 WHERE (STATE, ACRES) IN (SELECT STATE, MAX (ACRES)

 FROM PRESERVE

 GROUP BY STATE)

 STATE PNO PNAME ACRES

 AZ 7 MULESHOE RANCH 49120

 MA 9 DAVID H. SMITH 830

 MT 2 PINE BUTTE SWAMP 15000

Free SQL Book, Tim Martyn 200 Copyright Pending 2020

25I. Reference the PARTSUPP table in the MTPCH database. The basic objective is to

display information about each part having a price that is less than the average price

for the part. Specifically, for every part that you can purchase from some supplier,

display the PNO, SNO, and PSPRICE values for any part having a price that is less

than the average price for the part. Sort the result by SNO within PNO.

SELECT PNO, SNO, PSPRICE

FROM PARTSUPP PSX

WHERE PSPRICE < (SELECT AVG (PSPRICE)

 FROM PARTSUPP

 WHERE PNO = PSX.PNO)

ORDER BY PNO, SNO

 PNO SNO PSPRICE

 P1 S2 10.50

 P3 S3 12.00

 P5 S1 10.00

 P5 S2 10.00

 P7 S2 2.00

 P8 S8 3.00

25J. Reference the PARTSUPP and SUPPLIER tables in the MTPCH database. Modify

the above Exercise 25I to include the name of the supplier.

SELECT PSX.PNO, PSX.SNO, S.SNAME, PSX.PSPRICE

FROM PARTSUPP PSX, SUPPLIER S

WHERE PSX.SNO = S.SNO

AND PSX.PSPRICE < (SELECT AVG (PSPRICE)

 FROM PARTSUPP

 WHERE PNO = PSX.PNO)

 ORDER BY PSX.PNO, PSX.SNO

 PNO SNO SNAME PSPRICE

 P1 S2 SUPPLIER2 10.50

 P3 S3 SUPPLIER3 12.00

 P5 S1 SUPPLIER1 10.00

 P5 S2 SUPPLIER2 10.00

 P7 S2 SUPPLIER2 2.00

 P8 S8 SUPPLIER8 3.00

Free SQL Book, Tim Martyn 201 Copyright Pending 2020

25K. Sample Query 21.3 specified an INTERSECT operation (shown below) to display the

employee numbers and names of all persons who are described in both the

EMPLOYEE and PROJMGR tables.

SELECT ENO, ENAME

FROM EMPLOYEE

INTERSECT

SELECT ENO, PMNAME

FROM PROJMGR

ORDER BY 1

 a. Code an alternative solution using EXISTS.

SELECT ENO, ENAME

FROM EMPLOYEE E

 WHERE EXISTS

 (SELECT 'X' FROM PROJMGR WHERE ENO = E.ENO)

ORDER BY 1

 b. Code another alternative solution using IN.

 SELECT ENO, ENAME

 FROM EMPLOYEE

 WHERE ENO IN (SELECT ENO FROM PROJMGR)

 ORDER BY 1

Free SQL Book, Tim Martyn 202 Copyright Pending 2020

25L. Sample Query 21.4 specified an EXCEPT operation (shown below) to display the

employee number and name of every employee who is not a project manager.

SELECT ENO, ENAME

FROM EMPLOYEE

EXCEPT

SELECT ENO, PMNAME

FROM PROJMGR

ORDER BY 1

 a. Code an alternative solution using NOT EXISTS.

SELECT ENO, ENAME

FROM EMPLOYEE E

WHERE NOT EXISTS

 (SELECT 'X' FROM PROJMGR WHERE ENO = E.ENO)

ORDER BY 1

 b. Code another alternative solution using NOT IN.

SELECT ENO, ENAME

FROM EMPLOYEE

WHERE ENO NOT IN (SELECT ENO FROM PROJMGR)

ORDER BY 1

 c. Important Question: How do you know that, in this circumstance, the NOT EXISTS

and NOT IN solutions are equivalent to each other?

 For the NOT IN solution, the Sub-SELECT cannot return a null value

because ENO is a primary-key that cannot contain null values.

Free SQL Book, Tim Martyn 203 Copyright Pending 2020

25M1. Reference the DEPARTMENT and EMPLOYEE tables. Assume that management is

considering adjusting each department’s budget. Each new departmental budget might

be changed to twice the total salary of all employees who work in the department.

Before implementing this change, management asks you to produce a report that

displays each department’s number, name, current budget, and the proposed new

budget. If a department does not have any employees, then display a null value for the

proposed new budget. The result should look like:

 DNO DNAME BUDGET NEWBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 -

 40 ENGINEERING 25000.00 1000.00

 Your solution should specify a correlated Sub-SELECT within the SELECT-clause

as shown in Sample Query 25.8. (The following Exercise 25M2 suggests an

alternative solution.)

SELECT D.DNO, D.DNAME, D.BUDGET,

 (SELECT 2.00 * SUM (SALARY)

 FROM EMPLOYEE

 WHERE DNO=D.DNO) NEWBUDGET

FROM DEPARTMENT D

25M2. This is an optional exercise. Code an alternative solution for the preceding Exercise

25M1. Instead of coding a Sub-SELECT, your solution should specify a left outer-

join operation and group by the DNO, DNAME, and BUDGET columns.

 SELECT D.DNO, DNAME, BUDGET, 2.00 * SUM (SALARY) NEWBUDGET

 FROM DEPARTMENT D LEFT OUTER JOIN EMPLOYEE E

 ON D.DNO = E.DNO

 GROUP BY D.DNO, DNAME, BUDGET

Free SQL Book, Tim Martyn 204 Copyright Pending 2020

25N. Exercise 23I asked you to code a regular Sub-SELECT to satisfy the query

objective: Reference the DEPARTMENT and EMPLLOYEE tables. Display the

overall total budget of those departments which have at least one employee. Code

another solution using a correlated Sub-SELECT. The result should look like:

 TOTBUDGET

 120000.00

 SELECT SUM (BUDGET) TOTBUDGET

 FROM DEPARTMENT D

 WHERE EXISTS (SELECT 'X' FROM EMPLOYEE

 WHERE DNO = D.DNO)

Free SQL Book, Tim Martyn 205 Copyright Pending 2020

25O. This exercise modifies Exercise 25M1. The user does not want to see any null values

in the report. Therefore, if a department does not have any employees, the new budget

should be the same as the current budget. The result should look like:

 DNO DNAME BUDGET NEWBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 7000.00

 40 ENGINEERING 25000.00 1000.00

 Code two solutions, each having the same basic structure as the solution for

Exercise 25M1.

 The first should use the COALESCE function to substitute the current BUDGET

value for a null value in the NEWBUDGET column. The basic structure of the

SELECT-clause is:

 SELECT . . . COALESCE ((correlated Sub-SELECT...),

 BUDGET) NEWBUDGET

Solition-1

 SELECT DNO, DNAME, BUDGET,

 COALESCE ((SELECT 2.00 * SUM (SALARY)

 FROM EMPLOYEE

 WHERE DNO=D.DNO), BUDGET) NEWBUDGET

 FROM DEPARTMENT D

 The second solution should specify a CASE-expression to substitute the current

BUDGET value for a null value in the NEWBUDGET column. The basic structure

of the CASE-expression is:

 CASE (SELECT COUNT(*) FROM EMPLOYEE

 WHERE DNO=D.DNO)

 WHEN 0 THEN . . .

 ELSE (correlated Sub-SELECT . . .)

 END NEWBUDGET

 Solition-2

 SELECT D.DNO,D. DNAME, D.BUDGET,

 CASE (SELECT COUNT (*) FROM EMPLOYEE WHERE DNO=D.DNO)

 WHEN 0 THEN BUDGET

 ELSE (SELECT 2.00 * SUM (SALARY) FROM EMPLOYEE

 WHERE DNO=D.DNO)

 END NEWBUDGET

 FROM DEPARTMENT D

Free SQL Book, Tim Martyn 206 Copyright Pending 2020

25P. Review Exercise: Same as for Sample Query 25.7. Reference the EMPLOYEE table.

Display all information about any employee whose salary is unique. This means that

no other employee earns the same salary.

 Do not specify a correlated Sub-SELECT. Code a regular Sub-SELECT that joins

the EMPLOYEE table with itself to return ENO values of any employee who has

the same salary as another employee.

 ENO ENAME SALARY DNO

 3000 CURLY 3000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

 6000 GEORGE 9000.00 20

 SELECT *

 FROM EMPLOYEE

 WHERE ENO NOT IN (

 SELECT E1.ENO

 FROM EMPLOYEE E1, EMPLOYEE E2

 WHERE E1.SALARY = E2.SALARY

 AND E1.ENO <> E2.ENO)

25Q. Review Exercise: Same as for Sample Query 25.6. Reference the DEPARTMENT

and EMPLOYEE3 tables. Display all information about any employee assigned to a

department that is not represented in the DEPARTMENT table. (This includes any

employee with a null DNO value.)

 Code a roundabout solution that specifies NOT IN and UNION ALL.

ENO ENAME SALARY DNO

 6000 GEORGE 9000.00 -

 1000 MOE 2000.00 99

SELECT *

FROM EMPLOYEE3

WHERE DNO NOT IN (SELECT DNO FROM DEPARTMENT)

 UNION ALL

SELECT *

FROM EMPLOYEE3

WHERE DNO IS NULL

Free SQL Book, Tim Martyn 207 Copyright Pending 2020

Chapter-26 – Inline Views

Solve the following exercises by coding inline views. These exercises reference the

EMPLOYEE table.

26A. Determine the total salary for each department. Then display the largest of these totals.

The result should look like:

 LARGESTTOTAL

 14000.00

 SELECT MAX (TOTSAL) LARGESTTOTAL

FROM (SELECT DNO, SUM (SALARY) TOTSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TOTALS

26B. Determine the average salary for each department. Then display the smallest of these

averages. The result should look like:

 SMALLESTAVG
 500.00

 SELECT MIN (AVGSAL) SMALLESTAVG

FROM (SELECT DNO, AVG (SALARY) AVGSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS AVERAGES

26C. Display all information about the lowest paid employee in each department. The result

should look like:

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

 SELECT E.ENO, E.ENAME, E.SALARY, E.DNO

 FROM EMPLOYEE E,

 (SELECT DNO, MIN (SALARY) AS MINSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMINS

WHERE E.DNO = TMINS.DNO

AND E.SALARY = TMINS.MINSAL

Free SQL Book, Tim Martyn 208 Copyright Pending 2020

26D. For each department, display all information about every departmental employee who

has a salary that is greater than or equal to the average salary for the department. The

result should look like:

 ENO ENAME SALARY DNO

 2000 LARRY 2000.00 10

 4000 SHEMP 500.00 40

 6000 GEORGE 9000.00 20

SELECT E.ENO, E.ENAME, E.SALARY, E.DNO

FROM EMPLOYEE E,

 (SELECT DNO, AVG (SALARY) AS AVGSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TAVGS

WHERE E.DNO = TAVGS.DNO

AND E.SALARY >= TAVGS.AVGSAL

26E1. Will this SELECT statement (for Sample Query 26.4) work if two departments have

the same minimal budget? Will it work if two departmental employees have the same

maximum salary?

SELECT TMAXES.DNO MAXSALDEPT, TMAXES.MAXSAL,

 DMIN.DNO MINBUDGETDEPT, DMIN.BUDGET MINBUDGET

FROM (SELECT DNO, MAX (SALARY) MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES,

 (SELECT DNO, BUDGET

 FROM DEPARTMENT

 WHERE BUDGET = (SELECT MIN (BUDGET)

 FROM DEPARTMENT)) AS DMIN

WHERE TMAXES.MAXSAL > DMIN.BUDGET

 Yes and Yes.

Free SQL Book, Tim Martyn 209 Copyright Pending 2020

26E2. Reference the PARTSUPP and LINEITEM tables. For each part sold, the actual

selling price (LIPRICE) is always greater than or equal to the part’s purchase price

(PSPRICE). Hence, a part’s average selling price is always greater than or equal to its

average purchase price. Display information about any part where the difference

between these averages is less than 75 cents. For any such part, display its part number

followed by its average purchase price and average selling price. The result should

look like:

 PNO AVGPS AVGLI

 P7 3.00 3.50

SELECT PS.PNO, PS.AVGPS, LI.AVGLI

FROM (SELECT PNO, AVG (PSPRICE) AVGPS

 FROM PARTSUPP

 GROUP BY PNO) PS,

 (SELECT PNO, AVG (LIPRICE) AVGLI

 FROM LINEITEM

 GROUP BY PNO) LI

WHERE PS.PNO = LI.PNO

AND LI.AVGLI - PS.AVGPS < 0.75

Free SQL Book, Tim Martyn 210 Copyright Pending 2020

26F. Reference the EMPLOYEE table. Display the department number and total salary of

the department having the largest total salary. The result should look like:

 DNO LARGESTTOTAL

 20 14000.00

 Observe that the following solution specifies the same Sub-SELECT in two locations.

This redundancy is not desirable. Exercise 27F will illustrate a better solution using

the WITH-clause.

SELECT DSUMS1.DNO, DSUMS1.DSUM LARGESTTOTAL

FROM (SELECT DNO, SUM (SALARY) DSUM

 FROM EMPLOYEE

 GROUP BY DNO) AS DSUMS1

WHERE DSUMS1.DSUM =

 (SELECT MAX (DSUM)

 FROM (SELECT DNO, SUM (SALARY) DSUM

 FROM EMPLOYEE

 GROUP BY DNO) AS DSUMS2)

Free SQL Book, Tim Martyn 211 Copyright Pending 2020

Summary Exercises: (Chapter 26)

26G. Reference the EMPLOYEE table. Determine the average salary in each department.

Then display the largest of these averages. The result should look like:

 MAXAVGSAL

 4666.66

SELECT MAX (TAVGS.AVGSAL) MAXAVGSAL

FROM (SELECT DNO, AVG (SALARY) AVGSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TAVGS

26H. Reference the PRESERVE table. For each state, display the state code and preserve’s

number, name, acreage for every preserve that is larger than the average preserve

acreage for the state. The result should look like:

 STATE PNO PNAME ACRES

 AZ 7 MULESHOE RANCH 49120

 MA 9 DAVID H. SMITH 830

 MA 12 MOUNT PLANTAIN 730

 MT 2 PINE BUTTE SWAMP 15000

SELECT P.STATE, P.PNO, P.PNAME, P.ACRES

FROM PRESERVE P,

 (SELECT STATE, AVG (ACRES) AS AVGACRES

 FROM PRESERVE

 GROUP BY STATE) AS AVGS

WHERE P.STATE = AVGS.STATE

AND P.ACRES > AVGS.AVGACRES

Free SQL Book, Tim Martyn 212 Copyright Pending 2020

26I. This exercise has the same query objective as Exercise 25M1. Your solution should

specify an inline view.

 Reference the DEPARTMENT and EMPLOYEE tables. Assume that management is

considering adjusting each department’s budget. Each new departmental budget might

be changed to twice the total salary of all employees who work in the department.

Before implementing this change, management asks you to produce a report that

displays each department’s number, name, current budget, and the proposed new

budget. If a department does not have any employees, then display a null value for the

proposed new budget. The result should look like:

 DNO DNAME BUDGET NEWDBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 -

 40 ENGINEERING 25000.00 1000.00

SELECT D.DNO, D.DNAME, D.BUDGET,

 2.00 * TEMP.DTOTSAL NEWBUDGET

FROM DEPARTMENT D LEFT OUTER JOIN

 (SELECT DNO, SUM (SALARY) DTOTSAL

 FROM EMPLOYEE

 GROUP BY DNO) TEMP

ON D.DNO = TEMP.DNO

Free SQL Book, Tim Martyn 213 Copyright Pending 2020

26J. This exercise modifies the preceding Exercise 26I. (It also has same query objective

as Exercise 25N.) The user does not want to see any null values in the report.

Therefore, if a department does not have any employees, the new budget should be

the same as the current budget. The result should look like:

 DNO DNAME BUDGET NEWDBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 30 PRODUCTION 7000.00 7000.00

 40 ENGINEERING 25000.00 1000.00

 Code two solutions which specify inline views.

 The first solution should use the COALESCE function to substitute the current

BUDGET value for a null value in the NEWBUDGET column.

 Solition-1

SELECT D.DNO, DNAME, BUDGET,

 COALESCE ((2.00 * DTOTSAL), BUDGET) NEWBUDGET

FROM DEPARTMENT D LEFT OUTER JOIN

 (SELECT DNO, SUM (SALARY) DTOTSAL

 FROM EMPLOYEE

 GROUP BY DNO) TEMP

ON D.DNO = TEMP.DNO

 The second solution should specify a CASE-expression to substitute the current

BUDGET value for a null value in the NEWBUDGET column.

 Solution-2

SELECT D.DNO, DNAME, BUDGET,

 CASE

 WHEN DTOTSAL IS NULL THEN BUDGET

 ELSE 2.00 * DTOTSAL

 END NEWBUDGET

FROM DEPARTMENT D LEFT OUTER JOIN

 (SELECT DNO, SUM (SALARY) DTOTSAL

 FROM EMPLOYEE

 GROUP BY DNO) TEMP

ON D.DNO = TEMP.DNO

Free SQL Book, Tim Martyn 214 Copyright Pending 2020

26K. Extend Sample Query 26.3. (Display all information about the highest paid employee

in each department that has employees.) Also display the department name along with

the department number. The result should look like:

 ENO ENAME SALARY DNO DNAME

2000 LARRY 2000.00 10 ACCOUNTING

4000 SHEMP 500.00 40 ENGINEERING

6000 GEORGE 9000.00 20 INFO. SYS.

SELECT E.ENO, E.ENAME, E.SALARY, E.DNO, D.DNAME

FROM EMPLOYEE E, DEPARTMENT D,

 (SELECT DNO, MAX (SALARY) AS MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO) AS TMAXES

WHERE E.DNO = TMAXES.DNO

AND E.SALARY = TMAXES.MAXSAL

AND E.DNO = D.DNO

26L. Same query objective as Exercise 23S. Consider changing each

DEPARTMENT.BUDGET value to a value that is equal to the largest BUDGET

value minus 10% of the department’s current BUDGET value. Display each

department number, name, current budget, and the adjusted budget. (Hint: Review

Sample Query 26.5.) The result should look like:

 DNO DNAME BUDGET ADJBUDGET

 10 ACCOUNTING 75000.00 67500.00

 20 INFO. SYS. 20000.00 73000.00

 30 PRODUCTION 7000.00 74300.00

 40 ENGINEERING 25000.00 72500.00

 SELECT D.DNO, D.DNAME, D.BUDGET,

 TEMP.MAXBUD - (.10*D.BUDGET) ADJBUDGET

 FROM DEPARTMENT D,

 (SELECT MAX (BUDGET) MAXBUD

 FROM DEPARTMENT) AS TEMP

Free SQL Book, Tim Martyn 215 Copyright Pending 2020

26M. Reference the PARTSUPP and LINEITEM tables. For each part, display its part

number, its largest purchase price, and its lowest selling price, if this largest purchase

price is greater than its lowest selling price. The result should look like:

PNO MAXPAID MINSOLD

P3 12.50 12.00

P7 3.50 3.00

P8 5.00 4.00

 Hint: Specify two dynamic views that look like:

SELECT BOUGHT.PNO, BOUGHT.MAXPS MAXPAID,

 SOLD.MINLI MINSOLD

FROM (SELECT PNO, MAX (PSPRICE) MAXPS

 FROM PARTSUPP

 GROUP BY PNO) BOUGHT,

 (SELECT PNO, MIN (LIPRICE) MINLI

 FROM LINEITEM

 GROUP BY PNO) SOLD

WHERE BOUGHT.PNO = SOLD.PNO

AND BOUGHT.MAXPS > SOLD.MINLI

BOUGHT

PNO MAXPS

P1 11.00

P3 12.50

P4 12.00

P5 11.00

P6 4.00

P7 3.50

P8 5.00

SOLD

PNO MINLI

P1 11.50

P3 12.00

P4 13.00

P5 11.00

P6 5.00

P7 3.00

P8 4.00

Free SQL Book, Tim Martyn 216 Copyright Pending 2020

26N. Specify a dynamic view to satisfy Sample Query 25.8. Reference the EMPLOYEE

table. Consider adjusting each employee’s salary to a value that is equal to the

employee’s departmental average salary plus 5% of the employee’s current salary.

Display each employee number, name, and current salary, followed by the adjusted

salary. The result should look like:

 ENO ENAME SALARY ADJUSTEDSALARY

1000 MOE 2000.00 4766.66

2000 LARRY 2000.00 1300.00

3000 CURLY 3000.00 4816.66

4000 SHEMP 500.00 525.00

5000 JOE 400.00 1220.00

6000 GEORGE 9000.00 5116.66

 SELECT E.ENO, E.ENAME, E.SALARY,

 TEMP.AVGSAL + (.05* E.SALARY) ADJUSTEDSALARY

 FROM EMPLOYEE E,

 (SELECT DNO, AVG (SALARY) AVGSAL

 FROM EMPLOYEE

 GROUP BY DNO) TEMP

 WHERE E.DNO = TEMP.DNO

Free SQL Book, Tim Martyn 217 Copyright Pending 2020

26O. Use an inline view to enhance Sample Query 23.16. Reference the EMPLOYEE

table. Consider the impact of adjusting each employee’s salary to a value that is equal

to the overall average of all current salaries plus 5% of the employee’s current salary.

Display each employee number, name, current salary, and adjusted salary. Also,

display a narrative label “SALARY INCREASED” or “SALARY DECREASED”

or “NO CHANGE” in the last column in result table. The result should look like:

 ENO ENAME SALARY ADJSAL NARRATIVE

1000 MOE 2000.00 2916.66 SALARY INCREASED

2000 LARRY 2000.00 2916.66 SALARY INCREASED

3000 CURLY 3000.00 2966.66 SALARY DECREASED

4000 SHEMP 500.00 2841.66 SALARY INCREASED

5000 JOE 400. 00 2836.66 SALARY INCREASED

6000 GEORGE 9000.00 3266.66 SALARY DECREASED

 SELECT E.ENO, E.ENAME, E.SALARY,

 TEMP.AVGSAL+ (.05*SALARY) ADJSAL,

 CASE

 WHEN SALARY < TEMP.AVGSAL+ (.05*SALARY)

 THEN 'SALARY INCREASED'

 WHEN SALARY > TEMP.AVGSAL+ (.05*SALARY)

 THEN 'SALARY DECREASED'

 ELSE 'NO CHANGE'

 END NARRATIVE

 FROM EMPLOYEE E,

 (SELECT AVG (SALARY) AVGSAL FROM EMPLOYEE) AS TEMP

 26P. Reference the PRESERVE table. For each row, if its FEE value is not zero, calculate

the ratio of ACRES divided by FEE. Display the preserve name and ratio if its ratio is

greater than 200. The result should look like:

 PNAME RATIO

 HASSAYAMPA RIVER 220.00

 PAPAGONIA-SONOITA CREEK 400.00

Review the page after Sample Query 7.6 and Exercise 23Zi.Your solution should

specify a dynamic view.

SELECT NOZERO.PNAME, NOZERO.RATIO

FROM (SELECT PNAME, ACRES/FEE RATIO

 FROM PRESERVE

 WHERE FEE <>0) NOZERO

WHERE NOZERO.RATIO > 200.00

Free SQL Book, Tim Martyn 218 Copyright Pending 2020

26Q. Code an alternative solution for Sample Query 23.11. Do not display information

about any employee with a SALARY value of 2000.00. For other employees, display

the ENO, ENAME, SALARY, and ratio of SALARY/(SALARY–2000.00) if this

ratio is greater than or equal to 2.00. (Notice that, when a SALARY value equals

2000.00, we have a divide-by-zero problem.)

ENO ENAME SALARY RATIO

3000 CURLY 3000.00 3.00

 SELECT E.ENO, E.ENAME, E.SALARY,

E.SALARY/(E.SALARY - 2000.00) RATIO

 FROM (SELECT ENO, ENAME, SALARY

 FROM EMPLOYEE

 WHERE SALARY <> 2000.00) E

 WHERE E.SALARY/(E.SALARY - 2000.00) >= 2.00

Free SQL Book, Tim Martyn 219 Copyright Pending 2020

Chapter-27 - WITH-Clause: Common Table Expressions

The following exercises have the same query objectives as Exercises 26A-26D. Solve by

coding WITH-clauses. These exercises reference the EMPLOYEE table.

27A. Determine the total salary for each department. Then display the largest of these totals.

The result should look like:

 LARGESTTOTAL

 14000.00

WITH TOTALS

AS

 (SELECT DNO, SUM (SALARY) TOTSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT MAX (TOTSAL) LARGSETTOTAL

FROM TOTALS

Alternative: Specify column-names in WITH-Clause:

WITH TOTALS (DNO, TOTSAL)

AS

 (SELECT DNO, SUM (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT MAX (TOTSAL) LARGSETTOTAL

FROM TOTALS

27B. Determine the average salary for each department. Then display the smallest of these

averages. The result should look like:

 SMALLESTAVG

 500.00

WITH AVERAGES

AS

 (SELECT DNO, AVG (SALARY) AVGSAL

 FROM EMPLOYEE

 GROUP BY DNO)

 SELECT MIN (AVGSAL) SMALLESTAVG

FROM AVERAGES

Free SQL Book, Tim Martyn 220 Copyright Pending 2020

27C. Display all information about the lowest paid employee in each department. The result

should look like:

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

WITH TMINS

AS

(SELECT DNO, MIN (SALARY) AS MINSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT E.ENO,E.ENAME, E.SALARY, E.DNO

 FROM EMPLOYEE E, TMINS

 WHERE E.DNO = TMINS.DNO

AND E.SALARY = TMINS.MINSAL

27D. For each department, display all information about every departmental employee who

has a salary that is greater than or equal to the average salary for the department. The

result should look like:

 ENO ENAME SALARY DNO

 2000 LARRY 2000.00 10

 4000 SHEMP 500.00 40

 6000 GEORGE 9000.00 20

WITH TAVGS

AS

 (SELECT DNO, AVG (SALARY) AVGSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT E.ENO, E.ENAME, E.SALARY, E.DNO

FROM EMPLOYEE E, TAVGS

WHERE E.DNO = TAVGS.DNO

AND E.SALARY >= TAVGS.AVGSAL

Free SQL Book, Tim Martyn 221 Copyright Pending 2020

27E. Same as Exercise 26E2. Reference the PARTSUPP and LINEITEM tables in the

MTPC database. For each part sold, the selling price (LIPRICE) is always greater than

or equal to the part’s purchase price (PSPRICE). Hence, a part’s average selling price

will always be greater than or equal to its average purchase price. We want to display

information about any part where the difference between these averages is less than

75 cents. For any such part, display the part number followed by its average purchase

price and average selling price.

 PNO AVGPS AVGLI

 P7 3.00 3.50

WITH

PS (PNO, AVGPS) AS

 (SELECT PNO, AVG (PSPRICE)

 FROM PARTSUPP

 GROUP BY PNO),

LI (PNO, AVGLI) AS

 (SELECT PNO, AVG (LIPRICE)

 FROM LINEITEM

 GROUP BY PNO)

SELECT PS.PNO, PS.AVGPS, LI.AVGLI

FROM PS,LI

WHERE PS.PNO = LI.PNO

AND LI.AVGLI - PS.AVGPS < 0.75

27F. Same as Exercise 26F: Display the department number and total salary of the

department having the largest total salary. The result should look like:

 DNO LARGESTTOTAL

 20 14000.00

WITH DSUMS (DNO, DEPTSUM)

AS

 (SELECT DNO, SUM (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT DNO, DEPTSUM LARGESTTOTAL

FROM DSUMS

WHERE DEPTSUM = (SELECT MAX (DEPTSUM) FROM DSUMS)

Free SQL Book, Tim Martyn 222 Copyright Pending 2020

Summary Exercises (Chapter 27)

The following Exercises 27G-27O have the same query objectives as Exercises 26G-26O.

Utilize the WITH-clause to satisfy these query objectives.

27G. Reference the EMPLOYEE table. Determine the average salary in each department.

Then display the largest of these averages. The result should look like:

 MAXAVGSAL

 4666.66

WITH TAVGS AS

 (SELECT DNO, AVG (SALARY) AVGSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT MAX (AVGSAL) MAXAVGSAL

FROM TAVGS

27H. Reference the PRESERVE table. For each state, display the state code and preserve’s

number, name, acreage for every preserve that is larger than the average preserve

acreage for the state. The result should look like:

 STATE PNO PNAME ACRES

 AZ 7 MULESHOE RANCH 49120

 MA 9 DAVID H. SMITH 830

 MA 12 MOUNT PLANTAIN 730

 MT 2 PINE BUTTE SWAMP 15000

WITH AVGS AS

 (SELECT STATE, AVG (ACRES) AS AVGACRES

 FROM PRESERVE

 GROUP BY STATE)

SELECT P.STATE, P.PNO, P.PNAME, P.ACRES

FROM PRESERVE P, AVGS

WHERE P.STATE = AVGS.STATE

AND P.ACRES > AVGS.AVGACRES

Free SQL Book, Tim Martyn 223 Copyright Pending 2020

27I. This exercise has the same query objective as Exercises 25M1 and 26I. Reference the

DEPARTMENT and EMPLOYEE tables. Assume that management is considering

adjusting each department’s budget. Each new departmental budget might be changed

to twice the total salary of all employees who work in the department. Before

implementing this change, management asks you to produce a report that displays

each department’s number, name, current budget, and the proposed new budget. If a

department does not have any employees, then display a null value for the proposed

new budget. The result should look like:

 DNO DNAME BUDGET NEWBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 40 ENGINEERING 25000.00 1000.00

 30 PRODUCTION 7000.00 -

WITH TEMP AS

 (SELECT DNO, SUM (SALARY) DTOTSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT D.DNO, D.DNAME, D.BUDGET, 2.00 * DTOTSAL NEWBUDGET

FROM DEPARTMENT D LEFT OUTER JOIN TEMP

ON D.DNO = TEMP.DNO

Free SQL Book, Tim Martyn 224 Copyright Pending 2020

27J. This exercise modifies the preceding Exercise 27I. (It also has same query objective

as Exercise 25N.) The user does not want to see any null values in the report.

Therefore, if a department does not have any employees, the new budget should be

the same as the current budget. The result should look like:

 DNO DNAME BUDGET NEWBUDGET

 10 ACCOUNTING 75000.00 4800.00

 20 INFO. SYS. 20000.00 28000.00

 40 ENGINEERING 25000.00 1000.00

 30 PRODUCTION 7000.00 7000.00

 Code two solutions which specify WITH-clauses.

 The first solution should use the COALESCE function to substitute the current

BUDGET value for a null value in the NEWBUDGET column.

 Solition-1

WITH TEMP AS

 (SELECT DNO, SUM (SALARY) DTOTSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT D.DNO, D.DNAME, D.BUDGET,

 COALESCE ((2.00 * DTOTSAL), D.BUDGET) NEWBUDGET

FROM DEPARTMENT D LEFT OUTER JOIN TEMP

ON D.DNO = TEMP.DNO

 The second solution should specify a CASE-expression to substitute the current

BUDGET value for a null value in the NEWBUDGET column.

 Solution-2

WITH TEMP AS

 (SELECT DNO, SUM (SALARY) DTOTSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT D.DNO, D.DNAME, D.BUDGET,

 CASE

 WHEN DTOTSAL IS NULL THEN BUDGET

 ELSE DTOTSAL * 2.00

 END NEWBUDGET

FROM DEPARTMENT D LEFT OUTER JOIN TEMP

ON D.DNO = TEMP.DNO

Free SQL Book, Tim Martyn 225 Copyright Pending 2020

27K. Extend Sample Query 27.3. (Display all information about the highest paid employee

in each department that has at least one employee.) Also display the department name

along with the department number. The result should look like:

 ENO ENAME SALARY DNO DNAME

2000 LARRY 2000.00 10 ACCOUNTING

4000 SHEMP 500.00 40 ENGINEERING

6000 GEORGE 9000.00 20 INFO. SYS.

WITH TMAXES AS

 (SELECT DNO, MAX (SALARY) AS MAXSAL

 FROM EMPLOYEE

 GROUP BY DNO)

SELECT E.ENO, E.ENAME, E.SALARY, E.DNO, D.DNAME

FROM EMPLOYEE E, DEPARTMENT D, TMAXES

WHERE E.DNO = TMAXES.DNO

AND E.SALARY = TMAXES.MAXSAL

AND E.DNO = D.DNO

27L. Consider changing each DEPARTMENT.BUDGET value to a value that is equal to

the largest BUDGET value minus 10% of the department’s current BUDGET value.

Display each department number, name, current budget, and the adjusted budget.

(Hint: Review Sample Query 27.5) The result should look like:

 DNO DNAME BUDGET ADJBUDGET

 10 ACCOUNTING 75000.00 67500.00

 20 INFO. SYS. 20000.00 73000.00

 30 PRODUCTION 7000.00 74300.00

 40 ENGINEERING 25000.00 72500.00

 WITH TEMP (MAXBUD) AS

 (SELECT MAX (BUDGET) FROM DEPARTMENT)

 SELECT D.DNO, D.DNAME, D.BUDGET,

 TEMP.MAXBUD - (.10*D.BUDGET) ADJBUDGET

 FROM DEPARTMENT D, TEMP

Free SQL Book, Tim Martyn 226 Copyright Pending 2020

27M. Reference the PARTSUPP and LINEITEM tables. For each part, display its part

number, its largest purchase price, and its lowest selling price, if this largest purchase

price is greater than its lowest selling price. The result should look like:

PNO MAXPAID MINSOLD

P3 12.50 12.00

P7 3.50 3.00

P8 5.00 4.00

 Hint: Specify two common table expressions for the following two tables that

look like:

 WITH

 BOUGHT AS

 (SELECT PNO, MAX (PSPRICE) MAXPS

 FROM PARTSUPP

 GROUP BY PNO),

 SOLD AS

 (SELECT PNO, MIN(LIPRICE) MINLI

 FROM LINEITEM

 GROUP BY PNO)

 SELECT B.PNO, B.MAXPS MAXPAID, S.MINLI MINSOLD

 FROM BOUGHT B, SOLD S

 WHERE B.PNO = S.PNO

 AND B.MAXPS > S.MINLI

BOUGHT

PNO MAXPS

P1 11.00

P3 12.50

P4 12.00

P5 11.00

P6 4.00

P7 3.50

P8 5.00

SOLD

PNO MINLI

P1 11.50

P3 12.00

P4 13.00

P5 11.00

P6 5.00

P7 3.00

P8 4.00

Free SQL Book, Tim Martyn 227 Copyright Pending 2020

27N. Specify a WITH-clause to satisfy Sample Query 25.8. Reference the EMPLOYEE

table. Consider adjusting each employee’s salary to a value that is equal to the

employee’s departmental average salary plus 5% of the employee’s current salary.

Display each employee number, name, and current salary, followed by the adjusted

salary. The result should look like:

 ENO ENAME SALARY ADJUSTEDSALARY

1000 MOE 2000.00 4766.66

2000 LARRY 2000.00 1300.00

3000 CURLY 3000.00 4816.66

4000 SHEMP 500.00 525.00

5000 JOE 400.00 1220.00

6000 GEORGE 9000.00 5116.66

 WITH TEMP (DNO, AVGSAL) AS

 (SELECT DNO, AVG (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO)

 SELECT E.ENO, E.ENAME, E.SALARY,

 TEMP.AVGSAL + (.05* E.SALARY) ADJUSTEDSALARY

 FROM EMPLOYEE E, TEMP

 WHERE E.DNO = TEMP.DNO

 ORDER BY E.ENO

Free SQL Book, Tim Martyn 228 Copyright Pending 2020

27O. Reference the EMPLOYEE table. Consider the impact of adjusting each employee’s

salary to a value that is equal to the overall average of all current salaries plus 5% of

the employee’s current salary. Display each employee number, name, current salary,

and adjusted salary. Also, display a narrative label “SALARY INCREASED” or

“SALARY DECREASED” or “NO CHANGE” in the last column in result table.

The result should look like:

 ENO ENAME SALARY ADJSAL NARRATIVE

1000 MOE 2000.00 2916.66 SALARY INCREASED

2000 LARRY 2000.00 2916.66 SALARY INCREASED

3000 CURLY 3000.00 2966.66 SALARY DECREASED

4000 SHEMP 500.00 2841.66 SALARY INCREASED

5000 JOE 400. 00 2836.66 SALARY INCREASED

 6000 GEORGE 9000.00 3266.66 SALARY DECREASED

 WITH TEMP (AVGSAL) AS

 (SELECT AVG (SALARY) AVGSAL FROM EMPLOYEE)

 SELECT E.ENO, E.ENAME, E.SALARY,

 TEMP.AVGSAL + (.05*E.SALARY) ADJSAL,

 CASE

 WHEN E.SALARY < TEMP.AVGSAL+ (.05*E.SALARY)

 THEN 'SALARY INCREASED'

 WHEN E.SALARY > TEMP.AVGSAL+ (.05*E.SALARY)

 THEN 'SALARY DECREASED'

 ELSE 'NO CHANGE'

 END NARRATIVE

 FROM EMPLOYEE E, TEMP

27P. Reference the PRESERVE table. For each row, if its FEE value is not zero, calculate

the ratio of ACRES divided by FEE. Display the preserve name and ratio if its ratio is

greater than 200. The result should look like:

 PNAME RATIO

 HASSAYAMPA RIVER 220.00

 PAPAGONIA-SONOITA CREEK 400.00

Review the page after Sample Query 7.6, Exercise 23Zi, and Exercise26P.Your

solution should specify a common table expression.

.

WITH NOZERO

AS (SELECT PNAME, ACRES/FEE RATIO

 FROM PRESERVE

 WHERE FEE <>0)

SELECT PNAME, RATIO

FROM NOZERO

WHERE RATIO > 200.00

Free SQL Book, Tim Martyn 229 Copyright Pending 2020

27Q. Code an alternative solution for Sample Query 23.11 (and Exercise 26Q). Do not

display information about any employee with a SALARY value of 2000.00. For other

employees, display the ENO, ENAME, SALARY, and ratio of

SALARY/(SALARY–2000.00) if this ratio is greater than or equal to 2.00. (Notice

that, when a SALARY value equals 2000.00, we have a divide-by-zero problem.)

ENO ENAME SALARY RATIO

3000 CURLY 3000.00 3.00

WITH NOZERO (ENO, ENAME, SALARY)

AS

(SELECT ENO, ENAME, SALARY

 FROM EMPLOYEE

 WHERE SALARY <> 2000.00)

SELECT ENO, ENAME, SALARY,

 SALARY/(SALARY - 2000.00) RATIO

FROM NOZERO

WHERE SALARY/(SALARY - 2000.00) >= 2.00

Free SQL Book, Tim Martyn 230 Copyright Pending 2020

27R. Same as Sample Query 20.15: Display the following information about regions,

states, customers, purchase-orders, and line-items.

• Display the region number and name of all regions, including regions without

any states.

• Display the code and name for all states, including states without any customers.

• Display customer number and name for those customers that have at least one

purchase-order.

• Display each customer’s purchase-order numbers, including numbers for

purchase-orders that do not have any line-items.

• Display each line-item’s line-number and part-number values.

Specify a CTE called CUST_WITH_PO which executes an INNER JOIN to join the

CUSTOMER and PUR_ORDER tables. Then the following code would represent a

sequence of LEFT OUTER JOIN operations that traverse a four-level hierarchy.

 FROM REGION R

 LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO

 LEFT OUTER JOIN CUST_WITH_PO CWPO

 ON ST.STCODE = CWPO.STCODE

 LEFT OUTER JOIN LINEITEM LI

 ON PO.PONO = LI.PONO

WITH CUST_WITH_PO (CNO, CNAME, STCODE, PONO)

AS

(SELECT C.CNO, C.CNAME, C.STCODE, PO.PONO

FROM CUSTOMER C INNER JOIN PUR_ORDER PO ON C.CNO = PO.CNO)

SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME,

CWPO.CNO, CWPO.CNAME, CWPO.PONO, LI.LINE, LI.PNO

FROM REGION R

LEFT OUTER JOIN STATE ST

 ON R.RNO = ST.RNO

LEFT OUTER JOIN CUST_WITH_PO CWPO

ON ST.STCODE = CWPO.STCODE

 LEFT OUTER JOIN LINEITEM LI

 ON CWPO.PONO = LI.PONO

 ORDER BY R.RNO, ST.STCODE, CWPO.CNO, CWPO.PONO, LI.LINE

LOJ

LOJ

LOJ

STATE

REGION

CUST_WITH_PO

LINEITEM

Free SQL Book, Tim Martyn 231 Copyright Pending 2020

27S. Same as Sample Query 20.16: Display the following information about regions,

states, customers, purchase-orders, and line-items.

• Display the region number of any region that has at least one state.

• Display the code of any state that has at least one customer.

• Display the number and name of all customers, including customers without

purchase- orders.

• Display each customer’s purchase-order numbers if the purchase-order has at least

one line-item.

• Display the line-number and corresponding part-number of each line-item.

Think of the INNER JOIN operations forming two intermediate join-results in tables

called MATCHING_R_ST_C and MATCHING_PO_LI. Then the following code

would represent a sequence of LEFT OUTER JOIN operations that traverse a four-

level hierarchy.

 FROM MATCHING_R_ST_C RSTC

 LEFT OUTER JOIN MATCHING_PO_LI POLI

 ON RSTC.CNO = POLI.CNO

WITH MATCHING_R_ST_C (RNO, RNAME, STCODE, STNAME, CNO, CNAME)

AS

(SELECT R.RNO, R.RNAME, ST.STCODE, ST.STNAME, C.CNO, C.CNAME

 FROM REGION R INNER JOIN STATE ST

ON R.RNO = ST.RNO

 INNER JOIN CUSTOMER C

ON ST.STCODE = C.STCODE),

 MATCHING_PO_LI (CNO, PONO, LINE, PNO)

 AS

 (SELECT PO.CNO, PO.PONO, LI.LINE, LI.PNO

 FROM PUR_ORDER PO INNER JOIN LINEITEM LI

ON PO.PONO = LI.PONO)

SELECT RSTC.RNO, RSTC.RNAME, RSTC.STCODE, RSTC.STNAME,

 RSTC.CNO, RSTC.CNAME, POLI.PONO, POLI.LINE, POLI.PNO

FROM MATCHING_R_ST_C RSTC LEFT OUTER JOIN MATCHING_PO_LI POLI

 ON RSTC.CNO = POLI.CNO

ORDER BY RSTC.RNO, RSTC.STCODE, RSTC.CNO, POLI.PONO, POLI.LINE

LOJ

MATCHING_PO_LI

MATCHING_R_ST_C

Free SQL Book, Tim Martyn 232 Copyright Pending 2020

Chapter-28 - CREATE VIEW Statement

Summary Exercises

Exercises 28A – 28F assume that the DEPTSTATSV and EMPDEPTV tables (views)

already exist because Sample Statements 28.4 and 28.8 have been executed.

28A. Same query objective as Exercise 27A. Reference the DEPTSTATSV table.

Determine the total salary for each department. Then display the largest of these totals.

The result should look like:

 LARGESTTOTAL

 14000.00

 SELECT MAX (TOTALSAL) LARGESTTOTAL

 FROM DEPTSTATSV

28B. Same query objective as Exercise 27C. Reference the EMPLOYEE and

DEPTSTATSV tables. Display all information about the lowest paid employee in

each department. The result should look like:

 ENO ENAME SALARY DNO

 1000 MOE 2000.00 20

 4000 SHEMP 500.00 40

 5000 JOE 400.00 10

 SELECT ENO, ENAME, SALARY, E.DNO

 FROM EMPLOYEE E, DEPTSTATSV DV

 WHERE E.DNO = DV.DNO

 AND E.SALARY = DV.MINSAL

 ORDER BY ENO

28C. Same query objective as Exercise 27E. Reference the DEPTSTATSV table. Display

the department number and total salary of the department having the largest total

salary. The result should look like:

 DNO LARGESTTOTAL

 20 14000.00

 SELECT DNO, TOTALSAL LARGESTTOTAL

 FROM DEPTSTATSV

 WHERE TOTALSAL =

 (SELECT MAX (TOTALSAL) FROM DEPTSTATSV)

Free SQL Book, Tim Martyn 233 Copyright Pending 2020

28D. Expand upon the previous Exercise 28C. Reference the DEPARTMENT and

DEPTSTATSV tables. Display the department name along with the department

number. The result should look like:

 DNO DNAME LARGESTTOTAL

 20 INFO. SYS. 14000.00

 SELECT DS.DNO, DNAME, TOTALSAL LARGESTTOTAL

 FROM DEPTSTATSV DS, DEPARTMENT D

 WHERE DS.DNO = D.DNO

 AND TOTALSAL =

 (SELECT MAX (TOTALSAL) FROM DEPTSTATSV)

28E. Reference the EMPDEPTV table. Display the employee number and name of any

employee whose salary exceeds $2,000.00 and works in the Accounting

Department. The result should look like:

 ENO ENAME

 2000 LARRY

 SELECT ENO, ENAME

 FROM EMPDEPTV

 WHERE SALARY > 1000.00 AND DNAME = 'ACCOUNTING'

28F. Reference the EMPDEPTV and DEPTSTATSV tables. For any department where

the difference between the largest and smallest employee salaries exceeds

$3,000.00, display the department name, followed by the name and salary of each

of its employees. The result should look like:

 DNAME ENAME SALARY

 INFO. SYS. MOE 2000.00

 INFO. SYS. CURLY 3000.00

 INFO. SYS. GEORGE 9000.00

 SELECT E.DNAME, E.ENAME, E.SALARY

 FROM EMPDEPTV E, DEPTSTATSV D

 WHERE E.DNO = D.DNO

 AND D.MAXSAL - D.MINSAL > 3000.00

Free SQL Book, Tim Martyn 234 Copyright Pending 2020

28G. (a) The DEPTSTATSV view does not contain the average salary for each

department. Create another view called DEPTSTATSV2 that contains the

same data as DEPTSTATSV plus another column called AVGSAL that

contains the average salary for each department.

CREATE VIEW DEPTSTATSV2

(DNO, MAXSAL, MINSAL, TOTALSAL, AVGSAL)

AS

 SELECT DNO, MAX (SALARY), MIN (SALARY),

 SUM (SALARY), AVG (SALARY)

 FROM EMPLOYEE

 GROUP BY DNO

(c) Reference the above DEPTSTATSV2. Display the smallest of average

departmental salary. The result should look like:

 MINAVG

 500.00

SELECT MIN (AVGSAL) MINAVG FROM DEPTSTATSV2

 (c) Reference the EMPLOYEE and DEPTSTATSV2 tables. For each

department, display all information about every departmental employee who

has a salary that is greater than or equal to the average salary for the

department. The result should look like:

 ENO ENAME SALARY DNO

 2000 LARRY 2000.00 10

 4000 SHEMP 500.00 40

 6000 GEORGE 9000.00 20

SELECT E.ENO, E.ENAME, E.SALARY, E.DNO

FROM EMPLOYEE E, DEPTSTATSV2 D

WHERE E.DNO = D.DNO

AND E.SALARY >= D.AVGSAL

(d) Drop the DEPTSTATSV2 view.

 DROP VIEW DEPTSTATSV2

Free SQL Book, Tim Martyn 235 Copyright Pending 2020

28H. This exercise is a variation of Exercise 27M.

Reference the PARTSUPP and LINEITEM tables to create a view called

BOUGHT_SOLD_STATS. This view contains each part number, its largest purchase

price (MAXPAID), and its lowest selling price (MINSOLD). Hint: Modify the

solution to Exercise 27M. Data for the BOUGHT_SOLD_STATS should look like:

 PNO MAXPAID MINSOLD

 P1 11.00 11.50

 P3 12.50 12.00

 P4 12.00 13.00

 P5 11.00 11.00

 P6 4.00 5.00

 P7 3.50 3.00

 P8 5.00 4.00

CREATE VIEW BOUGHT_SOLD_STATS

AS

WITH

 BOUGHT AS

 (SELECT PNO, MAX (PSPRICE) MAXPS

 FROM PARTSUPP

 GROUP BY PNO),

 SOLD AS

 (SELECT PNO, MIN(LIPRICE) MINLI

 FROM LINEITEM

 GROUP BY PNO)

 SELECT B.PNO, B.MAXPS MAXPAID, S.MINLI MINSOLD

 FROM BOUGHT B, SOLD S

 WHERE B.PNO = S.PNO

 Display any row in BOUGHT_SOLD_STATS where this largest purchase price is

greater than its lowest selling price. The result should look like:

 PNO MAXPAID MINSOLD

 P3 12.50 12.00

 P7 3.50 3.00

 P8 5.00 4.00

 SELECT *

 FROM BOUGHT_SOLD_STATS

 WHERE MAXPAID > MINSOLD

 Drop the BOUGHT_SOLD_STATS view

 DROP VIEW BOUGHT_SOLD_STATS

Free SQL Book, Tim Martyn 236 Copyright Pending 2020

PART VII

Special Topics

Free SQL Book, Tim Martyn 237 Copyright Pending 2020

Chapter-29 – Transaction Processing

No Exercises

Chapter-30 - Recursive Queries

Exercises for Section A. Recursive One-to-Many Recursive Relationships

Although we have only presented one relatively simple recursive sample query, you should

be able to utilize this example to code solutions for the following exercises. Do not specify

an ORDER BY clause for any of these exercises. (Optionally, you are invited to detect a

special kind of row sequence in the result tables. This topic will be discussed later in this

section.)

30A1. Reference the REMPLOYEE table. Display ENO, ENAME, and SENO values for

Employee 8000 and all employees who directly or indirectly work for this

employee. I.e., Display data about Employee 8000 and all his descendants. The

result table should look like:

ENO ENAME SENO

 8000 JOE 1000

8500 GEORGE 8000

 8600 DICK 8500

 8700 HANK 8500

Hint: This exercise only requires one trivial modification to the solution for Sample

Query 30.1.

Specify 8000 instead of 2000 in Sample Query 30.1

WITH DESCENDANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '8000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 238 Copyright Pending 2020

30A2. Enhance the previous exercise 30A1 to also display SALARY values. The result

table should look like:

ENO ENAME SALARY SENO

 8000 JOE 8000.00 1000

8500 GEORGE 7000.00 8000

 8600 DICK 6000.00 8500

 8700 HANK 6000.00 8500

Specify SALARY in first the two Sub-SELECTs.

WITH DESCENDANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT ENO, ENAME, SALARY, SENO

 FROM REMPLOYEE

 WHERE ENO = '8000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SALARY, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 239 Copyright Pending 2020

30B1. Reference the REMPLOYEE table. Traverse its tree from top to bottom. Start with

the row for Employee 1000 (root node). Display all data about this employee and

all employees who directly or indirectly work for this employee. (I.e., Display the

entire tree.)

WITH DESCENDANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT ENO, ENAME, SALARY, SENO

 FROM REMPLOYEE

 WHERE ENO = '1000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SALARY, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

 Result looks like:

 ENO ENAME SALARY SENO

1000 MOE 2000.00 -

 2000 JANET 2000.00 1000

 3000 LARRY 3000.00 1000

 8000 JOE 8000.00 1000

 4000 JULIE 500.00 2000

 5000 JESSIE 400.00 2000

 6000 FRANK 9000.00 2000

 6500 CURLY 8000.00 3000

 8500 GEORGE 7000.00 8000

 4500 JOHNNY 2000.00 4000

 4600 ELEANOR 3000.00 4000

 5500 HANNAH 4000.00 5000

 7500 SHEMP 9000.00 6500

 8600 DICK 6000.00 8500

 8700 HANK 6000.00 8500

 4700 ANDY 2000.00 4600

4800 MATT 3000.00 4600

Free SQL Book, Tim Martyn 240 Copyright Pending 2020

30B2. The solution for the previous Exercise 30B1 assumes you know that the root node

has an ENO value of 1000. Assume you do not have this knowledge. Code an

alternative solution that satisfies the same query objective. Start at the root node

(without knowing its ENO value) and display all information about all its

descendants.

WITH DESCENDANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT ENO, ENAME, SALARY, SENO

FROM REMPLOYEE

WHERE SENO IS NULL

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SALARY, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

[Same result as preceding exercise.]

Free SQL Book, Tim Martyn 241 Copyright Pending 2020

30C. Consider the recursive RDEMO1 table shown below in Figure 30.2. All columns

contain integer values. PKEY is the primary-key. FKEY is a foreign-key that

references PKEY. (The rows happen to be displayed in PKEY sequence.)

Tree Diagram

PKEY CODE FKEY

 10 0 -

 15 1000 25

 20 0 10

 25 0 20

 30 0 15

 35 0 30

 40 0 25

 50 0 40

Figure 30.2: RDEMO1 Table

10

20

25

40

50

15

30

35

Free SQL Book, Tim Martyn 242 Copyright Pending 2020

Display the PKEY, CODE, and FKEY values for the rows with a PKEY value of 25 and

all its descendant rows. The result should contain the following rows (without regard to

sequence).
PKEY CODE FKEY

 25 0 20

 15 1000 25

 40 0 25

 30 0 15

 50 0 40

 35 0 30

Hints: Code a CTE called DESCENDANTS.

• The initialization Sub-SELECT should retrieve the row with a PKEY value of 25.

• The recursive Sub-SELECT should join DESCENDANTS with RDEMO1 by

matching DESCENDANTS’s primary-key with RDEMO1’s foreign-key.

DESCENDANTS.PKEY = RDEMO1.FKEY

• The Main-SELECT should display all information in DESCENDANTS.

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 25

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM DESCENDANTS D, RDEMO1 R

 WHERE D.PKEY = R.FKEY

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 243 Copyright Pending 2020

30D1: Reconsider the rows in the RDEMO1 table shown in Figure 30.2. Using pencil and

paper, display all these rows in Breadth-First Hierarchical Sequence.

 PKEY CODE FKEY

 10 0 -

 20 0 10

 25 0 20

 15 1000 25

 40 0 25

 30 0 15

 50 0 40

 35 0 30

30D2: Append ORDER BY ENO to the Main-SELECT in Sample Query 30.1. Execute

the statement. Observe that the rows are no longer displayed in breadth-first

hierarchical sequence.

WITH DESCENDANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENDANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

 ORDER BY ENO

 ENO ENAME SENO

 2000 JANET 1000

 4000 JULIE 2000

 4500 JOHNNY 4000

 4600 ELEANOR 4000

 4700 ANDY 4600

 4800 MATT 4600

 5000 JESSIE 2000

 5500 HANNAH 5000

 6000 FRANK 2000

Free SQL Book, Tim Martyn 244 Copyright Pending 2020

30D3. Reconsider the RDEMO1 table shown in Figure 30.2. Using pencil and paper,

display its rows in depth-first hierarchical sequence.

PKEY CODE FKEY

 10 0 -

 20 0 10

 25 0 20

 15 1000 25

 30 0 15

 35 0 30

 40 0 25

 50 0 40

30E1. Consider the RDEMO1 table shown in Figure 30.2. What is the result of executing

the following statement? Execute the statement to verify your answer.

 PKEY CODE FKEY

 15 1000 25

 40 0 25

 30 0 15

 50 0 40

 35 0 30

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY IN (15, 40)

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM RDEMO1 R, DESCENDANTS D

 WHERE R.FKEY = D.PKEY

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 245 Copyright Pending 2020

30E2. Again, consider the RDEMO1 table. What is the result of executing the following

statement? Observe and explain the presence of duplicate rows in the result.

Execute the statement to verify your answer.

 PKEY CODE FKEY

 25 0 20

 40 0 25

 15 1000 25

 40 0 25

 50 0 40

 30 0 15

 50 0 40

 35 0 30

 Duplicate rows appear for PKEY values 40 and 50 because their corresponding

nodes lie on the downward path starting at node 25 and on the downward path

starting at node 40.

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY IN (25, 40)

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM RDEMO1 R, DESCENDANTS D

 WHERE R.FKEY = D.PKEY

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 246 Copyright Pending 2020

30F. This exercise focuses on the significant difference between specifying a restriction

in the recursive Sub-SELECT versus the Main-SELECT. Consider the following

statements which reference the RDEMO1 table shown in Figure 30.2. What is the

result of executing each statement? Execute each statement to verify your answers.

 PKEY CODE FKEY

 20 0 10

 25 0 20

 40 0 25

 30 0 15

 50 0 40

 35 0 30

 PKEY CODE FKEY

 20 0 10

 25 0 20

 40 0 25

 50 0 40

Specifying the CODE = 0 condition in the

third Sub-SELECT eliminates the row

with PKEY value of 15. However,

note that its descendants (PKEY values

30 and 35) appear in the result.

Specifying the CODE = 0 condition in the

second Sub-SELECT eliminates the row

with PKEY value of 15 and all its

descendants (PKEY values 30 and 35).

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 20

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM RDEMO1 R, DESCENDANTS D

 WHERE R.FKEY = D.PKEY

 AND R.CODE = 0

)

 SELECT * FROM DESCENDANTS

WITH DESCENDANTS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 20

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM RDEMO1 R, DESCENDANTS D

 WHERE R.FKEY = D.PKEY

)

 SELECT * FROM DESCENDANTS

 WHERE CODE = 0

Free SQL Book, Tim Martyn 247 Copyright Pending 2020

30G. Modify Exercise 30A which displayed the ENO, ENAME, SALARY, and SENO

values for Employee 8000 and all employees who directly or indirectly work for

this employee. This time only display information about an employee who directly

or indirectly works for Employee 8000 if the employee’s salary exceeds $6500.00.

The result should look like:

 ENO ENAME SALARY SENO

 8000 JOE 8000.00 1000

 8500 GEORGE 7000.00 8000

 WITH DESCENTANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT ENO, ENAME, SALARY, SENO

 FROM REMPLOYEE

 WHERE ENO = '8000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SALARY, R.SENO

 FROM DESCENTANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

SELECT * FROM DESCENTANTS

WHERE SALARY > 6500.00

Free SQL Book, Tim Martyn 248 Copyright Pending 2020

30H. Display the ENO, ENAME, and SENO values for Employee 2000 and all her

descendants. However, exclude the row describing Employee 4000 and all

descendants of this employee. The result should look like:

ENO ENAME SENO

2000 JANET 1000

5000 JESSIE 2000

6000 FRANK 2000

5500 HANNAH 5000

Code two solutions.

Solution-1 should specify the same restriction in both the recursive Sub-SELECT

and the Main-SELECT. The recursive Sub-SELECT stores a row for Employee

4000 into DESCENTANTS but eliminates all its descendants. The Main-SELECT

eliminates the row for Employee 4000.

Solution-2 specifies just one restriction in the recursive Sub-SELECT which

prevents the row for EMPLOYEE 4000 from being placed into DESCENDANTS.

Hence, none of its descendants will be placed into DESCENDANTS.

Solution-1

WITH DESCENTANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENTANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

 AND D.ENO <> '4000'

)

 SELECT * FROM DESCENTANTS

 WHERE ENO <> '4000'

Free SQL Book, Tim Martyn 249 Copyright Pending 2020

Solution-2

WITH DESCENTANTS (ENO, ENAME, SENO)

AS

(SELECT ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SENO

 FROM DESCENTANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

 AND R.ENO <> '4000'

)

 SELECT * FROM DESCENTANTS

Notice the difference between Solution-1 and Solution-2. Focus on the second (recursive)

Sub-SELECT.

Solution-1 specifies: D.ENO <> 4000

Solution-2 specifies: R.ENO <> 4000

The Solution-1 condition allows the Employee 4000 row to be placed into

DESCENDENTS, but it prevents its descendent rows from being placed into

DESCENDENTS. (This is why Solution-1 must specify the ENO <> '4000' condition in

the third Sub-SELECT.)

The Solution-2 condition prevents the Employee 4000 row and its descendent rows from

being placed into DESCENDENTS.

Suggestion: Perform a paper-and-pencil step-by-step walkthrough for each solution to

confirm your understanding.

Free SQL Book, Tim Martyn 250 Copyright Pending 2020

30I. Display the ENO, ENAME, SALARY, and BENO values of Employee 2000. Also

display these values for any employee who directly or indirectly works for this

employee with the following exception. Do not display information about an

employee and his dependents if the employee earns less than $1000.00. The result

should look like:

ENO ENAME SALARY BENO

 2000 JANET 2000.00 1000

 6000 FRANK 9000.00 2000

Code two solutions similar to the two solutions for the preceding Exercise 30H.

Solution-1

WITH DESCENTANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT ENO, ENAME, SALARY, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SALARY, R.SENO

 FROM DESCENTANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

 AND D.SALARY > 1000.00

)

 SELECT * FROM DESCENTANTS

 WHERE SALARY > 1000.00

Solution-2

WITH DESCENTANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT ENO, ENAME, SALARY, SENO

 FROM REMPLOYEE

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SALARY, R.SENO

 FROM DESCENTANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

 AND R.SALARY > 1000.00

)

 SELECT * FROM DESCENTANTS

Free SQL Book, Tim Martyn 251 Copyright Pending 2020

30J. What is total salary of all employees who report to Employee 8000? The result

should look like:

 TOTSAL

19000.00

 Hint: You only need to modify the third Sub-SELECT in the solution for Exercise

30A2.

WITH DESCENTANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT ENO, ENAME, SALARY, SENO

 FROM REMPLOYEE

 WHERE ENO = '8000'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SALARY, R.SENO

 FROM DESCENTANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT SUM (SALARY) TOTSAL FROM DESCENTANTS

 WHERE ENO <> '8000'

Free SQL Book, Tim Martyn 252 Copyright Pending 2020

The following two exercises do not require you to code recursive SQL.

30K1. Display the ENO, ENAME, SALARY values for all supervisors. Sort the result by

ENO values. The result should look like:

 ENO ENAME SALARY

 1000 MOE 2000.00

 2000 JANET 2000.00

 3000 LARRY 3000.00

 4000 JULIE 500.00

 4600 ELEANOR 3000.00

 5000 JESSIE 400.00

 6500 CURLY 8000.00

 8000 JOE 8000.00

 8500 GEORGE 7000.00

Note: This result is not in hierarchical sequence.

SELECT ENO, ENAME, SALARY

FROM REMPLOYEE

WHERE ENO IN (SELECT SENO FROM REMPLOYEE)

ORDER BY ENO

30K2. Display the ENO, ENAME, SALARY values for all non-supervisors. Sort the result

by ENO values. The result should look like:

 ENO ENAME SALARY

 4500 JOHNNY 2000.00

 4700 ANDY 2000.00

 4800 MATT 3000.00

 5500 HANNAH 4000.00

 6000 FRANK 9000.00

 7500 SHEMP 9000.00

 8600 DICK 6000.00

 8700 HANK 6000.00

Note: This result is not in hierarchical sequence.

SELECT ENO, ENAME, SALARY

FROM REMPLOYEE

WHERE ENO NOT IN

 (SELECT SENO FROM REMPLOYEE WHERE SENO IS NOT NULL)

ORDER BY ENO

Interesting Observation: Execute this statement after removing the “WHERE

SENO IS NOT NULL” clause.

Free SQL Book, Tim Martyn 253 Copyright Pending 2020

30L. Display the ENO, ENAME, SALARY, and SENO values for Employee 4000 and

all her direct and indirect supervisees. Also, for each employee, display a running

total of the employee’s salary plus the total salary of all her direct and indirect

supervisors. The result should look like:

ENO ENAME SALARY TOTPATH SENO

4000 JULIE 500.00 500.00 2000

 4500 JOHNNY 2000.00 2500.00 4000

 4600 ELEANOR 3000.00 3500.00 4000

 4700 ANDY 2000.00 5500.00 4600

 4800 MATT 3000.00 6500.00 4600

Hint: This exercise is similar to Sample Query 30.3.

WITH DESCENTANTS (ENO, ENAME, SALARY, TOTPATH, SENO)

AS

(SELECT ENO, ENAME, SALARY, SALARY, SENO

 FROM REMPLOYEE

 WHERE ENO = '4000'

 UNION ALL

 SELECT R.ENO, R.ENAME,

R.SALARY, R.SALARY + D.TOTPATH, R.SENO

 FROM DESCENTANTS D, REMPLOYEE R

 WHERE D.ENO = R.SENO

)

 SELECT * FROM DESCENTANTS

Free SQL Book, Tim Martyn 254 Copyright Pending 2020

30M. Start with Employee 5500. Display all data about this employee and all data about

her direct or indirect managers. The result should look like:

 ENO ENAME SALARY BENO

5500 HANNAH 4000.00 5000

5000 JESSIE 400.00 2000

2000 JANET 2000.00 1000

1000 MOE 2000.00 -

WITH ANCESTORS (ENO, ENAME, SALARY, BENO)

AS

(SELECT ENO, ENAME, SALARY, BENO

 FROM REMPLOYEE

 WHERE ENO ='5500'

 UNION ALL

 SELECT R.ENO, R.ENAME, R.SALARY, R.BENO

 FROM REMPLOYEE R, ANCESTORS A

 WHERE R.ENO = A.BENO

)

 SELECT * FROM ANCESTORS;

Free SQL Book, Tim Martyn 255 Copyright Pending 2020

30N. Reference the RDEMO1 table described in Exercise 30C. Within the context of

upward tree traversal, this exercise focuses on the specification a restriction in the

recursive Sub-SELECT and Main-SELECT. Consider the following three

statements. What is the result of executing each statement? Execute each statement

to verify your answer.

Statement 37N-2

WITH ANCESTORS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 35

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM ANCESTORS A, RDEMO1 R

 WHERE A.FKEY = R.PKEY

 AND A.CODE = 0

)

 SELECT * FROM ANCESTORS

Statement 37N-1

WITH ANCESTORS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 35

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM ANCESTORS A, RDEMO1 R

 WHERE A.FKEY = R.PKEY

)

 SELECT * FROM ANCESTORS

 WHERE CODE = 0

Statement 37N-3

WITH ANCESTORS (PKEY, CODE, FKEY)

AS

(SELECT PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 35

 UNION ALL

 SELECT R.PKEY, R.CODE, R.FKEY

 FROM ANCESTORS A, RDEMO1 R

 WHERE A.FKEY = R.PKEY

 AND R.CODE = 0

)

 SELECT * FROM ANCESTORS

 PKEY CODE FKEY

 35 0 30

 30 0 15

 25 0 20

 20 0 10

 10 0 -

 PKEY CODE FKEY

 35 0 30

 30 0 15

 15 1000 25

 PKEY CODE FKEY

 35 0 30

 30 0 15

Free SQL Book, Tim Martyn 256 Copyright Pending 2020

30O1. Reference the RDEMO1 table. Display the PKEY, CODE, and FKEY values for the

row with a PKEY value of 25 and all its descendants. Also display the level number

for each row. The result should look like:

 LVL PKEY CODE FKEY

 1 25 0 20

 2 15 1000 25

 2 40 0 25

 3 30 0 15

 3 50 0 40

 4 35 0 30

WITH DESCENDANTS (LVL, PKEY, CODE, FKEY)

AS

(SELECT 1, PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 25

 UNION ALL

 SELECT D.LVL+1, R.PKEY, R.CODE, R.FKEY

 FROM DESCENDANTS D, RDEMO1 R

 WHERE D.PKEY = R.FKEY

)

 SELECT * FROM DESCENDANTS

30O2. Modify the previous query objective such that downward traversal is restricted to

three levels. The result should look like:

 LVL PKEY CODE FKEY

 1 25 0 20

 2 15 1000 25

 2 40 0 25

 3 30 0 15

 3 50 0 40

WITH DESCENDANTS (LVL, PKEY, CODE, FKEY)

AS

(SELECT 1, PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 25

 UNION ALL

 SELECT D.LVL+1, R.PKEY, R.CODE, R.FKEY

 FROM DESCENDANTS D, RDEMO1 R

 WHERE D.PKEY = R.FKEY

 AND D.LVL+1 <= 3

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 257 Copyright Pending 2020

30P1. Reference the RDEMO1 table. Display the PKEY, CODE, and FKEY values for

the row with a PKEY value of 40 and all its ancestors. Also display the level number

for each row. The result should look like:

 LVL PKEY CODE FKEY

 1 40 0 25

 2 25 0 20

 3 20 0 10

 4 10 0 -

WITH ANCESTORS (LVL, PKEY, CODE, FKEY)

AS

(SELECT 1, PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 40

 UNION ALL

 SELECT A.LVL+1, R.PKEY, R.CODE, R.FKEY

 FROM ANCESTORS A, RDEMO1 R

 WHERE A.FKEY = R.PKEY

)

 SELECT * FROM ANCESTORS

30P2. Modify this query objective such that upward traversal is restricted to three levels.

The result should look like:

 LVL PKEY CODE FKEY

 1 40 0 25

 2 25 0 20

 3 20 0 10

WITH ANCESTORS (LVL, PKEY, CODE, FKEY)

AS

(SELECT 1, PKEY, CODE, FKEY

 FROM RDEMO1

 WHERE PKEY = 40

 UNION ALL

 SELECT A.LVL+1, R.PKEY, R.CODE, R.FKEY

 FROM ANCESTORS A, RDEMO1 R

 WHERE A.FKEY = R.PKEY

 AND A.LVL+1 <= 3

)

 SELECT * FROM ANCESTORS

Free SQL Book, Tim Martyn 258 Copyright Pending 2020

30Q: Modify the Main-SELECT in Sample Query 30.8a such that the result looks like

Result-3. Then specify an ORDER BY clause to produce Result-4.

 Start with Result-1 and generate Result-3:

 Assume you know a query result will display four levels of rows as in Result-1.

You could produce this Result-3 by changing the third Sub-SELECT to:

SELECT 4 - (LVL-1) LVL, ENO, ENAME, SENO

FROM ANCESTORS

However, you may not have foreknowledge that 4 is the highest level in the result.

Hence, you will need to formulate some expression that will generate this value.

The expression is: (SELECT MAX (LVL) FROM ANCESTORS)

Then substitute this expression for the 4 as shown below.

 WITH ANCESTORS (LVL, ENO, ENAME, SENO)

AS

(SELECT 1, ENO, ENAME, SENO

 FROM REMPLOYEE

 WHERE ENO ='4600'

 UNION ALL

 SELECT LVL+1, R.ENO, R.ENAME, R.SENO

 FROM ANCESTORS A, REMPLOYEE R

 WHERE A.SENO = R.ENO

)

 SELECT (SELECT MAX (LVL) FROM ANCESTORS) - (LVL-1) LVL,

 ENO, ENAME, SENO

 FROM ANCESTORS

 -

 Next, generate Result-4 by appending ORDER BY LVL to the above statement

LVL ENO ENAME SENO

 1 1000 MOE -

 2 2000 JANET 1000

 3 4000 JULIE 2000
 4 4600 ELEANOR 4000

Result-4

LVL ENO ENAME SENO

 1 4600 ELEANOR 4000

 2 4000 JULIE 2000

 3 2000 JANET 1000

 4 1000 MOE -

Result-1

LVL ENO ENAME SENO

 4 4600 ELEANOR 4000

 3 4000 JULIE 2000

 2 2000 JANET 1000

 1 1000 MOE -

Result-3

LVL ENO ENAME SENO

 4 4600 ELEANOR 4000

 3 4000 JULIE 2000

 2 2000 JANET 1000

 1 1000 MOE -

Result-3

Free SQL Book, Tim Martyn 259 Copyright Pending 2020

30R. Optional Exercise: Assume that many users would like the REMPLOYEE_V2

table. For this reason, you decide to create a view called REMPLOYEE_V2 that

looks like the REMPLOYEE_V2 table. Create this view, and then execute SELECT

* FROM REMPLOYEE_V2 to display its contents.

CREATE VIEW REMPLOYEE_V2 (ENO, ENAME, SALARY, SENO)

AS

SELECT R1.ENO, R1.ENAME, R1.SALARY, R2.ENO

FROM REMPLOYEE R1 LEFT OUTER JOIN REMPLOYEE R2

 ON R1.ENO = R2.SENO;

SELECT * FROM VREMPLOYEE_V2

 ORDER BY ENO, SENO;

Free SQL Book, Tim Martyn 260 Copyright Pending 2020

Exercises for Section B. Recursive Many-to-Many Recursive Relationships

30S1. Reference the REPORTS_TO and REMPLOYEE2 tables. Apply the Soultion-1

code-pattern to display the ENO, ENAME, SALARY, and SENO values for

Employee 5000 and all employees who directly or indirectly work for her. The

result should look like:

ENO ENAME SALARY SENO

5000 JESSIE 400.00 2000

4600 ELEANOR 3000.00 5000

5500 HANNAH 4000.00 5000

4700 ANDY 2000.00 4600

4800 MATT 3000.00 4600

4800 MATT 3000.00 5500

WITH DESCENDANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND R.ENO = '5000'

 UNION ALL

 SELECT R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM DESCENDANTS D, REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND D.ENO = R.SENO

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 261 Copyright Pending 2020

30S2. Apply the Solution-2 code-pattern to code an equivalent solution for Exercise 30S1.

WITH FULLTAB (ENO, ENAME, SALARY, SENO)

 AS

 (SELECT RT.ENO, R2.ENAME, R2.SALARY, RT.SENO

 FROM REPORTS_TO RT, REMPLOYEE2 R2

 WHERE RT.ENO = R2.ENO),

 DESCENDANTS (ENO, ENAME, SALARY, SENO)

 AS

 (SELECT ENO, ENAME, SALARY, SENO

 FROM FULLTAB

 WHERE ENO = '5000'

 UNION ALL

 SELECT F.ENO, F.ENAME, F.SALARY, F.SENO

 FROM DESCENDANTS D, FULLTAB F

 WHERE D.ENO = F.SENO

)

 SELECT * FROM DESCENDANTS

30S3. Apply the Solution-3 code-pattern to code another equivalent solution for Exercise

30S1.

WITH DESCENDANTS (ENO, SENO)

AS

(SELECT ENO, SENO

 FROM REPORTS_TO

 WHERE ENO = '5000'

 UNION ALL

 SELECT R.ENO, R.SENO

 FROM DESCENDANTS D, REPORTS_TO R

 WHERE D.ENO = R.SENO

)

 SELECT D.ENO, E.ENAME, E.SALARY, D.SENO

 FROM DESCENDANTS D, REMPLOYEE2 E

 WHERE D.ENO = E.ENO

Free SQL Book, Tim Martyn 262 Copyright Pending 2020

30T. Code three SELECT-statements to satisfy the following query objective. Each

statement should be similar in structure to those statements presented in Solution-

1, Solution-2, and Solution-3 for Sample Query 30.11.

 Reference the RDEMO2 and RDEMO2MM tables. Display the CHILDKEY,

AMT, and PARENTKEY values for CHILDKEY 10 and all its descendants. The

result should look like:

 CHILDKEY AMT PARENTKEY

 10 200 40

 50 200 10

 60 500 50

 70 600 60

 Solution-1

WITH DESCENDANTS (CHILDKEY, AMT, PARENTKEY)

AS

(SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM RDEMO2MM MM, RDEMO2 R2

 WHERE MM.CHILDKEY = R2.KEY

 AND MM.CHILDKEY = 10

 UNION ALL

 SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM DESCENDANTS D, RDEMO2MM MM, RDEMO2 R2

 WHERE D.CHILDKEY = MM.PARENTKEY

 AND MM.CHILDKEY = R2.KEY

)

 SELECT * FROM DESCENDANTS

Solution-2

WITH FULLTAB (CHILDKEY, AMT, PARENTKEY)

 AS

 (SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM RDEMO2MM MM, RDEMO2 R2

 WHERE MM.CHILDKEY = R2.KEY

),

 DESCENDANTS (CHILDKEY, AMT, PARENTKEY)

 AS

 (SELECT * FROM FULLTAB

 WHERE CHILDKEY = 10

 UNION ALL

 SELECT F.CHILDKEY, F.AMT, F.PARENTKEY

 FROM DESCENDANTS D, FULLTAB F

 WHERE D.CHILDKEY = F.PARENTKEY

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 263 Copyright Pending 2020

Solution-3

WITH DESCENTANTS (CHILDKEY, PARENTKEY)

AS

(SELECT CHILDKEY, PARENTKEY

 FROM RDEMO2MM

 WHERE CHILDKEY = 10

 UNION ALL

 SELECT MM.CHILDKEY, MM.PARENTKEY

 FROM DESCENTANTS D, RDEMO2MM MM

 WHERE D.CHILDKEY = MM.PARENTKEY

)

SELECT D.CHILDKEY, R2.AMT, D.PARENTKEY

FROM DESCENTANTS D, RDEMO2 R2

WHERE D.CHILDKEY = R2.KEY

Free SQL Book, Tim Martyn 264 Copyright Pending 2020

30U. Modify Sample Query 30.11 to remove duplicate rows from the result by grouping

and counting the number of duplicate rows. Show this count value in the CNT

column. The result will contain the following rows, but these rows might appear in

a different sequence.

ENO ENAME SALARY SENO CNT

 2000 JANET 2000.00 1000 1

 5000 JESSIE 400.00 2000 1

 4000 JULIE 500.00 2000 1

 6000 FRANK 9000.00 2000 1

 4500 JOHNNY 2000.00 4000 1

 4600 ELEANOR 3000.00 4000 1

 4700 ANDY 2000.00 4600 2

 4800 MATT 3000.00 4600 2

 4600 ELEANOR 3000.00 5000 1

 5500 HANNAH 4000.00 5000 1

 4800 MATT 3000.00 5500 1

 4800 MATT 3000.00 6000 1

 Early-join of REMPLOYEE2

WITH DESCENDANTS (ENO, ENAME, SALARY, SENO)

AS

(SELECT R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM REPORTS_TO R, REMPLOYEE R2

 WHERE R.ENO = R2.ENO

 AND R.ENO = '2000'

 UNION ALL

 SELECT R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM DESCENDANTS D, REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND D.ENO = R.SENO

)

 SELECT ENO, ENAME, SALARY, SENO, COUNT (*) CNT

 FROM DESCENDANTS

 GROUP BY ENO, ENAME, SALARY, SENO

Free SQL Book, Tim Martyn 265 Copyright Pending 2020

Late-join of REMPLOYEE2

WITH DESCENTANTS (ENO, SENO)

AS

(SELECT ENO, SENO

 FROM REPORTS_TO

 WHERE ENO = '2000'

 UNION ALL

 SELECT R.ENO, R.SENO

 FROM DESCENTANTS D, REPORTS_TO R

 WHERE D.ENO = R.SENO

)

 SELECT D.ENO, E.ENAME, E.SALARY, D.SENO, COUNT (*) CNT

 FROM DESCENTANTS D, REMPLOYEE2 E

 WHERE D.ENO = E.ENO

 GROUP BY D.ENO, E.ENAME, E.SALARY, D.SENO

Free SQL Book, Tim Martyn 266 Copyright Pending 2020

30V. Reference RDEMO2 and RDEMO2MM. Display the CHILDKEY, AMT, and

PARENTKEY values for Node-30 and its descendants. However, if a descendant’s

AMT is greater than or equal to 600, then exclude all descendants of this

descendant. The result should look like:

CHILDKEY AMT PARENTKEY

 30 500 40

 50 200 30

 60 500 50

Solution-1 code-pattern

WITH DESCENDANTS (CHILDKEY, AMT, PARENTKEY)

AS

(SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM RDEMO2MM MM, RDEMO2 R2

 WHERE MM.CHILDKEY = R2.KEY

 AND MM.CHILDKEY = 30

 UNION ALL

 SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM DESCENDANTS D, RDEMO2MM MM, RDEMO2 R2

 WHERE D.CHILDKEY = MM.PARENTKEY

 AND MM.CHILDKEY = R2.KEY

 AND R2.AMT < 600

)

 SELECT * FROM DESCENDANTS;

Solution-2 code-pattern

WITH

 FULLTAB (CHILDKEY, AMT, PARENTKEY)AS

 (SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM RDEMO2MM MM, RDEMO2 R2

 WHERE MM.CHILDKEY = R2.KEY),

 DESCENDANTS (CHILDKEY, AMT, PARENTKEY) AS

 (SELECT CHILDKEY, AMT, PARENTKEY

 FROM FULLTAB

 WHERE CHILDKEY = 30

 UNION ALL

 SELECT F.CHILDKEY, F.AMT, F.PARENTKEY

 FROM DESCENDANTS D, FULLTAB F

 WHERE D.CHILDKEY = F.PARENTKEY

 AND F.AMT < 600

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 267 Copyright Pending 2020

30W. Reference the RDEMO2 and RDEMO2MM tables. Start with Node-60. Display

the CHILDKEY, AMT, and PARENTKEY values for this node and all of its direct

and indirect ancestors. The result should look like:

 CHILDKEY AMT PARENTKEY

 60 500 50

 50 200 10

 50 200 20

 50 200 30

 10 200 40

 20 700 40

 30 500 40

 40 100 0

 40 100 0

 40 100 0

Solution-3 code-pattern

WITH ANCESTORS (CHILDKEY, PARENTKEY)

AS

(SELECT CHILDKEY, PARENTKEY

 FROM RDEMO2MM

 WHERE CHILDKEY = 60

 UNION ALL

 SELECT R2MM.CHILDKEY, R2MM.PARENTKEY

 FROM ANCESTORS A, RDEMO2MM R2MM

 WHERE A.PARENTKEY = R2MM.CHILDKEY

)

 SELECT A.CHILDKEY, R2.AMT, A.PARENTKEY

 FROM ANCESTORS A, RDEMO2 R2

 WHERE A.CHILDKEY = R2.KEY

Solution-2 code-pattern

WITH

 FULLTAB (CHILDKEY, AMT, PARENTKEY)AS

 (SELECT MM.CHILDKEY, R2.AMT, MM.PARENTKEY

 FROM RDEMO2MM MM, RDEMO2 R2

 WHERE MM.CHILDKEY = R2.KEY),

 DESCENDANTS (CHILDKEY, AMT, PARENTKEY) AS

 (SELECT CHILDKEY, AMT, PARENTKEY

 FROM FULLTAB

 WHERE CHILDKEY = 60

 UNION ALL

 SELECT F.CHILDKEY, F.AMT, F.PARENTKEY

 FROM DESCENDANTS D, FULLTAB F

 WHERE F.CHILDKEY = D.PARENTKEY

)

 SELECT * FROM DESCENDANTS

Free SQL Book, Tim Martyn 268 Copyright Pending 2020

30X. Reference the REPORTS_TO and REMPLOYEE2 tables. Display the ENO,

ENAME, and SENO values for Employee 4000 and all his direct or indirect

supervisors. The result should look like:

ENO ENAME SENO

4000 JULIE 2000

2000 JANET 1000

1000 MOE 0000

 Solution-3 code-pattern

WITH ANCESTORS (ENO, SENO)

AS

(SELECT ENO, SENO

 FROM REPORTS_TO

 WHERE ENO ='4000'

 UNION ALL

 SELECT R.ENO, R.SENO

 FROM ANCESTORS A, REPORTS_TO R

 WHERE A.SENO = R.ENO

)

 SELECT A.ENO, R2.ENAME, A.SENO

 FROM ANCESTORS A, REMPLOYEE2 R2

 WHERE A.ENO = R2.ENO

Solution-2 code-pattern

WITH

FULLTAB (ENO, ENAME, SENO) AS

 (SELECT RT.ENO, R2.ENAME, RT.SENO

 FROM REPORTS_TO RT, REMPLOYEE2 R2

 WHERE RT.ENO = R2.ENO),

ANCESTORS (ENO, ENAME, SENO) AS

 (SELECT ENO, ENAME, SENO

 FROM FULLTAB

 WHERE ENO = '4000'

 UNION ALL

 SELECT F.ENO, F.ENAME, F.SENO

 FROM ANCESTORS A, FULLTAB F

 WHERE A.SENO = F.ENO

)

SELECT * FROM ANCESTORS

Free SQL Book, Tim Martyn 269 Copyright Pending 2020

30Y1. Modify Sample Query 30.14 to limit the downward traversal to three levels. (Hint:

Review Sample Query 30.7b.)

WITH DESCENDANTS (LVL, ENO, ENAME, SALARY, SENO)

AS

(SELECT 1, R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND R.ENO = '2000'

 UNION ALL

 SELECT LVL+1, R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM DESCENDANTS D, REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO AND D.ENO = R.SENO

AND D.LVL+1 <= 3

)

SELECT * FROM DESCENDANTS

LVL ENO ENAME SALARY SENO

 1 2000 JANET 2000.00 1000

 2 4000 JULIE 500.00 2000

 2 5000 JESSIE 400.00 2000

 2 6000 FRANK 9000.00 2000

 3 4500 JOHNNY 2000.00 4000

 3 4600 ELEANOR 3000.00 4000

 3 4600 ELEANOR 3000.00 5000

 3 5500 HANNAH 4000.00 5000

 3 4800 MATT 3000.00 6000

Free SQL Book, Tim Martyn 270 Copyright Pending 2020

30Y2. Modify the above Sample Query 30.15 to (i) limit the upward traversal to three

levels, (ii) remove duplicate rows from the result table, and (iii) modify the level

numbers such that the result looks like:

LVL ENO ENAME SALARY SENO

 2 2000 JANET 2000.00 1000

 3 5000 JESSIE 400.00 2000

 3 4000 JULIE 500.00 2000

 4 4600 ELEANOR 3000.00 4000

 4 4600 ELEANOR 3000.00 5000

Hint: Review Exercise 30Q.

WITH ANCESTORS (LVL, ENO, ENAME, SALARY, SENO)

 AS

(SELECT 1, R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM REPORTS_TO R, REMPLOYEE2 R2

 WHERE R.ENO = R2.ENO

 AND R.ENO ='4600'

 UNION ALL

 SELECT LVL+1, R.ENO, R2.ENAME, R2.SALARY, R.SENO

 FROM ANCESTORS A, REPORTS_TO R, REMPLOYEE2 R2

 WHERE A.SENO = R.ENO

 AND R.ENO = R2.ENO

 AND LVL+1 <=3

)

 SELECT DISTINCT

(SELECT MAX (LVL) FROM ANCESTORS) - (LVL-2) LVL,

 ENO, ENAME, SALARY, SENO

 FROM ANCESTORS

 ORDER BY LVL;

Free SQL Book, Tim Martyn 271 Copyright Pending 2020

Exercises for Section C. Self-Joins for Recursive Queries

30Z1. Consider Employees 3000 and 8600. Display the number, name, and salary for these

employees. Also, if either of these employees is a supervisor, display the number,

name, and salary of each immediate supervisee. The result should look like:

 BOSSENO BOSSENAME BOSSSALARY ENO ENAME SALARY

 3000 LARRY 3000.00 6500 CURLY 8000.00

 8600 DICK 6000.00 - - -

SELECT PARENT.ENO BOSSENO, PARENT.ENAME BOSSENAME,

 PARENT.SALARY BOSSSALARY,

 CHILD.ENO, CHILD.ENAME, CHILD.SALARY

FROM REMPLOYEE PARENT LEFT OUTER JOIN REMPLOYEE CHILD

 ON PARENT.ENO = CHILD.SENO

WHERE PARENT.ENO IN ('3000', '8600')

ORDER BY PARENT.ENO, CHILD.ENO

30Z2. Consider Employees 3000 and 8600. Display each employee’s number, name, and

salary followed by the number, name and salary of the employee’s immediate

supervisor. The result should look like:

ENO ENAME SALARY BOSSENO BOSSENAME BOSSSALARY

3000 LARRY 3000.00 1000 MOE 2000.00

 8600 DICK 6000.00 8500 GEORGE 7000.00

SELECT CHILD.ENO, CHILD.ENAME, CHILD.SALARY,

 PARENT.ENO BOSSENO, PARENT.ENAME BOSSENAME,

 PARENT.SALARY BOSSSALARY

FROM REMPLOYEE CHILD LEFT OUTER JOIN REMPLOYEE PARENT

 ON CHILD.SENO = PARENT.ENO

WHERE CHILD.ENO IN ('3000', '8600')

ORDER BY CHILD.ENO

Free SQL Book, Tim Martyn 272 Copyright Pending 2020

30Z3. Display the numbers and names of Employees 3000, 5000, and 8000. If any of these

employees is a supervisor, display each supervisee’s number and name; and, if any

of these supervisees is also a supervisor, display each of these supervisee’s number

and name. Sort the result by the supervisor’s (the parent’s) ENO value. The result

should look like:

Query-Pattern-6: Three-Level, Parent-Oriented, Non-Matching

SELECT PARENT.ENO PARENTENO,

 PARENT.ENAME PARENTNAME,

 CHILD.ENO CHILDENO,

 CHILD.ENAME CHILDNAME,

 GRANDCHILD.ENO GRANDCHILDENO,

 GRANDCHILD.ENAME GRANDCHILDNAME

 FROM REMPLOYEE PARENT

LEFT OUTER JOIN REMPLOYEE CHILD

 ON PARENT.ENO = CHILD.SENO

 LEFT OUTER JOIN REMPLOYEE GRANDCHILD

 ON CHILD.ENO = GRANDCHILD.SENO

WHERE PARENT.ENO IN ('3000', '5000', '8000')

ORDER BY PARENT.ENO

 PARENTENO PARENTNAME CHILDENO CHILDNAME GRANDCHILDENO GRANDCHILDNAME

 3000 LARRY 6500 CURLY 7500 SHEMP

 5000 JESSIE 5500 HANNAH - -

 8000 JOE 8500 GEORGE 8600 DICK

 8000 JOE 8500 GEORGE 8700 HANK

Free SQL Book, Tim Martyn 273 Copyright Pending 2020

30Z4. Consider Employees 3000, 6000, and 8500. If any of these employees is supervised

by a supervisor who is also supervised by a supervisor, then display the number and

name of all such employees. The result should look like:

Query-Pattern-7: Three-Level, Parent-Oriented, Matching

SELECT GRANDCHILD.ENO GRANDCHILDENO,

 GRANDCHILD.ENAME GRANDCHILDNAME,

CHILD.ENO CHILDENO,

CHILD.ENAME CHILDNAME,

PARENT.ENO PARENTENO,

PARENT.ENAME PARENTENAME

FROM REMPLOYEE GRANDCHILD,

REMPLOYEE CHILD,

 REMPLOYEE PARENT

WHERE GRANDCHILD.SENO = CHILD.ENO

AND CHILD.SENO = PARENT.ENO

AND GRANDCHILD.ENO IN ('3000', '6000', '8500')

 GRANDCHILDENO GRANDCHILDNAME CHILDENO CHILDNAME PARENTENO PARENTNAME

 6000 FRANK 2000 JANET 1000 MOE

 8500 GEORGE 8000 JOE 1000 MOE

Free SQL Book, Tim Martyn 274 Copyright Pending 2020

30Z5. Reference the RERORTS_TO and the REMPLOYEE2 tables (representing a

recursive many-to-many relationship). Display the numbers and names of

Employees 3000, 5000, and 8500. If any of these employees is a supervisor, display

each supervisee’s number and name; and, if any of these supervisees is also a

supervisor, display each of these supervisee’s number and name. Sort the result by

the supervisor’s (the parent’s) ENO value. The result should look like:

Query-Pattern-6: Three-Level, Parent-Oriented, Non-Matching

WITH REMPLOYEE (ENO, ENAME, SALARY, SENO)

AS

(SELECT RT.ENO, R2.ENAME, R2.SALARY, RT.SENO

FROM REPORTS_TO RT, REMPLOYEE2 R2

WHERE RT.ENO = R2.ENO)

SELECT PARENT.ENO PARENTENO,

 PARENT.ENAME PARENTNAME,

 CHILD.ENO CHILDENO,

 CHILD.ENAME CHILDNAME,

 GRANDCHILD.ENO GRANDCHILDENO,

 GRANDCHILD.ENAME GRANDCHILDNAME

FROM REMPLOYEE PARENT

LEFT OUTER JOIN REMPLOYEE CHILD

 ON PARENT.ENO = CHILD.SENO

 LEFT OUTER JOIN REMPLOYEE GRANDCHILD

 ON CHILD.ENO = GRANDCHILD.SENO

WHERE PARENT.ENO IN ('3000', '5000', '8500')

ORDER BY PARENT.ENO

 PARENTENO PARENTNAME CHILDENO CHILDNAME GRANDCHILDENO GRANDCHILDNAME

 3000 LARRY 6500 CURLY 7500 SHEMP

 5000 JESSIE 4600 ELEANOR 4700 ANDY

 5000 JESSIE 4600 ELEANOR 4800 MATT

 5000 JESSIE 5500 HANNAH 4800 MATT

 8500 GEORGE 8700 HANK - -

 8500 GEORGE 8600 DICK - -

